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Abstract: Domain Decomposition is a class of techniques for the solution of partial differential
equations on a domain by solving smaller problems on subdomains. They are particularly useful
for solving problems on irregular domains and on parallel computers. The key ingredient is the
system of equations governing the variables on the interfaces between the subdomains, which is
often solved by preconditioned iterative methods. Since each iteration involves solving problems on
each subdomain, it is essential to keep the number of iterations low by using a good preconditioner.
In this paper, we present a framework for analysing and constructing such efficient preconditioners.
We use two approaches. The first is based on spectral analysis and can be used to invert exactly the
interface operator for general piecewise constant coefficient elliptic operators on rectangular regions
in any dimension. Methods for adapting these techniques to nonconstant coefficient problems
and irregular domains will be discussed. The second approach is based on treating the interface
operator as a localized pseudo-differential operator on the interface unknowns and is applicable
to more general operators than the spectral approach. One of our objectives is to illuminate the
relationships among the most common preconditioners in the literature.
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1. Introduction

The term Domain Decomposition generally refers to a class of techniques for solving partial
differential equations on a given domain by first decomposing the domain into smaller ones and
then obtaining the overall solution by solving smaller problems on these subdomains. In this sense
the idea is rather old and can be traced to Schwarz’s alternating procedure, in which existence of
solutions to boundary value problems are proved by an iteration involving solutions on overlapping
subdomains. This idea is also widely used in many fields of scientific computing. In structural
mechanics, these techniques are known as substructuring or frontal methods and are especially
useful when the size of the complete problem is too large for the main memory of the computing
machine. In computational fluid dynamics, it is common to decompose the physical domain into
different regions and use slightly different forms of the governing equations in each (e.g. the
boundary layer equations near a body and potential flow in the far field.)

In the past several years there has been an explosion of activities this research area. The
primarily reason is no doubt the advent of parallel computing and the obvious opportunity for
parallelism in these methods. Another development has been in the improvement in the efficiency
of these methods, primarily through improved handling of the coupling between the subdomain
solutions. For example, while Schwarz’s procedure is known to converge slowly, acceleration of this
method can lead to computationally efficient algorithms [15]. However, we shall not address this
class of methods in this paper.

Instead we shall restrict our attention to the class of domain decomposition techniques which
use non-overlapping subdomains. The basic idea is to reduce the differential operator on the whole
domain to an operator (not necessarily a differential one) on the interfaces between the subdomains.
The equations for the interfaces are then solved by iterative methods, such as preconditioned
conjugate gradient methods. Typically, each iteration involves the solution of a problem on each of
the subdomains and therefore for efficiency reasons, it is essential to keep the number of iterations
small by using a good preconditioner. Several such preconditioners have been proposed in the
recent literature [3,5,6,10,13,17]. In most aspects, their derivations are mostly unrelated. Our
main purpose in this paper is to give a uniform framework in which efficient preconditioners can be
derived and their properties analyzed. Moreover, within this framework most of the preconditioners
in the literature can be related, compared and generalized.

We use two approaches. Our main approach is based on spectral analysis and can be used
to invert exactly the interface operator for general piecewise constant coeflicient elliptic operators
on rectangular regions in any dimensions. For these operators, our technique leads to domain
decomposed fast direct solvers. For more general operators on irregular domains where the exact
inverses cannot be derived explicitly, these techniques can easily be adapted to construct efficient
preconditioners for the interface operator. Our second approach is based on approximating the
interface operator by treating it as a localized pseudo-differential operator. Since this approach
does not depend on the special form of the differential operator, it is applicable to more general
operators than the spectral approach.

The outline of the paper is as follows. In section 2, we introduce our formulation of the interface
system. In section 3, we consider the spectral approach. In particular, for the case of a rectangle
decomposed into two smaller ones, we give the exact inverse of the interface operator for a variety
of second order elliptic operators and discretizations in 2D and 3D: the Laplace operator (5 point
and 9 point discretization), the Helmholts operator, operators with first order terms with central
and upwind differencing, and operators with piecewise constant coefficients in each subdomain.
Moreover, we extend these to the multiple subdomain case. In section 5, we consider the use of
these exact inverses as preconditioners in the case of irregular domains. The exact inverses allow
a comparison of the various preconditioners in the literature to be made. Both numerical and
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Figure 1: The domain @ and its partition.

theoretical results will be given. Section 5 considers extensions to non-separable problems. Finally,
section 6 considers briefly the operator approach.

