Domain Decomposition and Mixed Finite Element
Methods for Elliptic Problems

ROLAND GLOWINSKIt AND MARY FANETT WHEELER*

Abstract. In this paper we describe the numerical solution of elliptic problems with
nonconstant coeflicients by domain decomposition methods based on a mixed formula-
tion and mixed finite element approximations. Two families of conjugate gradient algo-
rithms taking advantage of domain decomposition will be discussed and their perfor-
mance will be evaluated through numerical experiments, some of them concerning practi-
cal situations arising from flow in porous media.

0. Introduction. These last years have seen the strong emergence of solution methods
for partial differential equations based on the concept of domain decomposition. Indeed
this approach is not new since the Schwarz alternating method to solve some class of
elliptic problems goes back to the last century. However this technique, almost forgotten
for a long time, is enjoying revival very likely due to the development of parallel com-
puters and multiprocessor supercomputers. Giving reference to all the publications deal-
ing with domain decomposition for partial differential equations has become an impossi-
ble task due to the active research presently done in the United States, Western Europe,
Japan and U.S.S.R. For this reason we advise the interested reader to consult the other
papers in the Proceedings and the references therein.

From a technical point of view domain decomposition techniques considered so far
have been dealing with finite difference, conforming finite elements and spectral methods.
To the knowledge of the two authors they have been the first to consider the combina-
tion of domain decomposition with mixed finite element [1, 2]. This approach, compared
to more traditional ones founded on conforming finite difference or finite element
method, has no problem in treating the vertex difficulties associated with the box decom-
positions [3, 4. Another advantage is that it seems ideally suited to handling problems
with highly discontinuous coeflicients, since it contains built in harmonic averaging of
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coefficients which is very close to the one usually associated to homogenization tech-
niques [5]. In this paper we would like to discuss domain decomposition for solving ellip-
tic problems with nonconstant coefficients based on mixed formulation. We shall con-
sider two classes of methods which can be viewed as duals of each other. To each we
shall associate conjugate gradient algorithms, first for the continuous problem and then
for the finite dimensional one obtained through mixed finite element discretizations. The
numerical implementation of these algorithms will be discussed in detail and the possibil-
ities of these methods will be illustrated by numerical experiments, some of them related
to the numerical solution of the pressure equation originating from the mathematical
models described by flow in porous media.

1. The Model Problem. Let £ be a bounded domain of R™Y. We consider on 2 the
following Neumann problem:

{—V-(AVu)zf n  Q,

(AVy)'n—=g  on I0N(=T) (1.1)

n: unit outward normal vector. For the above problem, in order to have a solution
(defined within an arbitrary constant) we need to have the compatibslity condition

_r[;fdz+i[gd1‘:0. (1.2)

We have been considering directly the pure Neumann problem since it is the one
that is the most difficult and physical.

2. A Mixed Variational Formulation of Problem (1.1). Define now p by

p=AVu; (2.1)

we have then
V-ptf =0, (2.2)
Vu=ATp. (2.3)

Multiplying (2.2) and (2.3) by v and q, respectively, we obtain

[(V p+flvds =0, Yvel¥Q), (2.4)
O
[(A'p - q+uV-q)dz =0, Vq€P,, (2.5)
Q
where
P, = {q|q€H(Q; div), ¢'n =0 on I'}. (2.6)

Take f €LYQ), ¢ € HV4T), and A symmetric such that
A L@V, (2.7)

A(z)a-qa>alq|?, VaeRY, ae on Q, (2.8)
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with, in (2.8), o a positive constant. If (1.2) holds, (1.1} has a unique solution in
HYQ)/R, implying the uniqueness of p. An alternative formulation of (1.1) is provided
by

Find weL¥Q), pEH(Q;div) such that

Ppn=g on [

f(V'p+f)v dr — 0, Vvel¥Q),
Q

J(A7'p-q+uV-q) dz =0, \/ q€P, .
Q

The L? and Sobolev spaces used above provide a convenient setup to study the various
decomposition principles and related algorithms described below. For details about
Sobolev spaces see e.g. [6-9].

We shall consider in detail the first class of domain decomposition methods and the
associated algorithms, and then later more briefly, since there is much similarity between
them, a second class of methods.

3. Solving (1.1), via (2.9), by Domain Decomposition.

3.1. An equivalent formulation of problem (2.9) using domain decomposition.
For simplicity, we consider a 2-domain decomposition like the ones depicted below. If

we denote by {u;, p;} the restriction of {u,p} to €1;, there is clearly equivalence between
(2.9) and

Figure 3.1 (a) Figure 3.1 (b)
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J(Vopi+f)v dz =0, V v, €LYL),
0,
(3.1)
f (A™'p; qi + 4,V -q;) dr =0, V G €P,, YV i=1,2
o,
pin;=g¢9 on 'NaQ;, V i=1,2, (3.2)
2
Ypi'n; =0 on 7, (3.3)
=1
2
Y J(A'p;-q+4 V-q) dx =0, / q€P,, (3.4)
i—1 0,

with
P"o ={q,|q,EH(ﬂ,,dw), q,--n,-=0 on 80,}

Since P, =P, ® P,, ®P,, (where P,, is a complementary subspace of P;, ® P,, in
P,), it follows from (3.1), (3.4) that (3.4) can be replaced by the less demanding condi
tion

llmw

r_}f(A pi'qt+%V-q) de =0, Y/ q€P,, . (3.5)

