An Iterative Procedure for Domain Decomposition
Methods: A Finite Element Approach

L. D. MARINI* AND A. QUARTERONI*t

Abstract. For conforming finite element approximations of
elliptic boundary value problems, a new domain decomposition technique
is proposed. It is based on a block iterative procedure among
subdomains in which the transmission conditions at interfaces are
attributed partly to one subdomain and partly to its adjacent. No
preconditioning is needed, but one should simply sclve a sequence of
discretized mixed boundary-value-problems on each subdomain. An
optimal strategy for the determination of a relaxation parameter to be

used at the subdomain interfaces is indicated.

1. Introduction - In recent years a considerable attention has
been devoted to the use of domain decomposition (or substructing)
techniques for the numerical solution of partial differential
equations. Among others, the following reasons underly the development
of these techniques. The equations in the different subdomains may be
of different type, or, more simply, they might contain different
parameters. Besides, when dealing with complicated geometries, a
subdivision of the entire domain by simply shaped subdomains on which
special solution techniques can be applied may increase the overall
efficiency of the numerical scheme. This is, e.g., the case of the
numerical approximations based on spectral methods (see, e.g., Canuto,
Hussaini, Quarteroni and Zang [1l; Ch. 13]). A further important reason
is that very often domain decomposition techniques are well suited for

computations in parallel environments.
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Apart from the Schwarz method, the leading idea of the most part
of domain decomposition methods currently in use is the following.
After its discretization, the given differential problem is
partitioned into subproblems corresponding to non overlapping
subregions of the entire physical domain. Then, by a block elimination
procedure, independent systems are derived for each subdomain. The
remaining unknowns pertaining to the interface boundaries are coupled
by a global system. The interactions between the two sets of unknowns
are then handled by a suitable iterative method (e.g., the conjugate
gradient method, or the Chebyshev method, or else the Richardson
method). At this step, the use of a properly designed preconditioner
may remarkably reduce the number of iterations.

In this paper we propose a different approach with the aim of
simplifying at most the computational complexity of the problem,
bypassing the solution of a global system and then the construction of
proper preconditioners. We focus our attention on discretizations by
finite elements of second-order elliptic boundary value problems. We
state first, for the continuous problem, an equivalence principle
between the original single-domain problem and the multi-domain
problem in which the transmission conditions at subdomain interfaces
are properly taken into account. Then we take inspiration from this
principle to build up an iterative procedure to compute the finite
element solution of the single-domain problem by means of a sequence
of finite element problems on each subdomain. We simply iterate
between two adjacent subdomains by imposing in one of them the
condition of continuity of the solution. On the other one the
continuity of the normal derivative of the solution is imposed in the
weak sense. The original finite element problem is reduced to a
sequence of finite element approximations of mixed boundary value
problems on each subdomain, which may be faced by standard single-
domain finite element solvers. The effectiveness of the previous
iterative procedure can be achieved by a proper choice of a relaxation
parameter to be used at subdomain interfaces. To this end, an optimal
strategy for its automatic selection is indicated.

The above iterative method is inspired by a similar one that was
formerly proposed by Funaro, Quarteroni and Zanolli [3] for the
differential problem itself, and consequently applied to numerical
discretizations using spectral methods.

The convergence analysis, which is concerned with a partition of

the domain into two subdomains only, exhibits an interval in which the
relaxation parameter should be taken at each iteration in order to
achieve convergence. Besides, for conforming finite elements with
arbitrary degree, the error reduction factor per iteration is
independent of the finite element mesh size.
We report at the end of this paper some numerical experiences that
show the effectiveness of the method here proposed. The reader can
find in (5] further numerical results as well as the mathematical
proofs which are not reported here.
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2. The differential problem and its multidomain formulation - Let

(@ be an open bounded poiygonal domain of R2 whose boundary will be
denoted by 3Q. We consider the boundary value problem:

(2.1) Lu=f in Q 3 u=0 on 34, where f is a given function and

2
d 3
Lu := - X — (a,, _E_) + au
.. 9x ij ax. 0
i,j=1 i i
with a , symmetric, uniformly positive definite, bounded, and

1]
piecewise smooth on Q, and ao(x)ZO. In (2.1) homogeneous Dirichlet

conditions are used in order to simplify the exposition.