2. Formulation
We will first formulate our approach in the simplest case of a domain split into two subdomains
with one interface. Consider the problem:

Lu=f on 0 (2.1)

with boundary condition
u =14 on 9N}

where L is a linear elliptic operator and the domain {1 is as illustrated in Fig. 1 . We will call the

interface between ; and 03, T.
If we order the unknowns for the internal points of the subdomains first and those in the

interface I' last, then the discrete solution vector u = (uy, ugz, us) satisfies the linear system

Au=b , (2.2)
which can be expressed in block form as:
An Ays 61 5
Azz Au usg = bz . (2.3)
ATy AL, Ass) \us bs

The system (2.3) can be solved by Block-Gaussian Elimination as follows:

Step 1: Compute
C = Ay — AR AT} Ars — AT AZ) Ass, (2.4)

wy = Afthy (2.8)
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we = Az}bs (2.6)

and solve
Cua = b; - Af,wl - Azrsum. (2.7)

Step 2: Compute
) = wy — A;;Auua (2.8)

and
— -1

ug = wg — Agy Azsus. (2.9)

Note that, except for {2.7), the algorithm only requires the solution of problems with A;; and
Agz, which corresponds to solving independent problems on the subdomains. The matrix C (2.4} is
the Schur complement of Ass in A and it is sometimes called the capacitance matriz in this context.
It corresponds to the reduction of the operator L on 2 to an operator on the boundary I.

3. The Spectral Approach for Separable Operators

The basic idea of the spectral approach is to diagonalize the matrix C by appropriately chosen
eigenvectors [6]. Because of the form of C in (2.4), it is clear that a vector w would be an eigenvector
of C if it is an eigenvector for each of the three terms in (2.4). It can be verified that the product
of the last two terms with w corresponds imposing local averages of w (namely Ajsw and Azsw)
as Dirichlet boundary conditions on I, solving for the solutions (say vy and vz) on each subdomain
and evaluating local averages of these solutions near ' (namely AJyv; and AJyuz.) Thus the issue
of finding the eigenvectors of C is closely related to the separability of the operators Al'l‘ and A;,‘
along the direction of I'. In particular, if £ is rectangular with T parallel to one of its edges and
the operator L is also separable in the directions of the two edges of (1, then the eigenvectors of C
can often be easily found in terms of the separating eigenfunctions of L. For constant coefficient
operators such as the Laplacian with Diriclet boundary conditions, the eigenvectors are simply the
discrete Fourier functions defined on I'. For more complicated operators, such as ones with first
order terms, these eigenfunctions are slightly more complicated. For variable coefficient operators,
these eigenfunctions may have to be computed numerically. Generally, this technique works for
separable operators on rectangular domains, similar to the situation for conventional fast elliptic
solvers. Analogously, the spectral approach leads to domain decomposed fast elliptic solvers.

3.1. Laplace Operator

We first consider the case where L is the Laplacian operator, discretized by the standard second
order centered differencing, and 1 is a rectangle divided into two or more strips like is shown in
Fig. 2. Using the spectral technique explained earlier, the exact eigenvectors and eigenvalues of C
can be derived [2, 8, 7]. The eigenvectors are discrete sine functions.

For the case of two strips, C has the following eigenvalue decomposition: [6]
A

s (3.1)

where W is the matrix whose columns are

2 .. . T
.=1/ cxh e sinni 2
wj "+l(sm,)rh,sm2;rh, ,sinnjxh) (3.2)
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Figure 2: Rectangular domain divided into strips.

and

14 aMmtl g ymtl o3

= i i 4
M= (1 -t i ) 3 (3-3)

jixh
o; = 4sin? (%) ) (3.4)
2 2
o of

7= 1+ F+ o+ (3.5)

for 5=1,...,n, where h is the grid sizse, and m; and m3 are the number of rows of grid points in
the y-direction in £1; and 1, respectively. By using the decomposition (3.1), the capacitance system
(2.7) can be solved by fast Fourier transforms. Once the solution 43 on the interface is computed, we
can compute u; and u2 by (2.8) and (2.9), which correspond to solving two independent problems
on the subdomains with boundary condition us on I

In the multistrip case, the matrix C has the block-tridiagonal structure:

C, B3
C= B G (3'6)
- . By
B, C,

The C;’s correspond to the reduce operator on I'; and the B;’s correspond to the coupling between
the interfaces. All blocks C; and B; have the same matrix of eigenvectors W, i.e. fori=1,...,k,

we have
WTC,W = A; = diag(Ain,- .., Ain) (3.7)
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and for § = 2,..., k, we have

WTBW = D; = diag(61,--.:8in) (3.8)
e (1 VAR T ity " o? (59)
CANEN SR ,1;3144»1 + 1 ,1;_n-+|+1 Gt o .