In addition to (3.1}(3.5), {u;, p;} has to satisfy
[/dz+ [ gdT+[p; n; dy=0. (3.6)
Q, &0,nr ki

3.2. Principle of iterative methods solving (2.9) via (3.1}-(3.6).

(i) Consider \° € H(Q; div) and satisfying, V1 =1,2,
X -n|,=A° n|, where A°€H(Q;div), A n=g on I, (3.7)

r'!.f dz+mfnrgdr+_£)\°~n; dy=0. (3.8)

(i) Solve for i =1,2,

j(v pi+/)v; dr =0, V v €L}A),
(3.9)
f(A”P;”'QiJr“;OV'Q;‘) dx =0, V q; €P,,

B

pf-m; =g on I'NAfl;, p/-m; =X n; on 7. (3.10)
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Since u; is defined only within an arbitrary constant, the constants in 4] and u§ are
adjusted in such a way that

J" dr = (3.11)

ik

[(A7'p 7, 4wV x,) dr =0, (3.12)
0,

where 7, €P,,, but fro ‘n dy5#0.
B
(i) Define now

% ={w|B€P,, [wn dy=0}.
8]

If

e

J(A7p? q+uiV q) dz =0, \/ q€PS,, (3.13)
10,

and since (3.12) already holds, it follows from (3.5) that u’=1y;, p/=p,. If (3.13) does
not hold we have to correct A?. Such a correction can be done through a steepest des-
cent or a conjugate gradient algorithm as we shall see below.

3.3 Solving (3.1)-(3.6) via a variational problem in P3,

First of all, let us define a bilinear form over P35, X PZ,. If we denote it by af(.,.),
a(.,.) is defined as follows:

Consider p € P7,; we associate to 4, p;(p) and u;(p) by solving

fV Pi(w)v; dr =0, V v eL¥Q),

(3.14)
f(A 'pi(w) @+ 4(B)V-q;) dz =0, Y q,EP;,,

Pi(p) n; =0 on I'N3Q;, pi(s) n; =pn;

on . (3.15)
Since f p;(p)-n; dI'; = 0, the above problem is well posed in H(Q;, div) X L*;)/R.
Let us a,djust now u(p) and uQ(p) by

jul(p) dr =0, Ej Alpi(p) 7w, 4+ u(p)V ox,) dz = 0. (3.16)

0, i=1(,

Finally, we define a(.,.) b
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W)V o) dz,
ln. (3.17)

a

Ilt’jw

Vo €P$o :

THEOREM 3.1. The bilinear form a(.,.) s symmetric and positive semi definite over Pl
it 13 moreover elliptic for the norm induced by H(); div) over the quotient space P! O/R
where R is the equivalence relation defined by

uRy <= (p-g) n=0 on ~.

Proof.
(1) Symmetry of a(.,.): Taking p=p" in (3.14), (3.15), (3.16) define p;(y') and u;(u'). If
we denote by p(y') the element of (L*(£2))" such that

p#)la = pi(#)

we have that

and also that
2
PW) = 3 P (W) +# (3.18)
with p;, () € Py, .
It follows from (3.14), (3.17), (3.18) that

(A7 py(p) pill )+ wi(p) V - pi()) dz
114,

HMN

[

(3.19)

i J(A7'pi(s) pio(#) + () V- Py (1)) dz .
i=11;

The second term in the right hand side of (3.19) vanishes from (3.14); on the other hand,
it follows from (3.14) that ¥ - p; (s’ )=0. Therefore, (3.19) reduces to

a{p, i) = E% JA7pi(n) pilw)dz . (3.20)

=10

The symmetry of a(.,.) is obvious from (3.20).
(2) Positivity of of a(.,.): It follows from (3.20) that

a(p, n) fA pi(n) pi(n)dz .
tzlﬂ
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From the properties of A we have

a(w,p) >0, V peP,;

moreover, if a(u,p)=0 then p,(p)=0, implying in turn that p{p)=—0 and therefore
that u-n=0. Hence, a(.,.) is positive definite over P, /R
(3) P35, - ellipticity of a(.,.): It is easily shown that

n — p(n)

is an tsomorphism from P;O/I% onto {p|pu€P,, V- p=0}, the ellipticity of a(.,.) for
the H((; div)-norm follows then easily from

a(p, p) = J)’A"p(#)-p(u) dz

and from the fact that ¥V -p(p)=0.

