Domain Decomposition Versus

Block Preconditioning
GERARD MEURANT*

Abstract

In this paper, we propose a new cClass of domain decomposition
precomditioners for the conjugate gradient algoritiwm.

These methods use the block structure of the matrix given by finite
difference schemes for 2D elliptic partial Aifferential equations.

The techniques developed in [5] for the approximation of inverses of
tridiagonal wmatrices are used to generate the matrix of the problem to be
solved on the interfaces between subdomaing.

These methods are very well suited for parallel computation, hence, we
compare them with the parallel preconditioners that we proposed in [9].
Preliminary numerical results indicate that it can be beneficial to use

domain dGecomposition when there is a large number of processors on the given

parallel computer.
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1. Introduction
In this paper, we are concerned with finding preconditioners for the
conjugate gradient method for solving symmetric positive definite linear
systems arising from a finite difference discretization of elliptic partial
differential equations in two dimensional domains.
For such problems with natural (row—wise) ordering of the unknowns,
watrices are Dblock tridiagonal and recently, efficlent Dlock
preconditioners have been devised ([5]1,[1]). Variants of these maethods have
been given for vector and parallel computers ([8),[9],[11).
In the last several years, there has been a great interest in dowmain
decomposition methods ([2),03]). Some of these methods were defined using
the block structure of the matrix, each block being related to one of the
subdowaing.
Here we show how to devise preconditioners, combining domain decomposition
and some techniques of [5],([8). These preconditioners will be well suited
for parallel computation and we will compare them with the block
preconditioners given in [9].
In Section 2, we give briefly formulas for an exact block decomposition when
the rectangular domain is partitioned into strips.
In Section 3 we show how this allows us to re—derive results by T. Chan [4]
leading to parallel fast solvers for separable equations. The method we used
to obtain these results is different from the one given in [4]. They can be
extended to general problems and hence we believe it is useful to give this

derivation,
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Section 4 introduces the domain decomposition preconditioners; Section 5
recalls some fact about the block preconditioners given in [{9) and shows
they can be considered as extensions and simplifications of domain
decomposition preconditioners.

In Section 6, we present results of some preliminary numerical experiments.
More details and the study of the case of subdomainsg with cross points will

be given in another paper [101].

2. An Exact Domain Decomposition Solver
Por elliptic p.d.e.'s on a rectanqular domain I, we consider a five point
finite difference scheme and this leads to a matrix A which is block

tridiagonal :

T

(Dl A2
T
A
A2 02 3

A D A
m-1l m-1 m

D
m n

Each watrix Dj is point tridiagonal and the watrices Ay are diagonal.
FPor the Poisson model problew Dy=2 I + D, where D is the tridiagonal matrix of
the one dimensional Laplacian : tridiag(-1,2,-1), Aj= —-I, I being the
identity watrix.

Consider the domain I to be partitioned into k strips like as given below :
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There are m; lines in each domain {1}y, excluding the interfaces, the total

number of lines is w=m)+my+. . Hmyp+k-1.

In order to balance the workload on a parallel computer, it is advisable that

all the number of lines in each domain be approximately equal.

We dencte the unknowns associated with the domain 14 as x; and those with the

interface 'y 44, as x4 4,;. We re—order the equations in the following form
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Each block being of order n.
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Matrices C; and E; have a very simple structure

ci=(0,....0,cM)

EE;%E},O,...,O) (2
with ci1 and E} being diagonal.
For the dowmain decomposition method the x4 ‘s are eliminated to get a reduced

system for the xij'n. This yields

T _
. ’ 4 — — b’
12 F2 - %12 [ P12
. ’
F, By By %53 23
. . . . - . (2.4)
Ce e . . .
N ) )
Pe1B%-1,x] L ®-1.x] | Px-1,x

Biy = Byy - €1 By’ ¢y - £) By y,
"
Py = - Cj By Ey, (2.5)
biy = byy - ci 8yt by - z§ Bgl by.
To obtain a nicer expression for B;_j we need to compute two Choleski

decompositions for each Bjy.