[me 1—7;
5,-,' = »1;,"‘ (1——‘1".:;1-) . ) (310)
J

By first diagonalizing C with a block diagonal matrix with W as the diagonal blocks and then
rearranging the equations, C can be reduced to a set of n decoupled tridiagonal systems of dimension
k, where k + 1 is the number of subdomains [7].

Although it first appears that the algorithm requires the solution of two problems on each
subdomain, one for computing the right hand side and one for computing the solution on each
subdomain, the extra work can be saved if care if taken to save some intermediate results from the
first solves. We refer the interested reader to (8], [16] where the parallel implementations of these
algorithms are also discussed.

where

and

3.3. More General Operators and Discretizations

The spectral technique can be extended to more general operators and discretizations and in
higher dimensions. We give a few examples here.

The capacitance matrix for the second order centered finite difference discretization of the
operator

Usy + Buy, (3.11)

where the coefficient § takes constant values f; on each subdomain f;, has the same form as {3.6)
except that the eigenvalues of C; and B; are given by [17]

1 +,""?i+1 o3 1 +1?‘i+l‘+l o3
A= = | —__ A4 Bie; - — Ly e R g 3.12
5 (l — 7;,;”_1 1 B b i 7::‘::},’,1 P + Biv10; ( )

and

where

(3.13)

The capacitance matrix for the second order centered finite difference discretization of the
Helmholts operator

Au+tau (3.14)
also has the form (3.6), with the cigenvalues of C; and B; given by [17]):

\ 1440t Pt [ s.15)
e — 21 X
R 1-— 1;544-1 1— _';_m.n-u (

4
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and
1—19;
bij =] | —=i5 3.16
PE Y (1._.,;,"«+1) ' (3-16)
where
p=—0;—2+ah? (3.17)
and

(3.18)

The capacitance matrix for the 3D Laplacian has the same form as the 2D version with o;
replaced by the eigenvalues of the 2D Laplace operator [18].

Different discretizations can also be treated within this framework. For example, consider the
following nine point fourth order discretization of the Laplacian [21]:

Ag = 1/6h%tridiagonal(S;, T, S;)
where S; = tridiagonal(1, 4,1) and T; = tridiagonal(4, —20, 4). The capacitance matrix Cp associ-

ated with Ag has the same form as (3.1), with ¢; replaced by

(3.19)

It can also be easily shown that

. - 3
lim K(C5'Co) = \/.;

m—eo0
where K denotes the spectral condition number and Cg denotes the capacitance matrix correspond-
ing to the 5-point discrete Laplacian. The above result shows that Cs is spectrally equivalent to
Cp and is a reasonably good preconditioner for it.

3.3. Non-Self-Adjoint Operators With First Order Terms

Our framework can also be extended to second order elliptic problems with first order derivative
terms, such as the operators L, = A + au; and L, = A + au,. Since the discretizations of these
non-self-adjoint operators lead to nonsymmetric matrices, the spectral approach becomes more
complicated. Consider a rectangle split by an interface I’ along the z-direction, as in Figure 2.
For the operator Ly, it is easy to see that the Fourier matrix W can still be used to diagonalize
C because the y—derivative does not affect the separating eigen-modes in the z—direction. The
eigenvalues A;'s of course depends on the value of a. On the other hand, for the operator L,, W
cannot be used to diagonalized C because the Fourier modes are no longer eigenfunctions of the
operator L, in the z—direction. It turns out, however, that the eigenfunctions of C can still be
found analytically - they are simply given by DW, where D is a suitably chosen diagonal matrix
that depends on a. The eigenvalues depend on a as well. These formulas are too complicated to
be presented here and the interested reader is referred to a recent report by Chan and Hon [19),
where results for both centered and upwind discretizations for the first order terms are presented.

What we would like to show here is the effectiveness of these exact preconditioners when applied
to problems where the first derivative terms are not negligible. Consider the situation where one
needs a preconditioner M for the boundary operator C(a) corresponding to L,. Without the
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knowledge of the exact preconditioners, a natural approach is to use M = C(0), for which we know
the exact diagonalization. Moreover, spectral equivalence results {10] guarantee that for fixed a
the condition number of the preconditioned system remains bounded independent of h. It turns
out, however, that for fixed h and large values of o the preconditioned system can have a large
condition number. For example, for the case where b = 0.02,m; = 50,m,; = 100, and upwind
differencing is used, the values of X(C~1(0)C(«)) are approximately 15 and 40 for values of the
“cell-Reynolds-number® ah/2 equal to 0.4 and 0.8 respectively.