From the above result, it is not too difficult to interpret (3.1)-(3.6) as a linear varia-
tional problem in PJ,. To formulate this latter problem consider A, € H((; div) such
that

A, ,n=9¢9 on T, (3.21)

f{f d:r+m_‘;n‘.g dF+{A,~n‘~d'y:0; (3.22)

solve then, for 1 =1,2,

f v pox+f LA d2—~0 \;/ USEL2(Qi))
Q

(3.23)
f A Poi - q|+uolv q:)d :Or \/ qiEPiar
1,
Poi ' d; =g on I'NAQ;, p,y ny=A4A,n; on 7. (3.24)
The constants for u,; are adjusted as follows:
[undz =0, (3.25)
nl
2
Y f(A Poi ¥, 4,V -x,)dz =0. (3.26)
i=10;

Let us denote by p, this element of H((); div) such that p, |q, = p,;. If we define now
P by
P=1p-P, (3.27)
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we clearly have

peP,. (3.28)

Denoting XEP,,D as the component of P in the decomposition P, =P,0P,, 0P,
have from (3.6), (3.22), (3.24) that

JXmidy=o0, ie NeP:,; (3.29)
v

define similarly &; by @ = u; —u,;. We have then

IV Bividz =0, Y vyeL¥0,),
nl

(3.30)
J(A'P: @+ %V -q)dz =0, V q,€P,,
nl
Pi'n; =0 on 80;NT, p; n, =X-n; on ~, (3.31)
Tydz =0, 3.32
! (3:32)
2
Y J(A7P, x, + T,V x,)dz =0 . (3.33)
i—10,
It follows from (3.5) that
E j Alp; p+uV p)dz =0, V peP:, . (3.34)
=11
From the definition of B, u; and from (3.34) we obtain
2
Y AP s+ TV o) dr =
=1 (3.35)

2
=Y (AP B+u,V op)dz, VY pEP], .
i—=11);

It follows then from (3.17) and (3.28) that X is the unique solution of the linear varia-
tional equation

Find XEP" such that

E
G(X,[l)’—*E I(A Poi -’ “+“osv “)d ’ V“€P";a' ( )
i=1 10,

4. Iterative Solution of (F) by Conjugate Gradient Algorithms.
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4.1. Generalities on the conjugate gradient solution of linear variational problems.

Consider the following problem

Find ueV such that
{a(u,v) =L(v), YVveV
where:
(1) V is an Hilbert space for (.,.) and ||-|],
(2) a:V X V—R is bilinear, continuous, V-elliptic, and is also symmetric,
(3) L:V —R islinear and continuous.

With the above hypotheses, problem (P) has a unique solution.

Description of a conjugate gradient algorithm for solving (P):

u’ €V, given, (4.1)
{ Find ¢g° € V such that (4.2)
(9°,v) = a(u®,v)-L(v), V veV;
if 11g°|] <e,, withe, “small”, then u® =~ u; if the contrary holds, then set
w® = ¢%. (4.3)

n

For n >0, assuming that u", ¢", w" are known compute

po - lamet | ng"%], (14

a(w”, uw") a(w",

FLAS g R (4.5)
{ gn+1 € V, (4 6)
(gn+lyv):(gnlv)fpna(wnrv)r V UEV '
n+1
1f Al I} < € then u =~ u"*'; {fnotgoto (4.8 4.7)
e’ Il
+112
e 49)
" g™ n*
wttl — y"+l+’7nw" ) (4.9)

Do n—=n+1 and go to (4.4).

4.2. Application to the Solution of Problem (E).
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We shall equip P, with the L% scalar product

(puw)=[A g ydx, \ ppw €P, .
0

Unless V-p=0, V-g =0 the above scalar product is not equivalent to the one
induced by H(S; div).

The following conjugate gradient algorithm is partly formal, but will make sense
for the mixed finite element variants of problem (2.9). It follows then from (4.1)}-(4.9)
that a conjugate gradient algorithm for solving (E) is provided by the following method:

Step 0: Initialization.

Consider A, € H(); div) such that
A, n=g over I, (4.10)
ff dz + f ng—}—on-n,-d'y:O, Voi=12;
0, &n,r v
solve then, \/ 1=1,2,
f(V-p,—°+f)v,~ dz =0, \V/ U;EL:Z(Q,‘),
‘ (4.11)
f(A_lpia'qi+uiav'qi)dz:01 \V/qiepioy
0,
p’'n; =g on NI, p/ n; =A, 'n; on 7, (4.12)
with
d e o (4.13)
ujdzr =0, ZI(A plom,+ufV x,)dz =0. .
f, i=1 D,
Define then g° by
g' €Py,,
2 L . ,  (4.14)
fA'lg" pdz = Y, [(A7'pS p+ulV-p)dz, V meP,;
n i=1 1,

if 8° =0 (or is small) then p; =P/, 4; — ul; 1f not set
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w8 (4.15)

For n > 0,suppose that pl' ul g",w" are known; we compute then p!*! ul*l gn+l

w" ! as follows:

Step 1: Descent.
Solve the mized problems

fV-&p,-"v,» dz =0, V v;el¥Q;),
3,

(4.16)
J(A7'6plq; + 64"V -q;)dz =0, Vg, EP,,
0,
with
pl''n; =0 on &Q;NT, 6p-n; =w"-n; on 7, (4.17)
2
f&ui’ dz =0, 3, f(A“lép,-'“f, +6u'V -x,)dz = 0. (4.18)
, i—1 0

