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Abstract. In this talk, we shall describe some domain decomposition precondition-
ers for elliptic boundary value problems in two and three dimensions. We consider
the case where more than two subdomains meet at an interior point of the original
domain; this allows a subdivision into an arbitrary number of subdomains with-
out the deterioration of the iterative convergence rates of the resulting algorithms.
The described preconditioners (for both two and three dimensional applications)
result in preconditioned systems whose condition number growth is bounded by
¢(1+In?(d/h)). Here h is the mesh size and d is roughly the size of the largest sub-
domain. We finally give a technique which utilizes the earlier described methods to
derive even more efficient preconditioners. This technique leads to preconditioned

systems whose condition number remains bounded independently of the number of
unknowns.

1. INTRODUCTION

The need for modeling more complex physical processes has led to the develop-
ment of larger and faster computers. In the next generation of machines, paralle
computing architectures will be employed to gain additional computational im-
provement. If significant computational improvements are to be realized, then
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algorithms especially tailored to parallel environments must be developed. More-
over, these algorithms should be effective on machines with a large number of
Pprocessors.

Preconditioners based on domain decomposition gives rise to an important ap-
proach for the development of parallel algorithms for elliptic boundary value prob-
lems [1-11]. Such algorithms are straightforward to efficiently implement on actual
parallel computers. In these implementations, a greater number of subdomains
gives rise to a greater number of independent parallel tasks leading to an effective
use of parallel resources. The overall efficiency of the resulting algorithm also de-
pends upon the rate of iterative convergence which can be estimated in terms of
the condition number of the preconditioned system. Accordingly, to be effective
in a parallel environment, the conditioning of the preconditioned system should
not deteriorate as the number of subregions (i.e. processors) increase. In this talk,
I will consider domain decomposition methods whose conditioning improves with
the number of subdomains. These methods have been developed jointly with J.H.
Bramble and A.H. Schatz of Cornell University.

The first type of domain decomposition preconditioner which we will consider is
that described in [6]. That paper provided the first example of a domain decom-
position strategy whose conditioning improved with the number of subdomains.
Loosely, this conditioning improvement is a result of the introduction of a certain
‘coarse grid problem’, where the coarse grid coincides with the subdomain division
of the original domain. That paper also gave an in depth convergence analysis for
the method while developing basic analytical techniques for the analysis of domain
decomposition algorithms. We will review the algorithm developed in [5] and the
corresponding analytical results.

We then develop a natural extension of the two dimensional algorithm to three
dimensional problems [8]. The solution of the resulting preconditioning problem
requires the solution of a somewhat complex boundary system. However, this
boundary system can be efficiently solved using a technique described in [6,8]. We
have shown that the corresponding preconditioned systems have condition number
growth bounded by C(1+ In?(d/h)) where h is the mesh size and d is roughly the
size of the subdomains. Thus, the conditioning improves as more subdomains are
used (i.e. d becomes smaller). :

We finally consider technique which can improve the computational efficiency of
the previously described preconditioning methods. A new class of preconditioners
was defined in [7] which led to preconditioned systems with bounded conditioning.
This class of preconditioners utilized the previously defined domain decomposition
algorithms and a computationally lower order boundary modification. We shall
describe this boundary modification.

Another approach to the development of domain decomposition preconditioners
was given in [8,11]. This approach gives rise to a domain decomposition strategies
for two and three dimensional problems whose conditioning also improves with
the number of subdomains. However, in this case, the improvement is a result
of the introduction of an ‘average value problem’ where each subdomain has a
corresponding ‘average value.” We will not consider this approach in any further
detail here.
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The outline of the remainder of the paper is as follows. In Section 2, we describe
the model elliptic problem and formulate the preconditioning problem in terms of
forms. Section 3 describes the two dimension domain decomposition technique of
[5]. Its natural extension to three dimensional problems is given in Section 4. In
Section 5, we describe a technique for improving the computational efficiency of
the method of Section 3. Finally, in Section 6, we discuss implementation aspects
of the earlier described preconditioners.