4. Irregular Domains and Preconditioners

For general irregular domains, the eigenvalues and eigenvectors of the capacitance matrix
cannot be computed analytically via the spectral techniques, and hence one must find alternative
methods for solving the capacitance system (2.7).

Note that the computation of the capacitance matrix C is expensive, since it requires the
solution of m + 1 systems with A;; and Az;, and it is also expensive to invert for m large, because
it is dense in general.

Instead of solving the system (2.7) directly, iterative methods such as preconditioned conjugate
gradient methods (PCG) can be applied, in which only matrix vector products Cy for arbitrary
¥y € R™ are required. As explained earlier, this product can be computed by one solve on each
subdomain with boundary condition on I' determined by y. Since each iteration involves the
solution of problems on the subdomains, keeping the number of iterations small is very important
for the efficiency of the method. This can be achieved by choosing a good preconditioner for C. In
this section, we shall survey some preconditioners in the literature, highlighting the relationships
among them. We shall also analyze their performance, with special emphasis on the dependence
on the mesh size h and the departure from regularity of the domain.

4.1. Survey of Preconditioners
We summarize several of the preconditioners which have been proposed in the literature
[3,5,6,10,13]. We summarize them here in our notations to make it easier to compare them.

1. In [10], Dryja proposed the following preconditioner for (2.4):
Mp =Wdiag(A?,22,... A2ywT | (4.1)
where the columns of W are given by (3.2) and

AP =~25; (42)

with ¢; given by (3.4). This preconditioner is based on the Sobolov trace theorem [22). He
proved that K(M;'C) is bounded independently of the mesh size h.

2. Golub and Mayers [13] proposed the preconditioner:

Mg =Wdiag(Af,2§,...,ASywT | (4.3)

o?
A =240 + T’ . (4.4)

The derivation is motivated by considering the generating function for the solution for the case
Where the boundaries of the two domains move away to infinity. Empirical results in [13] show
that Mg performs better than Mp.

where
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3. Another interesting preconditioner was given by Bjdrstad and Widlund [3] (based on a sugges-
tion of Dryja’s) and has the following form:

Mp = Ass — 2AT,A7} Ars

It is easy to show that the eigenvalue decomposition of Mp is

Mp = Wdiag(ZZ,25,... . ABWwT | (4.5)
where
my+1 2
A= i/ o;j+ %
3 1— 1;"14'1 ] 4

The underlying motivation for this preconditioner is exploiting symmetries in the operator and
the domain about the interface. When £2; and 3 are identical (and hence A;; = Ajg), it
is easy to see that Mp is an exact preconditioner. Bjorstad and Widlund showed that the
product M;ICu can be computed by solving a mixed Neumann-Dirichlet problem in one of
the subdomains and a Dirichlet problem in the other one. The basic idea is that if both the
operator L and the domain are symmetric about I' then the solution can be found by solving on
only one of the subdomains with a Neumann boundary condition on I'. They also proved that

K(cMg 1) is uniformed bounded for certain finite element approximation of Dirichlet problems

for self-adjoint second order elliptic problems in plane regions. Their method has the advantage

that it can be applied to more general operators and domain shapes. However, in the particular
case of the Laplacian operator on a union of rectangles, it is less efficient than applying a single

FFT computation on the interface grid points, as the factorization (4.5) suggests. They also

proved that Mp is spectrally equivalent to C [3].

4. Finally, Chan [6 | suggested a procedure for extending the exact preconditioner (3.1) for rect-
angular regions to construct preconditioners for irregular regions. The idea is to use as pre-
conditioner the exact capacitance matrix corresponding to a best rectangular approximation
to the irregular domain sharing the same interface. The motivation is to improve Dryja’s and
Golub/Mayer’s preconditioners by taking into account the aspect ratio of the subdomains. We
will call this preconditioner M¢.