Consider the equation
By = (A + Ly ) Ay (45401 ) (2.6)
By identification
A} - Di

(2.7)
d-ﬂ—ﬂ(ﬂdﬁ(df, I=2,....,m4.
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This is called an LU or top—down decomposition. We also consider the
following decomposition

T —
By = ( Ly + Ly ) Eil ( £y + Ly ). (2.8)

£t = ot (2.9)
2.9

+1 T +1 -1
£f - Di - ( Az )« £3 ) A2+1, J=mg-1,...1.
Equation (2.8) yields a UL or bottom-up decomposition. Then, we have the

following theorem
Theorem 2.1
Bn' is given by formula (2.10) ¢
Bly =By~ ()T (aft )T - ()T byl
This theorem i8 a consequence of (2.5) and from the solution of the systems
By X=Cy and By X - Ey.
To get an expression for Py, let GI to be defined as
6Gi = (r1ylel

(2.11)
6] = - t y? A} ¢t 1=2,...,m;

Py - - Cj1 Gjt (2.12)
This is a result derived from solving By X = Ey.
The problem we must now consider is that of solving the reduced system, since
the matrices Bij and Py are no longer pparse. However, in the next section,

we are going to show that for some separable equations, this method reduces

to a Past Solver.
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3. Parallel Past Solvers

It was noted in [7] that for separadble equations, the block Cholesky
decomposition can be reduced to a fast solver (using PFT). This technique
can also be used with the domain decomposition method described in Section
2. We aderive the results of [4] for the model problem and an easy way to
generalize them to more complex situations.
In this section, we consider the Poisson problem. Now the spectral
decomposition of the diagonal blocks is given by

Dy = QaQT
where A is diagonal and Q orthogonal (Q QT = I). Note,

(A)jj-4—2005(jn/(n+1))-2+aj (3.1)

where gy = 4 sin? (Jm/ 2(n+1)). The aj'a are the eigenvalues of the one
dimensional Laplacian D.
Lewma 3.1
Consider decompositions (2.6) and (2.8), then

al - aaf (",

ri =on] "

The matrices Az and n{ being diagonal matrices whose elements are given by

1
(Ai)w"hpp (3.2
(Az) = -1 a3 ...
pp = App / (A " )pp =2, ...,my
o |
(01 )pp = App L.
i +1 (3.3)
(n )PP = APP -1/ (02 )pp j‘ﬂi—l,...,l.

The proof of this result is given in (7]. Lemma 3.1 implies

Theorem 3.2

. -1 _
Biy = @ ( A - (AfYH)y™" — (apyh of (3.4)
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i -gel "
93 being diagonal matrices with

ei = - (a)™

o = ()™ o
Therefore 9?1 = - (ni‘)—ln_(n;'i )‘1 and
Theorem 3.4

Py - Q Ot QT (3.5)

To compute elements of A's ana n'n, we consider sequences similar to that
given by (3.2). This can be written as
Al -
(3.6)
Ai‘a—l/ki_l, i=1,..
Solving the difference equation (3.6), we have the following

Proposition 3.5
Por o # 2, the solution Ay to (3.6) is
A o= ettt oMy el oy

\merer+andr-uetheoolutionsofr2-or+1-0.
Theorem 3.6
The eigenvalues l-‘[;j of B;_j are given by (3.7)
why -2+ op~ (3t - £y (Mt Mt

- (r:j - r}J) / (t:j+1 - rfj'u),
and the eigenvalues af of Py are

o = (xy -y s (P L Mt (3.8)

where r, and r_, which depend on index p, are given by

ry =1 +0p/2 ¢ (op + 0’;/4)1/2,
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Por more complex problewms, recurrences for computing the eigenvalues can be
solved numerically using analogs of (3.2) and (3.3).
wWe now, describe a method for solving the reduced system (2.4). We can factor

the system (2.4) as

1 T
K12 K12 1 K12 l'2 T
2 K23 K23 23 P3 T
. . . -1 . P 1
Fro1 Mxoix K Rt x

K12 - 8;2

Kiy - "'n - P (5'1-1,3—1)_1 ry.
Prom the spectral decompositions of B;j and P4, and noting that Kij has the
same eigenvectors as B;_j and Py, we are able to compute the eigenvalues mg_j
of Kij
Theoxrem 3.7

(4 P
W12 = M7

ofy = w5y - D)2 o§ 1,91
The reduced system can be efficiently solved using the PFT and solving
factored (independent) tridiagonal systewms.
Notice that, when k=2, the matrix of the reduced system is 8'12 and when the
number of lines tends to =, as we have

lim (3t - ™y oot

>0 )=1/ x4 =x_.

#‘;z -> 2+ap— 2r¥_ =2 (op+a;/4)1/2

which is similar to the result derived in [6].
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Note that the method described above can be extended to wmore general
problems than the Poisson problem, when the matrices Dg and Az have the
same eigenvectors.
4. Domain Decomposition Preconditioners

In this section we are interested in developing preconditioners for the
watrix A. The wethod for constructing preconditioners will use the formlas
of Section 1, approximating the inverses of tridiagonal matrices with
sparse matrices.