Using the fundamental relation

2
a(wh p) =3 [(Ap] p+6urV p)dz; \ wep:,, (419)
i=110,

compute

Algh ghdx
B [ & (4.20)

P
” a(w", w")

and then
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n

pitt =pl-p,.6pr,

n+l

(4.21)
Uy = uin_pnéuin .
Usting again (4.19), solve the linear variational problem
Find g"“EPf,o such that

] ] . 4.22
JAT g pdr = [ATg" pdz-pa(w",p), VY peEPS, . (422)
4] 9}

Ifg"* =0 (or is “small”) then ul* = u,, pP* =p,; if not, define

Step 2: New descent direction.

fAflgn+l . grl+ldz
e = 2 : (4.23)
fA—lgn ,gn dz
0
and finally
witl — gntl N W (4.24)

Do n=n+1 and go to (4.16)}-(4.18).
In view of practical implementations of algorithm (4.10)-(4.24) we define x, by
x, €P,

4.25
fA’110~ng;:fnl2-qd’7, quP'yor ( )
0 7 '

with n,, as below (see Figure 4.1). From this definition, we clearly have

P’70 :P’ora 0 {q|q=tx,, teRr},

moreover {qlq=tx,, ¢ ER}:(P,‘;,)AL for the scalar product fA"lq'q' dz.
n
Consider now the solution of
X\ € P,

, (420)
[AN -pdz = L(p), V p€P,
Q

in the special case where L(x,)=0; we observe that this condition is satisfied by the
linear functionals occurring in the right hand sides of (4.14) and (4.22).

To solve (4.26), we shall proceed as follows:

(i) Solve
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Figure 4.1

N _
[AS wdr=L(w),  weP., . (4.27)
0
(i) Compute the component of X in (Pf’,a)L; it is clearly given by
fA_l)\ 7, dz
L x, (4.28)
fA'lra 7, dz
Q
(i) We have then
fA‘li 7, dz
A=x-2 T, . (4.29)
fA’lﬂ,, 7, dz

5. Mixed Finite Element Implementation.

5.1 Synopsis. The computer implementation of the solution technique discussed in
Sections 3 and 4 can be achieved through mixed finite element approximations like those
already discussed in [10, 13].

We shall first consider the mixed finite element approximation of the global prob-
lem (1.1) through the equivalent mixed formulation (2.9) and then apply the
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decomposition principles described in Section 3 to the global discrete problem in order to
obtain a discrete equivalence of Problem (E) of Section 3.3. We shall also describe a
finite dimensional variant of the conjugate gradient algorithm (4.10)-(4.24).

5.2 Mized Finite Element Approrimations of Problem (1.1). For convenience we
consider only two-dimensional problems with 2 a rectangular domain. Set
0=(0,z,) X(0,y.) and let A1 0=2p<2;< - <zy =1 and
Ay 0=y <y < - - < YN, =YL be partitions of [0,z;] and [0,y,] respectively. For
A a partition, define the piecewise polynomial space

M(A) = {ve C*([0,L]): vis apolynomial of degree <r on each subinterval of A}(5.1)

where s = -1 refers to the discontinuous functions. Let us introduce now the following
approximations of L¥Q), H(Q; div) and P, (cf. (2.6)), respectively
Wi = M](A,) © M(4,), (5.2)
PPt = [M11(D,) @ MJ(A,)] X IM(8,)@ M (8,)) (5.3)
and
Pi=P{ " Nn{qqn=0 on 30}, (5.4)

where A =max{(z;,,-%;),(y;,1-v;)}. We remark that these spaces satisly for q € P}’
2
V- qe Wy ie. V- P C Wy
We shall denote by ), the set of elementary rectangles associated with grid

A, X A, . The mixed finite element formulation involves the solution pair uy € WJ{'" and
pi € P}'7 satisfying

[(V py+fvde =0, ¥V veEW,

a (5.53)
[(A7'py q+u, V- q)dz =0, V q€PY
Q
and
f(ph ‘n-g)z-ndl =0, VY € Py . (5.5b)
80

The discrete problem (5.5) is clearly the finite dimensional analogue (:{rlth'e mixed prob-
lem (2.9). The analysis of [10,11] shows that p, —p and u, —u are o(h’*Y) in LHAQ).

5.3 Domain Decomposition for the Discrete Problem. In this section we consgder a
two domain decomposition of the discrete problem with v ;.)a.rallel. to t1.1e y axis and
z=1; with I between 1 and N (see Figure 5.1). Decompositions mvolvmg more than
two Suhi)domains will be discussed in Section 6. For simplicity we shall conmde.r the case
where s ——1 and r is arbitrary; the elements in these spaces are in general discontinu-
ous. The spaces W;l", Pyl and P;'" should be denoted by W,, P,, and P, respec-

tively.
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(xp5¥p)
v
(2 1,
(0,0) X =% (0,xp)
Y
Figure 5.1

Two Domain Decomposition

Following Section 3.1, it is easily proven that the discrete mixed problem (5.5) is
equivalent to finding (py ;, 43 ;), 1 =1, 2, satislying

[(Voppi+)vdz =0, W veW,;, (5.6a)
I(Ailph,i q;tuy; V-q;)dz =0, VY q;E€P,;, (5.6b)
€,