Setting
2 3 v
u
alu,v):=x (a,, — —)dx + | a_uvdx,
. ij d9x, 9x, 0
ij=1"Q j i Q

-1
it 1s well known that if feH (Q), then (2.1) has a unique solution
that satisfies

(2.2) ueHé(Q): alu,v)=<f,v ¥veHé(Q) .
We remind that
1 2 2
HO(Q)={u€L ()| vuel™(2), u=0 on 30}

- 1 .
and that H 1(Q) is the dual space of HO(Q) (see, e.g., Lions and
Magenes [4]). In the sequel, for the sake of simplicity, we shall

: 2
assume that felL (Q).
We assume that Q is partitioned into two non intersecting subdomains

Ql and 92, i.e., R =QlUQZ, and we denote by I the common boundary of

Ql and Qz. Then we define:

1 o
1= =0}, V.:=H (q ), for i=1,2,
Vir=Lvel(a), V|annani 3, VsH)

1
and ¢:={v,_ : VEHO(Q)}.

|T
It is known that ¢=Hé0(r)(see, e.g., Lions and Magenes [4]). Then, for

any ¢e£$ we denote by R1¢ and R2¢ the "harmonic'" extensions of ¢ to Ql

and QZ respectively. Precisely:
: = ¥wevV, ; R ¢=¢ onT,
(2.3) R1¢EV1. al(R1¢,v) 0 veV, 1¢ )

: = V. ; R ¢= r.
(2.4) R2¢£V2. az(R2¢,v) 0 Wve 5 2¢ ¢ on
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where we have set

2
9 3
(2.5) a (u,v):= = (a. . o —X‘)dx + a uvdx.
k L. ij 9x, 9%, 0
i, j=1 Qk j i Qk

The following equivalence statement introduces the multidomain
formulation of problem (2.2).

Lemma 2.1 - The function u is the solution of (2.2) if the functions

u_=u

1 eVl and u2:=uIQ V2 satisfy the following

2

I 1
split problem:

.6 =<f,v> ¥veV_ =
(2.6) al(ul,v) Y . VE L 3 U=y, on r ,

o

» ’ =< » 3
(2.7) az(u2 v)=<f v>2 VveVZ

2.8 JR_¢)=- , +<f, +<E, )
(2.8) az(u 2¢) al(ul R1¢) <f R1¢>l <f R2¢>2

2

2
Here <.,.>k denotes the scalar product of L (Qk), k=1,2.

Proof - We have the following characterization for Hé(ﬂ):
1
2.9) H (Q) = V¥e d*e V¥
(2.9) O( ) Te d¥e VI

where we have set:

1
(2.10) d*=LveH (Q): ed, =R ¢, =
{ver (2): 3¢ Vg R Vg R},
X . 2
V= H (Q): A =
3= { el (@) v|Q1€ L VIQZ 0%},
1 [+]
d V¥= H (Q:
an 5 {ve 0( v1 EVZ, v|Q 0}.
1 2 1
For any VEHO(Q), let now denote by Vi its restriction to Qk, for

k=1,2. Then (2.2) is equivalent to

1
2.11 + =
( ) al(ul,vl) az(uz,vz) <E,v. > H<E,v. > ¥VEHO(Q).

11 22

Therefore, (2.6), (2.7) and (2.8) are obtainable from (2.2) by taking
respectively VEVT, vsvg and ved¢* as test functions. On the other hand,

in view of (2.9) any equation of (2.2) can be obtained by summation of
equations of the form (2.6), (2.7) and (2.8). This concludes the
proof.=

Remark 2.1 - The solution of (2.6)-(2.8) satisfies

2.12 3 +3 =
( ) 191, 0 on T,
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where aj is the conormal derivative operator associated with the

bilinear form a . Indeed, we note first that (2.6) and (2.7) yield:
J

(2.13) Luk = f in I)'(Qk), k=1,2.