2. PRELIMINARIES

In this section, we shall describe the elliptic problem and corresponding Hilbert
spaces in which it is posed. We also describe the preconditioning problem in terms
of the definition of an appropriate form.

We shall restrict ourselves to boundary value problems in RN for N = 2 and
N = 3. Let Q1 be a bounded domain in RV with a piecewise smooth boundary
d11. As a model problem for a second order uniformly elliptic equation we shall
consider the Dirichlet problem

L —
(2.1) u=f in 1
u=0 on 9011,
where
N
1?] dv
Ly = — —
’ .'12‘;1 z; (2 9z, )

with a;; uniformly positive definite, bounded and piecewise smooth on 3. The
generalized Dirichlet form is given by

dv 8(}5
2.2
(2:2) Z/ Uax. 6.’1:] dz,

1,7=1

which is defined for all v and ¢ in the Sobolev space H'(11) (the space of dis-

tributions with square integrable first derivatives). The L?(0) inner product is
denoted

(v,¢):/nv¢ dz.

T?le subspace H{(0) is the completion of the smooth functions with support in
with respect to the norm in H'(2). The weak formulation of the problem defined
by (2.1) is: Find u € H§ () such that

(2.3) A(u,¢) = (f,9)

for all ¢ € H}(Q1). This leads immediately to the standard Galerkin approximation.
Let Sp(0) be a finite dimensional subspace of Hj (7). The Galerkin approximation
is defined as the solution of the following problem: Find U € SP(€1) such that

(2.4) A(U,3) = (£,%)
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for all ® € SP(N).

We shall be concerned in this talk with the efficient solution of (2.4) using pre-
conditioners based on domain decomposition. The question of defining a precondi-
tioner for (2.4) can be approached from two points of view. The first requires the
choice of a basis for SP(€1). Employing this basis, one is led to a matrix problem
for the computation of the corresponding coefficients of UU. The preconditioning
problem from this point of view is to define another matrix which is easier to invert
and ‘spectrally close’ to the original. Alternatively (cf. [4,5]), the precondition-
ing problem can be viewed as a problem of defining a symmetric positive definite
quadratic form B(-,-) which is equivalent to A(-,-) on SP(f1) x S7(N). At each
step of the iteration we must solve problems of the form: Given a linear functional
G on SP(N), find W € S2(N) such that

(2.5) B(W,w) = G(w) for all w € SP(N).

The problem of finding the solution of (2.5) should be computationally less complex
than that of finding the solution to (2.4) on the given computer architecture. The
corresponding spectral condition in terms of forms reduces to inequalities of the
form

(2.6) coB(w,w) < A(w,w) < ¢1B(w,w) for all w € S2(N).

The condition number of the preconditioned system is bounded by cl/co. In the
above inequalities, ¢q and ¢; are constants which may depend on d (the subdomain
size) and h.

3. A Two DIMENSIONAL EXAMPLE

In this section, we describe the two dimensional domain decomposition precon-
ditioner given in [5]. We shall give a simplified description of the algorithm under
certain mesh assumptions. Applications to more general situations are given in
[5].

We shall make the following assumptions with regard to 12 (cf. [5] for details).
First, assume that {1 is a polygonal domain and that, for each h, 0 < A < 1 a
parameter, {1 has been given a quasi-uniform triangulation 1", We assume that
1 = U may be written as the union of n, disjoint quadrilaterals {1 of quasi-
uniform size d > h. The boundary of the subdomains should be part of the mesh
boundary f1*. This means that any given mesh triangle in {r;} is contained in
some f_)j. The collection of regions {1z} will frequently be referred to as the
subdomains.

The vertices of the {{1x} will be labeled v, (ordered in some way) and I';; will
denote the straight line segment with endpoints v; and v;. Throughout this paper
we shall only consider I';; when T,; is an edge of some fl. Furthermore, we
associate with each 0y the triangulation inherited from the original triangulation
0%, The example given in Figure 3.1 should help clarify the situation.
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Figure 3.1. The domain {1 and subdomains.

For the purposes of this talk, we shall make the additional assumptions that:

(1) The mesh on any edge T';; is uniformly spaced.

