Block-Structured Solution of Transonic Flows
A. ECER*

Abstract. A computational scheme for the block-structured solution of
transonic flows was developed. A complex, three-dimensional flow
problem is divided into a number of smaller sub-regions (blocks). The
computational grid is generated for each of the blocks and assembled
into a single grid. The flow equations are again solved individually
for each block and iteratively combined to provide a global solution.
Potential, Euler and Navier-Stokes equations can be solved for each of
the blocks. The paper summarizes the procedure and discusses its ap-
plications on different computers.

Introduction. A computational scheme for the block-structured solution
of transonic flows was developed based on the assumption that the solu-
tion of complex flow problems requires treatment of the entire problem
in terms of a number of smalier sub-regions (blocks). The solution of
such a problem includes grid generation, numerical solution and display
of the results. It also usually involves an iterative process where the
grid is modified several times and the solution scheme is performed
through several steps where the results from an initial set of runs are
utilized to start the subsequent set of runs. The block-structured
solution scheme was developed to provide a computational environment
where all of these tasks can be performed efficiently for complex flows.
The user controls the solution procedure by describing a particular flow
regions and later modifying them locally while these changes are
automatically propogated to the remaining fiow regions.

In the present paper, the basic steps of the block-structured
solution generation scheme are reviewed. The basic consideration in
designing such a scheme are listed. The implementation of the scheme on
existing computer systems are reviewed.
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Block-Structured Solution Scheme. The block=-structured solution of
three-dimensional transonic flows include the following steps:

. Design of a Block-Structure,

. Generation of a Computational Grid,

. Solution of the Equations,

. Interpretation of Results,

. Modification of the Computational Grid,

. Solution of the Revised Grid,

Interpretation of Results and Comparisons.

The above scheme provides a realistic summary of the steps involved in
solving three-dimensional problems. In most cases, the revisions of the
grid are performed more than once. It becomes very important for the
user to be able to inspect the results in detail and implement the
necessary modifications with sufficient control and ease. In the fol-
lowing, the description of these steps and related considerations are
summarized.

Design of the Block-Structure. In terms of the solution of a three-
dimensional problem, this step is the fundamental one. The user decides
to divide the problem into a series of blocks. In most general terms,
the blocks are chosen to identify flow structures in a complex flow
field. For a simple examplie, such as the two-dimensional transonic flow
around an airfoil, one may decide to identify the flow structures around
the leading and trailing edges of the airfoil as well as around the
shocks. In some cases, these blocks may be further sub-divided pro-
viding the user the capability to control the generation and modifi-
cations of the computational grid in detail.

Block-Structured Grid Generation Scheme. The finite element grid gen-
eration schemes have been traditionally based on the definition of a
series of blocks. Many commercial finite element grid generation pack-
ages [1,2] employ the definition of a series of blocks as a basis of
finite element grid generation process. Several years ago we have
further developed some of these concepts in a form which is more suit-
able for analyzing compiex, three-dimensional flow problems. A block-
structured grid generation scheme was developed where the user specifies
a block-structure as a first step before the grid generation process
[3]. The convectivity of the blocks are defined as a first step. The
developed procedure can model any 1rregu1ar block-structures. One can
define blocks which have four, five or six surfaces. The neighboring
blocks can be attached, separated or coupled. Also, void blocks can be
placed to model the 1rregular1t1es in the block structure as necessary.
Once the block-structure is defined, the rest of the operations are
performed on a block-by-block basis. A computational grid is assigned
for each block. The grid can be irregular inside each block. For each
flow region, an appropriate grid is designed. For example, around the
leading edge of an airfoil a radial grid will provide most efficient and
accurate results. The grid inside each block is defined in terms of the
number of grid points on each surface and along the edges defining boun-
dary surfaces. As one refines the grid inside each block, the number of
grid points on each surface and edge increases. The scheme automatical-
1y keeps a record of these values and provide the user with the details
of these adjustments. If, for example, the user would like to reduce
the Tevel of the grid refinement away from the airfoil, special blocks
are employed with irregular grid structures. Our strategy has been to
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utilize irregular (unstructured) grids away from critical regions and
try to adopt a structured grid at critical flow regions. In generating
structured grids inside each block, one may have to use four-noded to
eight-noded, three-dimensional finite elements as necessary. Figure 1
illustrates the typical steps involved in the block structured grid
generation scheme.

The use of a block-structured grid generation scheme enables the
user to design appropriate computational grids without restrictions of
structural grids. Once the grid is generated the solution scheme is
again defined on a block-by-block basis.