Let now ¢ be any function of ID(T). Integrating by parts within
each subdomain and using (2.13) yields:

R >
2 2¢ 2

+ s >+<3 Y R 9> =
<O YR $24<AuY R ¢

, + JR_¢)=<Lu_,R. é> +
al(ul R1¢) az(u2 2¢) u1 R1¢ 1 <Lu

> #<f, > <3 +3 P> $.
<f’Rl¢ 1 £ R2¢ 2 lul u2 ¢ ¥oe

2
1
In the above relations Yo is the trace operator from H (Q) to ¢,

and the symbol <.,.> indicates the duality between & and its dual
space ¢' (see again Lions and Magenes [4]).
Now the property (2.12) can be established using (2.8).m

3. The finite element approximation - We shall keep in this
section the notations of section 2 concerning the multidomain
partition of Q. Let TFh be a regular decomposition [2] of Q into

triangles T not crossing the interface I'. (Thus, each element T is
either contained in Ql or in Qz). Define the conforming finite

element space:

o

. := °(Q): ¥TeT , v=0 on 39
(3.1) Vh. {veC®(R) vlTePr(T) e, v= >

As usual, we have denoted by Pr(T) the space of polynomials of

degree <r on T (r21).
The finite element approximation of problem (2.2) is then:

(3.2) uhth : a(uh,v) = <f, v Vvth,

and the following error estimate holds (see, e.g., Ciarlet (2]):

(3.3)  Ju-u f < chhul i
H (Q) H (@)

We define, for i=l1,2

, v=0 on 3aQ \T'},
i

.= °o(Q ) T) ¥TeXT' , T<@,
(3.4) Vi - {veC (Qi) vITEPr( ) € h i

»

(3.5) Vv, :={veV, _:v=0 on 3Q, 3},
i, i,h i

N

(3.6) Ivl,=ai(v,v) veVi’h.

=
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Let us denote by Zh the decomposition of T induced by the

triangulation i?h of @, and let I be the current interval of Zh.

Then we define the space:

3.7 ® :={¢eC°(T): P (I) ¥Iex_, =0},
(3.7) = Lee (1) ¢|Ier() er, ¢|ar b
and, for i=1,2, the following extension operators:

(3.8) p. b >V

in'h T Ve Pt

i,h

=0 if 3TNr=9.
¢|T 0 if )

The actual computation of the finite element solution up of (3.2)

can be carried out by means of the following iterative procedure,
suggested by the split problem (2.6)-(2.8):
0 n n
Let ¢ b i ; th £ 21l let v d \Y b
et g € h e given en for n e ul’he 1.h an u2,h€ 2.h e
the solutions

(3.9) a (un ,v) = <£,v>. ¥veV

1 1,h 1 1,h’
-1
(3.10) u? h = gn onT ,
n o
3.11 ,v)=<f,v> ,
( ) aZ(uZ,h v)y=<f,v 2 #veVz’h
n n
3.12 , =- , +
(3.12) a,(u) 1p) (#)=ma (up yhp) 1 0)
+<£, > +<f, >, ,
PL 7t <ry 80, Yeedy
and
n n n-1
3.13 =6 +(1- .
( ) 8 nuz,hlr (1 Gn)g

Remark 3.1 - In (3.13) -{Bn:} is a sequence of positive relaxation

parameters that will be determined in order to ensure and
accelerate convergence of the iterative scheme (3.9)-(3.13). As we
shall see in next section, these parameters can be automatically
evaluated within the iterative procedure and do not require any
initial guess. =

Remark 3.2 - The previous iterative method is inspired to a
similar method that was formerly proposed in {3] and [6] for the
differential problem (2.1) as well as for its numerical
approximation based on the Chebyshev collocation method. A
convergence analysis for both the differential and the numerical
problem has been carried out in [3] for the case of a rectangular
domain Q@ partitioned by two rectangles.®s
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Before studying the convergence as n*» of the scheme (3.9)-