(2) We are willing to solve Dirichlet subproblems corresponding to the original
form A(-,-) on the subdomains (see (6.1)).

For each h, let S,(0) be the space of continuous piecewise linear functions
defined relative to the triangulation * and SP(02) be the subspace of Si({1) con-
sisting of those functions which vanish on 1. S,?(ﬂj) will denote the subspace of
Sx(0) of functions whose supports are contained in f}; (in particular, they vanish
on 91, and outside {1;). In addition, Sx(f2,) will be the set of functions which are
restrictions of those in SP(f1) to f2;. Subspaces on the boundaries of the subdo-
mains will be denoted as follows. S,(3101;) will denote the restrictions of S(f15)
to 80; and SP(T,;) will be the subspace of Sj(310;) consisting of functions whose
support is contained on the edge T',;. Finally set I' = Udfl;.

In what follows, ¢ and C (with or without subscript) will denote generic positive
constants which are independent of k, d and the f1;.

We construct our preconditioner B by constructing its corresponding bilinear
form B(,-) defined on SP(f1) x SY(N). We first decompose functions in SP(f1) as
follows: Write W = Wp + Wy where Wp € Sp(111) @ ... ® S2(2,,) and satisfies

AWp,8) = AW,8)  for all & € SO(1,)

for each k. Notice that Wp is determined on 01 by the values of W on {1; and
that

A(Wg,®) =0, for all ® € Sp(Nk).
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Thus on each i, W is decomposed into a function Wp which vanishes on 3(1;
and a function Wg which satisfies the above homogeneous equations and has the
same boundary values as W. We shall refer to such a function Wy as “discrete
A-harmonic .

We note that the above decomposition is orthogonal in the A-inner product and
hence

(3.1) A(W,W) = A(WP,WP) -+ A(WH,WH).

We shall define B(-,-) by replacing the A(Wg,Wpg) term above. To do this, we
decompose Wy into Wy = Wg + Wy, where Wy € S7() is the discrete A-
harmonic function which is linear on each edge I';; and has the same values as W
at the vertices. Thus Wg is a discrete A-harmonic function in f1x for each k which

vanishes at all of the vertices.
To define the form B(-,-), we need to define a discrete operator 1(1)/2_ Let T';; be
an edge of I'. We first define lo : SP(L;) = Sp(T's;) by lof = n where 7 solves

(3.2) /F

The operator I, is symmetric positive definite on S§(T';;) and l(l,/2 is defined to be
its square root.
We define the form B(:,-) by

nwdz = / 0'w'dz for all w € SR (Ty5).
r

iy iy

B(W,@) = A(Wp,@p) + Z < lé/ZWE,<bE >y
| S

(3.3)
+ 3 (W (v:) — Wy (v;)) (v (v:) — Bv (v)))-

In (3.3), (, ')I‘a,- denotes the L? inner product on I';;. The following theorem is
proved in [5]:

THEOREM 1. Let B be defined by (3.3). There are positive constants Ao, A1
and C such that

AoB(W,W) < A(W,W) < A\ B(W,W) for all W € Sj(0),

where 3
L <€ (1+1(d/h)).
0

If all of the vertices of the {1y lie on T’ then
A
2 <e.
do ~
4. THE THREE DIMENSIONAL FORMULATION
In this section, we describe a natural extension of the domain decomposition
preconditioner of Section 3 to three dimensions. For simplicity of presentation,
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we shall consider applications to the unit cube. We subdivide 1 into an equally
spaced mesh of rectangular prisms 1 = Ur; and define Sx(f1) to be the set of
functions which are continuous on (1 and piecewise tri-linear on the 7;.

To define domain decomposition algorithms, we must start with a decomposition
of (1 into n, subdomains, 1 = UZ", ;. For simplicity, subdomains can be thought
of as rectangular prisms. The subregions are to be ‘quasi-uniform’ of size d with
boundaries that align with the mesh Ur;.

In this section, I';; will denote the face between subregions 1 and j. Except for
this one change, we shall use the same notation as that of Section 3. In addition,
we define

b = Uar.‘j

where the union is over faces I';; of Q.