Block-Structured Solution of Transonic Flows. A block-structured solu-
tion scheme for transonic flows was developed based on the following
assumptions:
. A relaxation process is defined for each block,
. For each block, either potential, Euler or Navier-Stokes equa-
tions can be solved,
. Nodes between the neighboring blocks are matched exactly,
. The variables between the neighboring blocks are matched by using
Dirichlet boundary conditions.
In this paper, only a short summary of the solution scheme is presented
(4,5].
The Navier-Stokes equations for steady, viscous, compressible flows
can be written by using a Clebsch transformation of the velocity vector,

=96+ SUn+x (1)

into the following form:

V.(py) = 0 (2)
v.(puS) = @ (3)
pu.vn = - p/R (4)

where u is the velocity vector, S is the entropy, p is the density, p is

the pressure, R is the gas constant, ¢ is the viscous dissipation func-
tion and ¢ and n are the Lagrangian multiplier associated with conserva-
tion of mass and entropy equations respectively [6]. t is a generalized

shear stress tensor which can be written in terms of the Lagrange multi-
plier n and the rate of strain tensor eij as follows:

T = 4un[eij - 2u_i] (5)

Equations (3-4) are cast into a second-order form by premultipIying with
the convection operator. The relaxation scheme can then be summarized

as follows:
. assume a velocity field ) ) .
. solve equations (3) and (4) to obtain n and S distribution,

. calculate the shear stresses, 1,
. solve the conservation of mass to calculate ¢,
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. calculate a new velocity field and repeat the procedure.

In terms of a block-structured solution scheme one has to perform
the above generations for each block individually. The scheme then
becomes a block relaxation scheme. A block relaxation scheme was de-
fined where the operations are performed on a block basis rather than in
terms of inter-block surfaces or edges. Each block is solved individ-
ually during each step of the iterations. The resulting block-surface
solutions are compared along the neighboring block interfaces. Cor-
rections are provided from each block surface which are employed to
solve the individual block one more time. Before designing the details
of the block-structured relaxation scheme, it is important to mention
that one does not have to solve the same equations for each block. As
stated before, each block represents a particular flow region. If one
decides to solve Navier-Stokes equations for a particular block, all
three equations (Egs. 2-5) are solved for the primary variables ¢, S and
n. If Euler equations are required then the same set of equations are
solved by ignoring the viscous dissipation term in equation (3) and the
shear stresses in equation (1). No slip boundary condition is not
required in this case since it only enters the formulation during the
formulation of shear stresses in equation (5). For potential flows,
only the velocity potential is required from the solution of conser-
vation of mass equation in equation (2). Between neighboring blocks, ¢,
S and n values have to be matched. For blocks with potential flows S
and n are known and need not to be caiculated. Similarly, for blocks
with Euler equations, the shear stresses are assumed to be zero and are
not calculated. Thus, the formulation is general for all three types of
flows.

Block-Structured Relaxation Scheme. The block-structured relaxation
scheme is applied to two sets of equations: conservation of mass equa-
tion and the transport equation for S and n. The basic procedure for
this scheme is summarized below [5,6].

Conservation of Mass Equation. For the case of the conservation of mass
equation where:

v.(p%¢) = g(S,n) (6)

one considers the solution of the equation for each block. The relaxa-
tion scheme for each block can be written as follows:

A%ae" = g - A" (7)

o" + wag” (8)

(L]
]}

where w is the relaxation parameter and Ao represents the Laplace opera-

tor for each block calculated for incompressible flow conditigns. This
symmetric matrix is decomposed and stored to be used at each iteration
step.
The problem is solved at two steps:
. A distribution of normal velocities is assumed for all block
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interfaces.

. Each block is individually solved by using the relationship in
equation (6) with Neumann type boundary conditions.

. The values of ¢ at interblock surfaces are compared and aver-
averaged for each surface.

. Each block is re-analyzed using this time Dirichlet type boun-
dary conditions.

. The boundary fluxes on each surface are calculated and aver-
averaged.

. A new velocity field is calculated and the iteration cycle is
repeated.

The above solution scheme is robust and quite efficient for tran-
sonic flows [4]. Generally, the block in which the shock is located
determines the rate of convergence. In most cases, the number of iter-
ations required for convergence is similar to the ones obtained by sol-
ving the same problem as a single block.

Transport Equations for S and n. The solution of the two transport

equations include the second order form of two equations again with

symmetric operations. One can summarize the probliem as follows:
Consider a transport problem with:

gg (gS) = @ (9)

where S is the streamline direction and g is the flow speed. In this

case, one has to define the entropy at the inlet as a reference value
since only the changes in entropy rather than the absolute value of
entropy will change the flow field.

We transfer the operator into a second order form by premultiply-
ing with the convection operator as follows:

8- Ta 2 (99)1 = & (g (10)

The original differential equation (9) becomes the additional boundary
condition to be imposed at the exit boundary for this second-order
differential equation. The new differential equation requires either
the Dirichlet or Neumann type of boundary conditions depending whether
it is a boundary point at the upstream or downstream of a streamline.