(3.13), 1let us first note that if the sequence -{u? h,u; h}

converges as n*», then its limit is precisely the finite element
solution of (3.2). In fact, we can prove the following result.
Theorem 3.1 - Assume that there exists 6 , >0 such that 6 26
min  —— — n min
} converges as n+e, then the whole

¥n2l. If the sequence ~{u? h

|F
n n
sequence «{ul n’ u2 h} converges, and its limit is the finite

element solution of problem (3.2) , i.e.,

(3.14) lim u , lim u
n

n -u n -
1,h h{Ql 2,h h|n2

n
1hfr? 28
n+», let us introduce the discrete-harmonic extension to Qi(i=l,2)
of functions in ¢h. For i=1,2 define:

In order to study the convergence of the sequence {u

(3.15) R vV , a (R _¢,v)=0 ¥veV
i 4i,h

: R =¢onl.
in'Vin , 1,0 Ry, ptTeon

Define a norm in ¢, and its associated scalar product by

2
¢Ilr ((¢"p))_al(Rl,h¢,R “)-

2
(3.16) ||| ¢]]|™= IR, Lh

h

Finally introduce the operator S from Qh in itself by:

(3.17) w€¢h -+ Sw:VZ,hIF’

where w is the finite element solution of the mixed (Dirichlet-

2,h
Neumann) boundary value problem in 92:

(3.18) a_(w h,v)=0 ¥veV

272, 2,h’

(

(3.19) ¢)=_31(R1,hw’p1,h¢) Ved, .

32'%2,n"P2,n
(According to (3.15) we can also write wz’h=R2’hSw). Then, for any
positive 8, we set

: S ¢:=0S¢+(1-9) Yoed .
(3.20) S99 , S 4:=05¢ (1-6)¢ h
some explanation is in order. We

After all these definitions,
shall prove that Se is a contraction (for some positive 8), that
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is, S8 is a norm reducing operator:

(3.21)  F k(8)<1 : || 56¢H|5k(9)ﬂl¢ il Voo, .

Note that the finite element solution {u , u } of problem
hia h|q
1 2
(3.2) verifies a problem of the type (3.9)-(3.13). Of course,
(3.10) has now to be intended as uhIQ :uhlﬂ .
1 2
Then, the iterative scheme (3.9)-(3.13), applied to the sequences
{‘H_h h[Q 3} «{uz - h[ﬂ , can be interpreted in terms of Se
to give
n+l n
3. - =8 -
(3:22) Cup ) 78608y e

Convergence will then follow from (3.21).
To prove (3.21) the following Lemma will be useful:

Lemma 3.1 - If Zh is a quasi-uniform [2] decomposition of T, then

there exist two positive constants C and C1 independent of h such

that for any ¢e®

3.23 <C <
( ) IR 2 h¢u2 Oan h¢n1 , uRl’h¢u C ﬂRZ h¢ 5

with Ri h defined in (3.15) (i=1,2). ]

>

Remark 3.3 - Introducing the quantities:

l h¢ul 2 h¢u§
(3.24)  og=sup{ ‘“L—;IZ, ¢e® ¥, t=Sup {IE—L“R ¢E¢ T,
2,0%'7 1,n°

it follows from (3.23) that o and t are bounded independently of
h, since
-2 2 -2 2

3.25 C . sosC » C_ s1sC

(3.25) €y sosc, 1 -0
As we shall see, this property will ensure that the convergence
interval for the iterative scheme is independent of h. Also, the
constants ¢ and T can be wused in numerical computations to
evaluate automatically the relaxation parameters 8 . =

. n
We can now prove the following theorem.

Theorem 3.2 - Under the hypotheses of Lemma 3.1, there exists 8*>0
such that, ¥ h>0 the following holds:

(3.26) ¥8e(0,0%)Jk(B)<1 s.t. |usew|H5k(e)|H¢|H Ved.
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Moreover, there exist 6',8" and k with 0<8'<8"<8* and k<1 such

that, for all h>0:

(3.27) w¥8e[8',8"] k(B)sk<1.