Although Mp, Mg, Mg and Mc were derived independently, we have expressed them in the
same matrix factorization formats. Since the eigenvectors are the same, to compare them we only
need to look at their eigenvalues A;’s. On a rectangle, for which Mg is exact, Mp, Mg and Mp can
be viewed as progressively better approximations to M¢c. The A,q’s are exact for rectangles with
infinitely large aspect ratios because the coefficient in front of ); in (3.9) tends to —2 in the limit
of m; and my tending to co. It can also be easily observed that Af is a first order approximation
to AG for the small A;’s but underestimates the larger );’s. Finally, it it easy to see that the ABy
are exa.ct only for the case when m; = mz. For more detailed analysis, the reader is referred to 16]

4.2. Performance of Preconditioners: Numerical Results

In Fig. 3 we compare the preconditioners Mp, M and M¢ for the Poisson equation on a
T-shaped region 0 as given in Fig. 1, where we vary the aspect ratio of the subdomain {I,. We
consider a uniform grid on 0 with n = 15 grid points on the interface I. By varying m;, the
number of interior grid points in the y direction on the subdomain ), we computed the condition
number of the preconditioned capacitance system for different aspect ratios defined as %ﬁl As
we can see from the plots, Mg performs very well, even when 1; becomes very narrow, while the
performance of the others deteriorate as the aspect ratio becomes small. The curves for M¢, Mg
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and Mp are indistinguishable for aspect ratios larger than one and they are all better than Mp.
See [14) for a careful numerical comparison of these and other preconditioners for constant and
variable coefficients operators.

4.3. Dependence on Irregularity of Domain: Some Theoretical Results

Besides the empirical evidence of the performance of the various preconditioners, there are also
some theoretical results available. The most common results of this kind are spectral equivalence
results which asserts that a particular preconditioner is spectrally equivalent to the exact boundary
operator as the grid size h tends to zero for a fized domain [3,10]. This essentially guarantees
that the number of iterations needed to solve the preconditioned system to a given accuracy is
independent of h. For domains partitioned with interfaces and cross-points, these spectral results
must be relaxed to allow for a slight increase (of the form log(h~!) in the conditioning of the
preconditioned operator {3,5].

In a somewhat orthogonal direction, we have recently obtained some theoretical results con-
cerning the performance of preconditioners as the skape of the domain varies. This issue is of
obvious practical importance in applying the preconditioners to domains of varying shapes. We
prove that [18] on any L-shaped domain, the preconditioned capacitance matrix for the precondi-
tioner M¢ is bounded by 2.18, independent of h and the aspect ratios of the subdomains. Moreover,
the convergence rate is essentially the same irrespective of how the domain is partitioned (there
are two ways of partitioning an L-shape domain into two rectangular domains). Similar results are
also obtained for C-shaped regions. This independence of the aspect ratios is a special property of
the preconditioner Mg not shared by the other preconditioners in general (see Fig. 3 for example),
and can be traced directly to the fact that the aspect ratios of the subdomains are incorporated
into the exact preconditioner for the approximating rectangle from which Mg is derived.

1.2 L —
ON

. C _‘

1.0 +— _

i 1 1 1 l L i N i 1 1 i ;l 1 1 i IJ

0.0 0.5 1.0 1.5 2.0

aspect ratlo

Figure 3: T-shaped region. Condition number of the pre-
conditioned capacitance matrix with Chan’s (C), Dryja’s(D),
Bjorstad and Widlund’s (W) and Golub and Mayers’ (G) pre-
conditoners.
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5. Non-Separable Problems

If the operator A is non-separable, there usually are no fast solvers available for A;; and Azs.
Therefore, in each iteration of an iterative method for solving the capacitance system, the matrix-
vector product Cy cannot be evaluated inexpensively, making methods which work only with the
interface system ineffective.

An alternative is to solve the system (2.3) on the whole domain instead of just the capaci-
tance system on the interface. We will show that preconditioners for {2.3) can be derived from
preconditioners for the capacitance matrix. Let B1; and Baz be approximations to A;; and Az,
The former could be separable approximations to the latter or they could represent some truncated
inner iteration for solving systems with the latter [20]. Based on the following decomposition of
the matrix 4 in (2.3):

Ay I Aﬁ: Ay
A= Az I A Az , (5.1)
A Ayn C I

where C is the Schur complement (2.4), we can derive a preconditoner for A given by:

; By I BilAs
M= Bas I B;zlAga s (5.2)
Ay, Az M I

where M is a good preconditioner for the matrix C. We can see that M is easily invertible by
block-elimination, since fast solvers can be applied to solve systems with B;; and Bss.