J (Paim-g)zndl =0, V 1€P,;, (5.6¢)

o0,nr
2
Pimy =0 on 7, (5.6d)
i=1
2 1
Ef(A"p‘,,--q—Fu;,,,-V'q)dz:0, V quoh' (566)
=10

As in the continuous case, we associate to vy a complementary subspace P, 4 of
P,,,,J@PM’Q in Poh; that lS

Poh = Pch,lepohﬂ@})ahn :

It follows then from (5.6a), (5.6b) that (5.6e) can be replaced by the less demanding con-
dition
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I [

I(AAPA,.' q+uw,;V-q)dz =0, VY q€EP,,. (5.7)
111,

In addition to (5.6), (5.7). {ps;, 4x i} has to satisly the compatibility conditions

[rdz+ [ gdl+ [ps; n;dy=0, (5.8)
Q; o0,.Ar 7
for 1 =1,2.
Several possibilities exist for P, .. From a practical point of view we shall take
Poh,’y = P:h,'y QP!A,A/ (59)
where

oy = {qz. ={g, df}arEFPu,
(5.10)

=0, ¢f|lx=0, V¥ K€Q, suchthat YNIK = ¢}.

In an analogous fashion, P}, . is defined. From (5.9) and (5.10) if q, belongs to P, ,
then it vanishes outside the rectangle union of those elements of @, whose boundary
touches 4. Moreover the role of P;, /R of the continuous case (see Section 3.3) is played

here by the subspace of Pj} , consisting of those functions q, satisfying fq,, ‘ndy=0.
7

Solving the discrete system (5.6), (5.7) by a conjugate gradient method which is a
discrete analogue of algorithm (4.10)-(4.24) of Section 4.2 is fairly straightforward and
therefore will not be included in this discussion.

8. Generalization to Strip and Patch Decompositions.

61 Generalities. We consider in this section the generalization of the results and
methods of the above sections to the case where the decomposition of {} involves more
than two subdomains. Here we concentrate on patch decompositions (see Figure 6.1)
since the strip decomposition can be observed to be an easy case of the former.

For simplicity we shall consider two dimensional problems where (1 is a rectangl_e
and the case where the decomposition is a tensor product of one-dimensional decompost-
tions as in Figure 6.1. Generalizations to three dimensions and more complicated decom-
positions are possible and will be treated in a later paper.

Let M denote the number of subdomains and consider again Problem (1.1) and iﬁs
mixed formulation (2.9). The decomposition discussed in Section 3 can b_e generalized in
the sense that Problems (1.1) and (2.9) are equivalent (with obvious notation) to
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. (XL,YL)
(0,0) N
Figure 6.1
Patch Decompositions

r_{(v‘pi_*'f)vid"z:(): V U.‘EL2(Q,‘), (613)
r_[(A_IP.' At uVeq)dr =0, V@€l Vi=12..M, (g
p; n; =g on I'NaQ;, (6.1c)
Pi n;+p; n; =0 on 7y, (6.1d)

where, for 15£ 7, Vi =i =0, N0, and n;; is the normal to ~;; pointing outward
from €1;. We set y=1,;; we only consider those 7i; whose measure is positive.
]

To relations (6.1)}-(6.4) we must add the additional compatibility condition
M
Ef(A'lp,-*q+u,-V'q)dx:0, V q€epP,,, (6.1¢)
i=11,

M
where P, is a complementary subspace of @ P;, in P,. Obviously the {u;, p;} have to
i=1

satisfy

M
ffdz+ f ng+Efpi'n;jd7:0. (6.1f)
Q; 80.Nr J=l1,;
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To solve (1.1), {2.9) using the decomposition properties (6.6a) -(6.6f) we follow basi-
cally the same approach as in Section 2 for the two domain case. Therefore, we shall

proceed as follows:
1) Define the subspace P35, of P

Yai

ii) define the bilinear form a(:,-) on P3, X PY,;

701

(
(
(iii) reformulate problem (1.1), (2.9) as variational problem in P,;
(iv) solve the above using conjugate gradients;

(

v) define a convenient mixed finite element implementation of the above process.

6.2 The Space P5,. From the compatibility conditions (6.1f), we are motivated to
consider the subspace P,‘;o of P, consisting of those functions q satisfying the relation

E fq n;dy=0, 1=12.. M. (6.2)

1=1 Vij

One can easily verify that the set of linear functionals

M
q— Efqn|]d7r “:172J"')M)

J=17y

is of rank M -1 over P,, implying that the codimension of PJ, in P, is M-1. Let
Ty, X, ..., X4 be M —1 elements of P,, which are linearly independent and which span
a complementary subspace of PJ, in P,

6.3 The Bilinear Form a(:,-). Generalizing Section 3.3 let us define = bilinear for‘m
a(-,-) over P, X P, as follows: Consider p€ PJ,; we associate to p, M pairs