Now, consider the situation with two strips. The system to be solved is as

follows

B 0 c
1 * b,
o B E x - )
i . A b, (4.1)
c E B
12 X2 b2

Suppose we have symmetric appraximations Mj to By and My, to By, = By, - CT

-1 -1
Blc—ETﬂzz. Then, we take as a preconditioner
-1
M N
N N N 0 "1 [0
M= O H% o] o L 0 o) N, E (4.2)
T -1
C E
12 12 0 o 12
abviously,
ul
M= 0 )li E
T »
E "12

x -1 -1
with Mz =M3; + TN C + ET N3 E, s0 1t is likely that N}, approximates

Bys.

For the general case with kX strips, we write
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M
-1
M = L " WL 1T (4.3)
12
-1
No1x
with
N
1
N
L = T T " (4.4)
1% M2
£ ):] N
23 2 23
o po Lo,
-1%% By a™c-1,x

To construct the M;'s and Hij'n, we need two approximate decompositions
1) approximate L U or top—down

Wy - (84 4+ Ly) A5 (& +L]) (4.5)

81 = of

8] =of - &) a1yl (DT 32, my

where n(p)2 is a 2p+l1 banded matrix whose non zero entries are the same as
those of (A.Z)—l
1i) approximate U L or bottom—up
T -1
My = (Ey +L§) Ly (L3 + Lg) (4.6)
,:'1'1 - Dlili

el = o] - T I A, jemyea....a

where H(p)g is a 2p+1 banded matrix whose non zero entries are the same as

those of (22)—1,
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The matrices H; are defined as diagonal matrices given by

Gi = atag( M)} el
(4.7)
6] = - atag( m1)] af 67

Hj = - C‘;i (;;'1

Note that if we do not make an appraximation at each stage, the matrices Gi’
“£fill in™ as j increases.

Hy is an approximation to the matrix - C'{ u;l E;. This explains why we did

not use the reduced system for M.

Then, nij is defined as follows

Mz = Bz - ({HT a(1)TT cf1 - (e1)T 1)} £l

(4.8)
Myy = Byy - (CFH)T a1yt ft - (EY)T n(l)J .51
- Bj tridiag (M j_,, 4-1) Hi.

Tridiag(B) is a tridiagonal matrix whose non zero entries are the same as the
corresponding entries of B.
Then the lower right block of L i8 an approximate factor of the reduced
system for M.
We will call this preconditioner DDl. A variant, DD2, will be odbtained by
taking Hy = 0, for all i.
Using the techniques of [5], it 1is posgsible to show that these
factorizations yield positive definite matrices if A iB an Mwmatrix.
Note that, for DD1 (or DD2), we must solve two linear problems for each u; at
every iteration. Por k=2 this can be improved upon, because we can use the
twisted factorization given below. This is the INV2P method defined in [9].

Then

M=3T
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where
’
2
(o]
A]. Al
' 1 om 1 1 T
A':f Alf A -
s = o Ei a2 (4.9)
2 2
T
m-1 m
2
EZ AZZ
(¢] nmz
2° |

and T is the inverse of the diagonal of S multiplied by aT,

M is block tridiagonal, and the number of operations is approximately half
that given in (4.3) with k=2. Then (4.9) can be used in place of (4.5) and
(4.6) and this will give a parallel method for four processors.

The question now is "can we find a more economical method than DD, using
approximate Choleski factors ?"

To begin with, we take k=2 and it is tempting to use the decomposition

T

-1
0 0] AtL o} C
o, oo | fat o o ©
M= OT A‘S;Z 0 o) A2 0_1 0] A‘iLz E
C E le o (o] le o (o} "12

Now in the computation of M, we note that in position (3,1) we have cT (I +
-1 o -1
417 Lf), and it is easy to see that CT A~ LT = 0. In position (3,2), ET (I
-1
+ 4,7 LY) is aifferent from ET. This can be corrected however, by letting M

be defined as follows :

- T
A-ILl o] o] All o] o) A-i[.l o] C
-1
M= [0} E-%L': o) o] !:2 o) (o) 23['2 E
T T -1
¢ E "12 ° ° 12 0 0 12

Then, ET (I + ):;1 Lp) = ET,

After renumbering the blocks, it is seen (4.11) is the twisted factorization.
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Now, we can extend this method to k processors by letting