Preconditioners of the form (5.2) were first used by Bramble, Pasciak and Schats [4,5,5a).
They used both Mp and Mp as the preconditioner M for C. As a generalization of their idea, any
of the preconditioners given for the constant coefficients case can be applied here as M. In fact,
a theorem by Eisenstat in [14] shows that, when Bi; = Ay, the PCG algorithm applied to (2.7)
with preconditioner M and initial guess u is equivalent to the PCG algorithm applied to (2.3)
with preconditioner given by (5.2) and initial guess (Al'll (b1 — A13ud), A;zl (b2~ Az3u3), ul). In {14],
numerical experiments were performed with these and other preconditioners.

6. The Operator Approach

So far, our approach for deriving preconditioners for C depends on special differential prop'erties
of the operator A (except for Mp which only uses symmetry arguments). This raises the question of
how effective they will be when applied to other more different and complicated operators, (e.g. the
steady state Navier-Stokes operator), without first somehow reducing the problem to one of a second
order elliptic problem that we have already treated here. For example, Dryja’s preconditioner
Mp is intimately tied to the Sobolov Trace Theorem for second order elliptic problems and. it
cannot be expected to perform well for other types of operators. It is therefore desirable to derive
preconditioners in a more general way that depends less critically on the particular form of the
differential operator, but more on the other computable quantitites of the given opentor_. An
example is the exploitation of symmetry in the style of Mp, which can be expected to be applicable
for more general class of problems.

Here we investigate another approach which depends on efficiently “probing” the operator C
to gain information on its structure. This information can then be used to construct an effective
preconditioner. Our main motivation is the empirical observation that , in the case of the Laplace
operator, the elements of the matrix C decay rapidly away from the main diagonal [13]. It is
therefore reasonable to consider k-diagonal approximations te C. It would not, however, be efficient
to compute the elements of C in order to do this. We now present a metboz:l .for compu.ting
a k-diagonal approximation to C without requiring the computation of C explicitly. The idea
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is motivated by sparse Jacobian evaluation techniques [9]. For example, for the case k = 3,
the approximant M to C can be computed in compact form by evaluating the three products
Cu,,i = 1,2,3, where us = (1,0,0,1,0,...)7, us = (0,1,0,0,1,...)7 and u3 = (0,0,1,0,0,...)7.
The motivation is clear, for if C were indeed tridiagonal, (k = 3), then all of its nonzero elements
can be found in the three vectors Cu;, ¢ = 1,2,3. Note that the computation of each product Cu;
involves solving one problem on each subdomain with u; as boundary condition on the interface.

Note that in principle this approach can be applied to any operator A and requires only a
solver for the subdomains. However, it can only be expected to be effective for those operators
for which the reduced boundary operator C is predominantly local (corresponding to the rapidly
decaying elements away from the diagonal.)

In Figure 4, we plot the eigenvalues of the tridiagonal preconditioner computed by the above
method (denoted by Ms) together with the eigenvalues of Mp, Mg and C for the problem of a
Laplacian on a square divided into two strips, with n = 15 and m; = m3 = 7. For this problem,
the plots for C and Mg are indistinguishable. The preconditioner Mp underestimates the large
eigenvalues of C whereas Mj seems to follow the exact eigenvalues more closely.

The generalization to other values of k is obvious. Moreover, it can be easily verified that the
matrix M computed this way preserves the row-sums of C. The case k = 1, however, deserves
special mention. The method described above would compute a diagonal approximation to C, with
diagonal entries given by Ce, where ¢ = (1,1,..., l)T. However, since the first term Ass in the
definition of C in (2.4) is already known explicitly (and it is tridiagonal), it is only necessary to
apply the above approximation procedure to the last two terms in (2.4). The resulting matrix M is
thus tridiagonal, namely, Ass with the diagonal entries modified in such a way that the row sums

Eigenvalues of Various Preconditioners
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Figure 4: Comparison of Eigenvalues of Preconditioners
for Poisson’s Equation with n = 15,m); = my = 7.
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of C are preserved. Viewed this way, the case k = 1 is similar in spirit to the Dupont-Kendall-
Rachford procedure {11] for obtaining an easily invertible banded approximant for C. This special
procedure for the case k = 1 was sugested independently by Eisenstat [12]. See [14} for numerical
experiments with this class of preconditioners.

In general, for a k-diagonal approximation to C, k problems on each subdomain must be
solved, which may seem prohibitively expensive except for small values of k. However, the main
advantage of this family of preconditioners is that they are less dependent on special properties
(e.g. eigenstructures) of the differential operator underlying 4. Moreover, for nonlinear problems
where a Newton type outer iteration may be involved, one preconditioner can be reused several
times and the cost of computing it can be amortized over the overall iteration.
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