Proof - From definitions (3.16) and (3.20) we have

(3.28) s vlll®=6” lsu I +28 (1-6) (v, 59))+(1-) 7 o I =
=82Rl,hswui+(l_e)2"Rl,hwnf+
28(1—8)al(R1’hw,R1’hSw)

Moreover we have

(3.29) al(Rl’hw,Rl,hsw)=al(Rl’hw,pl’hSW) (from (3.15))

az(wz n*®2 h Sy) (from (3.19)
= -a_(R ,h w’RZ,hSW) (from (3.18)).

Using (3.29) and (3.24) in (3.28) we can write

2 2 2 2 2 2
- -28(1-8)IR, Syl
(3.30) lnsewln <8 ouRz’hswu2+(1 6)7IR, L ¥l -2 (1-8)IR,  S¥1,

» »

With the same arguments as for (3.29) we can derive the following

bounds:

1
= IR s Syl <¢ IR .
A : l,hwul 2,h v 1

Hence (3.30) (for 0<6<1) gives that

(3.31)

22 2 28(1-8) 2
(3.32) s e l)® s +(1-0)" - S MRy v

If we define

62(02T+T+2)-26(T+l)+T ]i

(3.33)  k(8) = [

T

we can readily see that (3.26) holds and that

2(t+1)

3. {ff 0<0<6* = min (1,
(3.34) k(8)<1 i i 02T+T+2

i b d
A consequence of (3.25) is that eﬁ can be bounded from above an

from below independently of h, so that
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8%=inf Bﬁ is positive.

Then (3.27) easily follows from the continuity of k(8).w
We can now conclude this section with the following
convergence theorem.

Theorem 3.3 - If the sequence {8 } is such that 8'58 <8" ¥nz20,

then, for each h>0, the solution <{ul - u, h}- of groblem (3.9)-

(3.13) converges, as n»», to {:uhlﬂl, N }, where u is the

1,

solution of problem (3.2). Moreover we have
(3.3 i)t - Irm (0,) (0] [ICe -0)) ]

The constants 8',8" and k are defined in theorem 3.2.m:

4. Numerical examples - We present in this section some
examples of application of the iterative scheme (3.9)-(3.13) using

continuous linear finite elements. The algorithm we use is based
on the idea of determining a sequence of 6 converging as quikly
n

as possible to the optimal value of the relaxation parameter 6. By
(3.32) this value is given by
+1
(4.1) 8 = —— |
opt 2
o THT+2

where the constants o and 1 (given by (3.24)) are not known.
However, we can build up a procedure which generates a sequence of
discrete-harmonic functions on Ql and 02 with the same trace on .

This allows us to compute, at each iteration, two constants Tn and
o as suggested by (3.24). Using these constants in (4.1) gives a
value of Gn to be used in our numerical scheme. We point out that
the evaluation of Gn does not require the solution of any
additional problem in our algorithm, as it will be clear from the

description below. With this choice of 6 our numerical
n

experiences show an impressive reduction of the initial error
after very few iterations. We now describe 1in detail the
algorithm.

Initialization

0
Let g €¢ be given, and let 00=0, ro=0. Compute the solutions

h
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o 0 . ° f the followi bl
ul,h’ ul,h’ u2,h’ u2,h o e following problems.
0 0 ° 0 0
4.2 \Y : ,v)=<£f,v> s =
( ) ul’hs 1.h al(ul,h v)=<f,v 1 VvaVl’h u 1.h g onl
0 0 ° o] 0
4. Y : = =
(4.3) ul,hevl,h aICﬁl’h,v) 0 ¥vevlyh, ul,h ul,h on T,
(4.4) O v ( 0 )=<£f,v> VveV
: Yont 2t M VT Y ,n’
a (u0 )=- (u0 JH<E ¢> +<f ¢> wedb
2 Z,h,pz,h¢ a 1,h’p ¢ Py Py
~0 0 ° ~0 0
4.5 : ,V)= MveV R = r
( ) u2,h€v2,h aZ(UZ,h v)=0 ve 2.h u2’h uZ,h on

Note that, with the notation of section 2 we have

o (u’ ¥ ok @)
1,h 1 h' -1 hjr * 72,h 2,h 2,h|T7

Step n (n21)

n
Compute the solution zl h of:
° n .n-1
" T a (zn ,v)=0 MveV , z. . =u on T

(4.6) 20 n A 1,h’ %1,h U2,h

)).