To define the domain decomposition preconditioner, we will again replace the
A(Wg,Wg) term in (3.1). To do this, we decompose Wy € Sp(Q1) into Wy =
Wg + Wg, where Wi is the function in S7(2) which

(1) equals Wy on 6 = U§;,

(2) is 2-dimension discrete harmonic on the faces of the subdomains,

(3) and is discrete A-harmonic in {1 for each k.

By (2), we mean that on each face I'y;, Wg satisfies the homogeneous equations

/ VWg - V¢ dzr=0
r,;
for all ¢ € S,?(I‘,-j). Note that Wg is a discrete A-harmonic function in 1x which
vanishes on é; for each k.

We next define the corresponding 1(1)/2 : SE(Ti;) — SP(Ty;) operator. This is
completely analogous to the two

dimensional definition except that (3.2) gets replaced by

J

This operator will be used to define the form on the ‘face’ function Wg.

Let W} denote the average value of Wy over the nodes of Ur; on 6;. The
preconditioning form B(-,-) is defined by

nwdr = / V- Vwdz for all w € SP(T'y;)-
r

i iy

B(W,W) = AWp,Wp) + Y <Iy/*Wp,Wr >r,,
I‘.'J'
(4.1) o
+ Z lWE - W;?ld,b‘.- :

Here HZ,&; denotes the discrete norm

(4.2) Ivlj)s‘_ = th(xj)z.

The sum in (4.2) is taken over the nodes z; on b;. The following theorem is proved
in [8].
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THEOREM 2. Let B be defined by (4.1). There are positive constants cp and
c1, not depending on d or h, such that

co(1+1n?(d/h)) "' B(W,W) < A(W,W) < ¢, B(W,W) for all W € S(Q).

5. THE IMPROVED METHOD

In this section, we describe a technique which utilizes the previously described
preconditioners to develop an even more efficient preconditioner [7]. Loosely, the
conditioning properties of the form B are improved by replacing the boundary form
by an appropriate preconditioned iteration. We shall only discuss the application
of this technique in the two dimensional case.

Fix a subdomain ;. We first need to define a ‘loop’ operator I1/2. Define
l: Sx(00) — Sk(81) by 18 = n where 7 solves

/ nwdz = / 0'w' dz for all w € S,(90,),
80, a0,

where the primes denote differentiation with respect to arc length along each side
of d0);. The operator ! is symmetric and non-negative on S,(3{},) and we define
1'/2 to be its square root.

It is shown in (7], that

c(QWrH,Wh)r < AWg,Wy) <C(QWx,Wh)1,

holds for discrete A-harmonic functions Wy where

(@WH, Wy = Z <11/2WH’WH>8O,» :

[

Accordingly, (QWg, Wy ). is a good candidate for a replacement for AWg,Wg).
Unfortunately, problems involving the (Q-,-) form cannot be easily solved hence
this replacement does not lead to an effective algorithm. We note, however, that
the action of the form (Q-,-) can be efficiently evaluated (cf. [7]).

Instead, we replace A(Wy,Wy) as follows. Let C} be another positive definite
symmetric operator on S§(T') (the restrictions to I' of functions in Sy (01)). Define
the operator Q= by

Q7' =Pa(@'Q)Q7Y,
where P, is an appropriately chosen polynomial of degree m. This polynomizil is
related to the classical Chebyschev polynomials and is defined in [7] so that Q!
is positive definite and @ is uniformly equivalent to @ on Sp(T), i.e.
(5.1) o (QV, V) <(QV,V)r < ey (QV,V), forall Ve SP(T).
Hence, we define B by

(5.2) B(W,W) = A(WP,WP) + <QW}I’WH>I« .
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By (5.1) and (3.1)
(5.3) CoB(W,W) < A(W,W) < C,B(W,W) for all W € S{(0).