%—l
-1
Ez -1
—12;1
T
M =~ L ll!—l L .
12
‘ -1
| Me-1,x
Note that we alternate between the A's and f's, with
+
A Ll
+ L
Ez
. N P
L = T _T Ek Lk . (4.12)
C. E M
1 &’, T 12
C_E
2 3 H23
“p . .
C,
k—lzk "k—l,k

T T -1 T
In position (k,1) we have C1 + C)] A]" L] = C} and in position (k,2), E3 +

Eg E—:,l Ly, = Bg, but unfortunately in position (Xx+1,2), C'g + cg ):51 L, is
different from Cj
5. Parallel Block Preconditioners
In [9] we suggested using as a preconditioner for parallel computers with k
processors
M- (A+L)A T (a4 L)
and
The A; are computed as follows :
Ay = Dy
825m/x = D2im/x i=1,...
with obvious modifications for i=1, for all i=1,...,k/2

85 =0y - Ay )TV AT geacimwe, L ikl

T +1
8y = Dy ~ Ay ﬂ(l)j Ay Im2im/k-1, .., dmyk
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and,
(o]
A (o]
2
Am (o] Am
= —+
X Xt AT
. 2m
(o] .k—
L= (o)
A
2m [0}
=—+1
k (o}
: T
Aam Aam
— =—+1
x 5
o
AT (o]
m J

This method, INVKP is very cheap in terms of operations and gives good
nunerical results, see ([9]. It is interesting to investigate the
relationship with the methods of the previous section.

After a permutation of M, INVKP requires the solution on half the number of
subdomains as in (4.12), taking Hij’Bij- and using for each subdomain a
twisted approximate factorization. Globally INVKP uses a UL Dblock
factorization instead of a LU one.

Therefore the block methods of [{9] can be considered as simple variations
of the dowmain decomposition LU preconditioners.

Note that this method can also be considered as a one way dissection block
preconditioner.

There is wmore "fill in” in INVKP methods than in DD methods but the INV
methods arxe simpler to implement and require fewer operations per
iteration. The open queastion is to understand if there ig a trade off between
the increase in the nmumber of iterations and the decrease of the cost of one

iterationm.
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6. Numerical results
To illustrate the algorithms developed in the preceding sections, we solve
the following problem
- div (A(x,y) grad u) = £

in=30, 1[ x10, 1 [, with homogeneous Dirichlet boundary conditions.
A iB defined as follows :

A(X,y) = 1000 in @; = )0.25, 0.75{ x J0.25, 0.75[,

A(X,Y) = 1 elsewhere.
wWe use the 5 point finite difference scheme with h = 1 / 101.
The conjugate gadient iterations are stopped as soon as Ilrxll < 1076
F1x%41, 11 - || being the 1, norm. The components of rC are chosen as random
numbers equally distributed between -1 and 1.
Computer times are given in seconds on a CRAY 1S (CPT 1.13). They do not
include the initialization times. Results are given in the form, n/t, where
n is the number of iterations and t the computing time.
The results for INV, the standard block preconditioner, see [5], are

INV ¢ 22 / 0.221

Pollowing are the results for INVKP, DD1 and DD2 with respect to the number

of processors, i.e. subdomains (of course, on a one processor CRAY machine).
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nb of proc INVKP DD1 DD2
2 22 / 0.236 22 / 0.364 22 / 0.365
4 26 7/ 0.278 24 / 0.449 24 / 0.451
8 30 / 0.321 26 / 0.504 26 / 0.503
16 34 / 0.361 26 / 0.489 26 / 0.490
24 37 / 0.391 30 / 0.535 30 / 0.537
32 40 / 0.420 31 7 0.521 35 / 0.590
40 43 / 0.454 32 / 0.494 45 / 0.698
50 46 7 0.473 32 / 0.433 54 / 0.735

From these results, we see that for a small number of processors, up to 32, it
is beneficial to use INVKP, because although the number of iterations is
larger than in DD methods, the computing time is lower. Then, for INVXP, the
number of iterations begin to increase faster and it becomes more
interesting to use DD1.

The increase in the number of iterations is very slight for DD1.

The number of iterations for DD2 stays the same as for DD1, as long as the
number of procesgsors is small. When the number of processoxrs increases, the
subdomains become narrow and then it is important to take into account the
influence between the interfaces, which is contained in the matrices Hy.
Taking Hj = 0 as in DD2 leads to a rapid increase in the number of iterations.
This example shows that it can be beneficial to use DD methods, although,
INVKP is better for a small number of processors.

More experiments and commputations on a parallel computer will be given in

[10].
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