(i.e., z1 h (u2 h|F

Then evaluate a , 0 , T and 8 by:
n n n n

n-1 2
2, h 2

(4.7) a-= /fﬁ R
n 1

1 hI

(4.8) o =max(o _,a ) , 1 =max(x J1/a ),
n n-1" n n n-1 n

(4.9) 8 =(x +1)/(c’t +1 +2),
n n nn n

and simply take

n n-1 n -1

(4.10) ul,h=u1,h+6n(zl,h ul,h)’
1 n -1

(4.11) un,h—ﬂ“’ v (z) | W)

whl
Compute then the solution u2 h of:

139
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P o AN °
: ,v)=0 ¥veV
RN a2(u2,h v) VEYo
(4.12)
n
Tl R =- R +<£, > )
a, (@) ooy p®Imma (up ey (@)4<E ) (0> Voed,

o )). Then take

n
. “ :R
(Note that again 5 hRon uZ,h|F

n n-1 ~n ~n-1
) = + - .
(4.13) uZ,h uZ,h uZ,h u2,h
- Stop if

TRV S T IS T
1,h 1,h'1 2,h 2,h 2
{(or any other reasonable stopping criterion one may prefer),
otherwise go back to (4.6).

To sum up, the initialization of the algorithm requires the
solution of the 4 problems (4.2)-(4.5), while at the generic

jiteration only the 2 problems (4.6) and (4.12) need to be solved
n

n
The solutions 2 h and u permit to derive, without additional
) b
. n

cost, the relaxation parameter 8 and the actual sequences u

n n 1,h
,u .

2,h

We give now some examples of application of algorithm (4.2)-
(4.14) to the model problem:

-AutAu=Ai in Q
(4.15)

u=1 on 3Q
whose solution, as well as the one of its finite elemen6
approximation, 1is given by uEuhEl. Starting from a vector g

randomly chosen, the stopping criterion for the algorithm was:

-5 0
(4.16) He?“ LMD 51077 el el }
L (Q L (Q
( 1) ( 2) L (01) L (02)
where we have defined:
n n

(4.17) en:=u -u , e .
1" "1,h h|ﬂ1 2" "2,h h[Qz

n20.

Tables (4.1) and (4.2) report the results obtained for the two
domains of figures (%4.1) and (4.2) respectively and two different
values of A(A=0,100). For each case, we report the total number of
unknowns (D.0.F.), the total number (NIT) of iterations to satisfy
(4.16), and finally the average reduction factor (ERF) defined by:

0 1
(4.18) ERF:= max { e I s 317 for nentt.

i=1,2 %) (e
1 1
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. 2
Fig. 4.1: Q={(x,y)ER":0<y<2 if 0<x<l, and 0O<y<l if 1S8x<2}.

Example of a finite element triangulation: 768 triangles

and 355 nodes.

D.C.F 81 355 1475

A NIT|E.R.F. NIT | E.R.F. NIT | E.R.F.
0 3 [0.042 4 |0.035 4 |0.048
100 2 |0.0002 2 10.009 3 10.006

Table 4.1: Numerical results for problem(4.15) on the domain of Fig.

4.1 and for three different finite element triangulations.

1
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2
Fig. 4.2: Q{(x,y)eR": 1<y<2 if 0<x<2, 3-x<y<x if 25x<3}.
Example of a finite element triangulation:

824 triangles and 455 nodes.

D.0.F. 128 455 1731
NIT [ E.R.F. NIT | E.R.F. NIT.| E.R.F.
0 4 10.0338 5 |0.0617 5 0.0793
100 2 ]0.0025 2 10.0014 3 0.0074

Table 4.2: Numerical results for the problem(4.15)on the domain of
Fig. 4.2 and for three different finite element

tringulations.
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