4;(), p()) by solving

f.V pip)v;dz =0, VY vy eL¥), (6.31)
f(A pi(p) q+u(p)V-q)dr =0, V q;€F;,, (6.3b)
pi(p)'n; =0 on I'N3Q, (8.3¢)
pi(p) n;; = p-ny on ;. (6.3d)
Since p € P, implies that

fp.(#) n;dl; — E f pi(p) n;dy=0

j=11;

the above problems are well posed in H({2;, div) X LH0;)/R. Let us adjust now u;(),
’. - 17 2! MRS ) M’ by

df ug(p)dz =0, (6.42)
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Mz

—

JApj(m) 7 +uj(p)V -x;)dz =0, i=12 - M-1. (6.4b)
0

1

The constants associated to uj(p), uo(p), ..., up1(p) are therefore solutions of a
linear system with a matrix whose general element is f V- -mdz, 1<3, j <M-1. The
n]
linear independence of the x’s implies that this matrix is regular implying in turn that
the above constants are uniquely determined.

Finally, we define a(-,-) by

a(p,p) = f)”{(f*‘p.'(#)'n’ +u(p)V op)dz, \ wEP,. (6.5)

By a variant of the proof of Theorem 3.1 in Section 3.3, it follows that a (-, ‘) is
symmetric and positive semi-definite over PJ XP,‘;O, and also strongly elliptic over
,/R where R is the equivalence relation deﬁned as in Section 3.3 by

pRyw <> (p-p) n=0 on ~.

6.4 Reformulation of (1.1), (2.9) as a Variational Problem on P},. Using the same
approach as in Section 3.3 we can reduce the solution of the Neumann problem (1.1) to
the solution of the linear variational equation

Find X° €P;, such that

M a (6.6)
a(x)”):_EJ(A poi‘/"+uoiv"‘)d1r VI‘Eany
i=111,

where p,; and u,; are defined almost as in Section 3.3. The modification consists of
adjusting the u,; by (6.4a) and (6.4b).

6.5 Conjugate Gradient Solution of (6.6). Starting again from the general conjugate
gradient algorithm (4.1}-(4.9) of Section 4 we can easily solve the linear variational prob-
lem (6.6) by an algorithm which is a simple generalization of Algorithm (4.10)-(4.24) of

Section 4.2. Again the scalar product used over P, is defined by

(B W)= _((A_II‘ W odz (6.7)

As in Section 4.2 the conjugate gradient implementation leads to the solution of
linear variational problems of the following type:

NEPS

Yo

6.8
JAN -pdz = L(p), V peP:, (62)
4]

with L(x;)=0, ¥ 1=1,2, - - - M-1._ To simplify the solution of problem (6.8), we
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we may define my, my, ..., mpr; by
my € P’yo i

M
fA"lvr,- qdz = Y, fqn,-j dv, VY q€epP,,,
143

7=1n

(6.9)

for i==1,2,...,M-1. From (6.9) it is quite clear that the subspace of P, generated by
{m}M-! is precisely the orthogonal complement of PJ, in P, for the inner product
(6.7).

To solve (6.8) we shall proceed as follows:

{i) Solve
X€EP,,
_(/;A’li ‘pdz =L(p), V peP,,.
B ~ 1 ) M-1
(if) Compute the component of X in P_,; it is given by E c;7;, where the c; are the
solution of the linear system =
Agl(fA’lr,--rjdz)cj =[AN xdr, =12, M1, (6.10)
j=1 0 0

whose matrix is block tridiagonal, symmetric and positive definite. Actually if the
7;’s are defined by (6.9) one can easily verify using Green’s Formula that the above
matrix coincides with the one occurring in (6.4b) to adjust the u;(p).

(i) We have then

. M-l
A= X - E ijj .
=1

6.7 Mized Finite Element Implementation. The mixed finite element implementa-
tion of the above patch decomposition techniques are analogous to the procedure
described in Section 5.3 for the two domain problem.

We define 7* (resp. 7') as the union of those faces of v which are parallgl to the z
direction (resp. y direction). Then we approximate the space P3,/R of Section 6.3 by
by O Pl where in this context

P.‘m:{qs:{qi,ql}lq;EPu, g =0, ¢f|x=0,
(6.11)

\/ K€ Q, suchthat v NIK = 4)}

and PJ, . is defined in a similar fashion. In (6.11) the space P,; is the same as in Sec-
tion 5.
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The finite element implementation of the conjugate gradient algorithm discussed in
Section 6.5 is straightforward.

7. A Second Decomposition Principle for the Mixed Formulation of Problem
1.1.

7.1. Generalities. We consider again the Neumann problem (1.1) with the data f
and ¢ satisfying the compatibility condition (1.2). In Section 2, we formulated the
mixed problem (2.9) which is equivalent to (1.1).

In this section we would like to discuss a domain decomposition method which can
be seen as the dual of the one defined in Section 3. Here duality is implied by the fact
that the master unknown is no longer the flux A u -n on ~, but instead is the trace of
u on 7.

Applying the following to a Dirichlet or a Neumann-Dirichlet problem will be even
less complicated and therefore will not be discussed here. Anticipating the next sections
we remark that this second decomposition method is simpler than the first since no con-
stant adjustment is needed; however, we have the feeling that the first method is easier
to precondition than the second. We are presently running numerical experiments to
substantiate these conjectures (which will be reported in a forthcoming paper).