The block-structured solution of this differential equation is
rather different than the first one. Dirichlet type boundary conditions
are specified on the surfaces where the flow enters the block. At other
surfaces of the elements for which the flow leaves the block, only the
Neumann type of boundary conditions are required. In this case, no
averaging between the neighboring blocks is required. Instead, the
information regarding the entropy S and n is convected in the flow
direction between the neighboring blocks. These equations are solved
only once during each iteration step. Figure 2 illustrates the block-
structured solution of Euler equations around an airfoil.

Parallel Processing of Blocks. The use of block-structured solution
technique allows the parailel processing of several blocks at the same
time. By performing the computations on several blocks in parallel, one
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FIG. 2e. Residual History for the Euler Solution around a NACA0012
Airfoil at M_ = 0.85 for Different Blocks.
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aims at utilizing all of the available computer resources. Important
characteristics of the developed scheme, in terms of parallel proces-
sing, can be summarized as follows:

. By performing a block relaxation scheme on each of the individual

blocks ane decomposes two sets of banded coefficient matrices:
representing the Laplace operator and the convection operator in
the second-order form. Both of these operators are symmetric and
are stored considering the banded form.

. When bandwidths are small for each block (£ 80) and only a for-

ward elimination-backward substitution is required for each
block, the computation of the residual vector becomes the criti-
cal factor. In this case, all of the element information related
to the geometry, such as the shape functions and their deriva-
tives, Jacobians, etc., are calculated and stored once. The cost
of computing the residuals and solving the equations then become
comparable when the solution part is vectorized.

. The main computational concern then becomes the reduction of I/0

cost such that computations still remain on the critical path
j.e. no I/0 wait is encountered. The scheme was implemented on
two computers CRAY-XMP and IBM 3090. On both machines, the mem-
ory is divided into parts where two or three blocks can be stored
at the same time. In this case, while one block is being proces-
sed, another block can be read-in or written-out. Based on the
fact that the information related to a single block can be read-
in by a single read command, asynchronous I/0 operations do not
slow down the processors. The critical requirement for a given
computer becomes the size of the memory which is available to
store two or three blocks at the same time, as well as the number
and speed of 1/0 devices. The use of high speed 1/0 devices im-
proves the speed of the present process considerably. The main
memory of the computer 1imits the maximum size of the block which
can be processed. For blocks with specified wavelengths, the
computational cost is linearly proportional to the number of
nodes and the number of blocks.

. Current studies with Intel IPSC computer provides an experiment

when several processors with many I/0 channels and large memories
are available. In this case, rather than storing all of the
blocks on the disk, one keeps each block in the memory of an in-
dividual processor. Each block is coupled to several neighboring
processors, each containing the neighboring block. In this case,
all geometry data and coefficient matrices are calculated and
stored in real memory. The only 1/0 operation involves the
transfer of solution vectors relating the inter-block surfaces.
These are balanced between neighboring blocks and the iterations
continue for each block on a single processor. This type of ap-
proach requires more loosely coupled processors. For a given
block-structure of different size blocks, one may like to arrange
processors with different size memories to fit the topology of
the block-structure.

Refinement of Grids. As indicated at the beginning of this paper, the
analysis of a complex flow problem can be considered as an iterative

process rather than a one step solution. The block-structured solution
scheme provides a tool for performing such a task. We expect the user:

. to jdentify the block-structure,
. to generate a grid,
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. to identify potential, Euler or Navier-Stokes blocks, and
. to solve the problem approximately.
Once this initial step is completed, one may:
. modify the grid in one block,
. decide to change from one of the above three formulations (poten-
tial, Euler, Navier-Stokes) to another,
. define turbulence models for viscous flow regions,
. provide special modeling of critical regions such as shocks,
trailing edges, thin boundary layers, etc.
Once these modifications are made for each block, they are automatically
propogated throughout the flow field. The flow field obtained from the
first step is utilized as an initial step for the second stage of the
computations. It is also expected that information obtained for the an-
alysis of particular flow structures can be employed to design better
blocks for the subsequent analyses. Adaptive grid techniques again seem
much more practical when considered at a block level. One can provide
error estimates for a specific flow structure and provide a specific
strategy for adopting the grid.

Conclusions. In this paper, the advantages of a block-structured solu-
tion technique for solving large aerodynamics problems was discussed.

As the complexity of the problems increase for three-dimensional prob-
tems, the cost of preparing good computational grids increases together
with the time spent for actually solving the problem. One has to util-
ize a block-structured grid generation and solution scheme for solving
such problems, as discussed in this paper. The computer hardware avail-
able for solving large problems are also limited at the present time.
The developed scheme allows the use of secondary storage to eliminate
the restrictions of main memory, while, masking the cost of performing
related I/0 operations. The use of a block-structured solution scheme
allows the use of existing computer hardware as well as parallel proces-
sors which are under development for solving large problems.
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