As described above, the operator Q is arbitrary. An effective choice of Q results
from considering the boundary part of the form given in Section 3. That is, we
define Q by Q8 = n where 1 solves

(54)  (nw) z<z/og,w3>r., +2 v) = 0(v;))(w(v:) — w(v;)-

We shall discuss algorithms for solving (2.5) with B given by (5.3)-(5.4) in
Section 6. Let us however note that degree of the polynomial needed to obtain
(5.1) is proportional to the square root of the condition number K of Q'Q. When
defining Q by (5.4), Theorem 1 gives the bound

K < C(1+ In®(d/h)).

In the computational experiments given in (7], m equal to two or three usually
sufficed.

The improvement in efficiency using the preconditioner defined by (5.3)-(5.4)
is the result of two properties. First, as noted above, the degree of P,, need not
be large. Secondly, the work per term in evaluating P,, is not large. Indeed,
under appropriate assumptions, the work is proportional (up to a logarithm) to
the number of nodes on T' (cf. [7])

6. THE SOLUTION OF (2.5)

We use a three step algorithm to compute the solution W = Wp + Wg of (2.5)
(cf. [4,5]). The function Wp restricted to 02, is a function in Sp (k) and satisfies

(6.1) AWp,®) = G(®) for all & € SP(0).

Thus the function Wp on {1; can be obtained by solving the corresponding Dirich-
let problem on flx (6.1). Note that the problems on different subdomains are
independent of each other and hence can be solved in parallel.

Now with Wp known, we are left with the problem of finding Wg. This is
accomplished in two steps. First, the values of Wy are computed on I'. This
step will be considered in more detail later. Once the boundary values of Wy are
known on I', we need only compute the values of the discrete A-harmonic on the
interior of the subdomains. As described in [4,5], this problem can be reduced to
the solution of independent Dirichlet problems on the subdomains which can be
solved in parallel.

We next consider the second step, i.e. given Wp find the values of Wg on I'.
Let ® be an arbitrary function in Sy(I'). For the preconditioner given by (3.3),
we must solve

62 Yo <I W, Be >ry + 3 (Wy () — Wy () (@ (v) — v (v;))
. i Ty
= G(é) - A(Wp,&),
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where & is any extension of & in S,?(ﬂ). By an appropriate choice of basis functions
(cf. [8]), Wu on T can be computed by inverting the operator 13/2 on each edge
and solving a coarse difference problem for the corner values of Wy,. All of these
processes are independent and can be done in parallel.

For the preconditioner given by (4.1), to compute Wy, we must solve

(6:3) Y <i/*Wp,8p >, +Y (Wg - Wi, ®5),, = G(8) - AWp, ).
r; R

In (6.3), (-,-)4 5, denotes the discrete inner product corresponding to (4.2). Again,
by an appropriate choice of basis function, one can compute Wy by inverting lé/z
on each face. The calculations on the individual faces can be done in parallel.
It is also possible to derive a symmetric positive definite sparse system of linear
equations for the computation of W5 (cf. [6,8]). Thus to compute Wg, we first
solve this n, x n, system for the values of W}; When these values are known,
the nodal values of Wg on T can then be computed by applying the inverse of a
diagonal matrix [8,11].

We finally consider the problem of computing the values of Wy when B is given
by (5.2). By the definition of @, Wy on T is given by

(6.4) Wi = Pa(Q7'Q)Q 'y,

where Vy solves

(6.5) (Vi,0)p = G(8) — A(Wp, ) for all 6 € SR(T)

and § is any extension of § in SP(f1). Note that Q~'Vg is the solution to
<QVH,0>P = G(8) — A(Wp,8)  forall 6 € SO(T),

and given ¢ € SY(T), n = @~ 1Q¢ solves

(6.6) (QM)F =(Q¢,0)p  forallfe SYT).

Accordingly, the computation of Wg on T only requires evaluation of the form
(Q¢,)p and the solution of problems of the form

(C}n.t?}r = F(6) for all 8 € SP(T),

where F(0) is a known linear functional. The evaluation of the right hand side
of (6.6) is discussed in |7]. However, we note that the cost of each evaluation is
proportional to a logarithm of d/h times the number of nodes on I'. The inversion
of é is similar to the computation of Wg and Wy on I solving (6.2).
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