7.2 Another Equivalent Formulation of Problem (2.9) Using Domain Decomposition.
For simplicity we consider again a two domain decomposition as depicted in Figures 3.1a
and Figure 3.1b of Section 3.1 (whose notation has been retained).

Let us denote by X\ the trace over ~ of the solution u of Problem 1.1. We have
then for 1 =1, 2,

J(Vpi+f)vdz =0, V veLl¥Q), (7.1)
nl
J(A7'pi ai+ 4V q;)dz = [XNq; n;dy, V q€H;, (7.2)
1, 7
pi n; =g on I'NaQ;, (7.3)
2
J(Epin)pdy=0, V peA, (7.4)
v =1

where

Hi:{Qil(IiEH(Qizd"v): q,--n‘-:O on Fﬂaﬂ|},

and p;, u; are the restrictions to €1; of p and u respectively, and where

A={p|p€Ll¥y), p=4 |, where 4 €H ()} . (7.5)

7.3 Soluing (7.1)-(7.4) Via a Variational Problem on A. We define a bilinear form
over A X A, which is denoted by b(-, ) and given by

b(u, i) = [(Pr() i +pon) mo)i dy (7.6)
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where py(u) and py(u) are obtained through the solution of the two local mixed problems

JVopilu)vidz =0, V v eL¥q,), (7.7a)

{1,
J(A‘lp,-(u)‘q; +u(B)V-q;)dr = {l‘(h ‘n;dy, Vq,€H;, (7.7b)
pi(u)EH; . (7.7¢)

Combining (7.6) and (7.7b) we easily obtain that, for p, &’ € A

b(p, ) = ‘Zj]”{(Alp.‘(ﬂ’)'p.-(#H u(W )V pilp) dz

which combined with (7.7a} yields

bl i) = 3 [ Apy(n) pilu) do (78)

i=110;

From (7.8) the bilinear form b is symmetric positive semi-definite. Indeed b is positive
definite over A/R. To prove this result suppose that b(p, u)=0. It follows from (7.8)
that p;(p) =0 which in turn implies from (7.7b) that

Ju(p)v-aqdz = [pq;n;dy, V¥ q,;€H, . (7.9)
: 7
Consider now for 1 =1, 2 the local Neumann problems

A¢p; =0 on Q;,

9¢;

2 —0 rmaq;,

an; " ' (7.10)
9%, on ~

871,- ’

where z € L%(4) with fz dvy==0. Problem (7.10) has a solution which is unique modulo

7 . .
constant. Moreover, V¢; belongs to H; and is divergence free. Thus setting q;, = V¢,
in {7.9) we obtain that

fpzd1:0. (7.11)
B!

Therefore pu belongs to the orthogonal in L*y) of the closed subspace of the functxgns
whose average value is zero on 7; consequently g is a constant. In fact it can be easily
shown that the bilinear form b(,-) is strongly elliptic over A/R. We define p;,,u;, as
the solutions of the local mixed problems

[(V pi+)vdz =0, V v€L), (1.12)
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{_{(A_IP;D qi+u,V-q)dr =0, VY ¢€H,;, (7.13)

P, 'n; =g on I'Mafly, (7.14)
with
w, €LY Q;) and p;, € H(Q,, div) .

Now we define 1, p; by
Uy = u;-4,, P;=0Ppi P, (7.15)

where u;, p; are as in Section 7.2. Subtracting (7.12), (7.13), (7.14) from (7.1), (7.2) and
(7.3) respectively, we obtain that @ and P, satisfy

[V Bividz =0, V veLl¥q), (7.18)
0,
f(Ailﬁ.‘ q; +HV o q;)dz = f)\Q.' ‘m;dy, VY ¢ €H,, (7.17)
0, B
p;n; =0 on I'NaQ; . (7.18)

Also combining (7.4) and (7.15), we have that

f(i Pi'ni)l‘d7:‘f(i Pio mi)pdy, V pEA. (7.19)

v =1 v =1

From the definition of py(s) and py(p), we see from (7.7) that
i =pi(3), & =u(\). (7.20)

Combining (7.19), (7.20) it follows from the definition of the bilinear form b(:,-) given by
(7.6) that

2

b(x,p)=‘£;§1(ﬁ;o-n;)ud7, V neA, (7.21)

AMEA.

From (7.21) the trace M of 4 on -y appears as the solution of a variational problem in A.
Since the bilinear form b(-,-) is symmetric and strongly elliptic over A/R problem (2.1)
can be solved by the conjugate gradient algorithm (4.1}(4.9).

Due to page limitation no details of the conjugate gradient implementation will be
discussed here; we mention however that the mixed finite element implementation of the
algorithm is easy if one uses as scalar product on the discrete equivalent of A

(w6} — [ pu dvy.
T
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Actually one could use a more sophisticated scalar product in order to obtain an efficient
preconditioner of the above algorithm. This important point will be discussed in a later
paper together with the mixed finite element discretization of the second class of
methods.

8. Numerical Experimentas.

8.1. Generalities. In this section we would briefly like to describe some numerical
results obtained using the method discussed in Sections 3-6 where the master unknown
is the flux at the subdomain interfaces. Comparison with results obtained by the
method of Section 7 will be reported elsewhere.

The various test problems we have been considering involve smooth and nonsmooth
coefficients, right-hand sides and solutions.

We have also been comparing the performance of our algorithm on strip and patch
decompositions. In view of engineering applications for which efficiency is essential we
have been using as an initial guess of our conjugate gradient algorithm a predicted solu-
tion from a coarse grid calculation.

The local mixed problems have been solved using the preconditioned conjugate gra-
dient MINV technique due to Concus, Golub and Meurant [14]. For details of applica-
tion of this to mixed finite element method procedures see [13].

For all of the experiments to be described below the stopping criteria of our conju-
gate gradient algorithm, using the notation of Section 4, was

fA—lgn '5" dz
a <1012 (8.1)
fAflgO . 80
0

In addition, the region {1 was assumed to be the unit square. The mixed finite ele-
ment approximating space chosen was the Raviart-Thomas tensor space r =1 and

8 =1 given by (5.2) - (5.4).

8.2, First Test Problem. The first test problem is the Neumann problem
~Au= [ in

Q."i:g on 00,

dn

(8.2)

where f and g have been chosen in such a way that the exact solution of problem (8.2)
is u(z,y)=—sin 7z sin 7y. We used a uniform mesh with 20 X 20, 40 X 40 and 80 X 80
elementary squares. The number of unknowns is roughly 5,000, 20,000, and 80,000 for
each case respectively.

The domain decompositions depicted in Figures 8.1 - 8.4 have been considered
(indeed we used also a (16, 16) decomposition). . .

Table 8.1 depicts the number of conjugate gradient iterations_; .requlred to satisfy
the stopping test (8.1) according to the value of h and the decomposition of 1.
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Figure 8.1
(2,1) Decomposition

Figure 8.2
(2,2) Decomposition

Figure 8.3
(4,4) Decomposition

Figure 8.4
(8,8) Decomposition
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Decompositions | A*'=20 | A1=40 h1=—80
(2,1) 3 8
(2,2) 5 8
(4,4) 23 23
(8,8) 27 41
(16,16) 31
Table 8.1

Number of Conjugate Gradient Iterations
Smooth Problem

We observe that the number of iterations is slightly increasing with A~' but
definitely not proportional to h™! implying that the preconditioning properties of the
scalar product fA‘lp-p’ dz are quite good.

Q

8.3. Nonsmooth Test Problems. Motivated by applications in reservoir engineering
we are considering now the following class of test problems:

- (A Vu) = 5(110)75(0‘1) n ﬂ,

(83)
Agu-n=0 on 31

where A is defined by either
(1) A=A, =1

(i) A —=A,—

)

1
1+ 100(z% + y?)

(i) A = Ag== ol where

1, <z<
“:{,01, 5<z <1

Tables 8.2-8.4 depict the number of iterations required by the conjugate gradient
with the same stopping criteria as before.

Clearly the slope dependence on h still holds, roughly showing a A* influence;
moreover the speed of convergence is practically insensitive to the roughmness of _the
source term and coefficients. This is a most interesting property in view of praﬁtx;al
applications. It is our opinion that this property originates from the harmom'g averaging
associated to the mixed method and to the scalar product used for the conjugate gra-
dient iteration.

A patural question arising from the above numerical tests is how accurate rpust be
the solution of the local problems; actually the results reported here were obtained by
solving these subproblems within machine precision (~ 10.’12 on the (?ray-X]\/IP.). Indeed
the final precision and the global performances of our con]l{ga.te gradlfsnt alg'oxl'xthm were
practically identical when the subproblems were solved within a 107 precision on the

local residuals.
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Decompositions ht=20 ht=40 h~' =80
(2,1) 15 20
(2,2) 15 20 26
(4,4) 20 29 43
(8,8) 29 43
(16,16) 33
Table 8.2
Number of Conjugate Gradient [terations
A=A,
Decompositions h1=20 A =40.
(2,1) 19 24
(2,2) 20 27
(4,4) 21 34
(8,8) 30
(4,1) 38
(8,1) > 50
Table 8.3
Number of Conjugate Gradient Iterations
A=A,
Decompositions h1=20 A =40
(2,1) 19 24
(2,2) 18 21
(4,4) 20 33
(8,8) 29
Table 8.4
Number of Conjugate Gradient Iterations
A=A,

9. Conclusion.

Domain decomposition, combined with mixed finite element methods of approxima-
tion, seems to provide efficient techniques for elliptic problems with discontinnous and
rapidly varying coefficients which arise in many important engineering applications.
This combination seems to be particularly well suited for box decomposition since the
traditional difficulty associated with vertices, when classical C%conforming finite clement
methods are used, does not hold here. Indeed, the same comment applies to large classes
of time dependent linear and nonlinear problems. One of the attractive featurcs of this



DOMAIN DECOMPOSITION 171

method 1s that it readily lends itselfl to exploiting parallelism. In fact, we think it is the
most interesting field in which computer science and numerical analysis can merge to
produce efficient tools for scientific computing.
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