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Abstract.  Element-by-element approximate factorization, implicit-explicit and
adaptive implicit-explicit approximation procedures are presented for the finite element
formulation of large-scale fluid dynamics problems. The element-by-element
approximation scheme totally eliminates the need for formation, storage and inversion
of large global matrices. Implicit-explicit schemes, which are approximations to
implicit schemes, substantially reduce the computational burden associated with large
global matrices. In the adaptive implicit-explicit scheme the implicit elements are
selected adaptively based on element level stability and accuracy considerations. This
scheme provides implicit refinement where it is needed.

The methods are applied to various problems governed by the convection-diffusion
and incompressible Navier-Stokes equations. In all cases studied, the results obtained
are indistinguishable from those obtained by the implicit formulations.

1. Introduction.

Significant improvements have been made in computer memory and speed in recent
years. However, the existing computer power is still far behind the demands from
scientists for large-scale fluid dynamics calculations. Implicit schemes, which are
desirable for their stability and accuracy properties, lead to large global coefficient
matrices which need to be fomed, stored and inverted. Direct management of such
matrices is very difficult for large-scale, geometrically complicated two-dimensional
problems and is virtually impossible for large-scale three-dimensional problems.

In this paper we present element-by-element (EBE) approximate factorization,
implicit-explicit, and adaptive implicit-explicit (AIE) schemes for large-scale
computations in fluid dynamics. Compared to implicit methods these schemes posses,
to a great extent, similar desirable stability and accuracy properties, yet result in
substantial reduction in computer memory and CPU time demands.

To overcome the shortage of computer power, many researchers have developed
algorithms for large-scale problems. In their application of domain decomposition
methods, Glowinski, Dinh and Periaux [1] sucessfully coupled the incompressible
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viscous flow and incompressible potential flow models employed in different
subdomains, A conjugate gradient method, which is basically suitable for the
symmetric and positive-definite systems, was employed to solve the variational
problem. For the nonsymmetric and nonpositive-definite systems one has to find an
appropriate preconditioner for each problem. It needs much sophisticated work [2-4].
A three-dimensional flow simulation with 1283 was made by Rogallo [5] with
alternating

direction method. A new class of algorithms in numerical linear algebra which take
advantage of the parallel computation capabilities of modern computers also provides
hope [6].

The EBE scheme is somehow related to domain decomposition [1,7] and
alternating direction ( or operator splitting ) [8-11] schemes. These schemes, contrary
to the EBE method, are based on global approximations. The EBE method was first
proposed by Hughes, Levit and Winget [12,13] with applications to transient heat
conduction, structural and solid mechanics problems. Preliminary application to fluid
mechanics problems within the context of the compressible Euler equations were
presented in Hughes, Levit, Winget and Tezduyar [14].

In this paper we present our EBE formulation for problems with nonsymmetric,
nonpositive-definite spatial differential operators. Currently we focus on the
convection-diffusion and incompressible Navier-Stokes equations. In the EBE
formulation global coefficient matrices are approximated by sequential product of much
simpler matrices which are based on the most natural unit in finite element method - the
element level matrix. Every calculation is done at the element level. The method keeps
the versatility of the finite element formulation in its easy adjustment to irregular
meshes. Other advantages of the finite element method such as easy implementation of
the boundary conditions and the source terms are also retained in the EBE formulation.

Our implicit-explicit approximation schemes for fluid dynamics problems are based
on the work of Hughes and Liu [15,16] which was for solid mechanics and heat
transfer applications. We consider problems governed by the convection-diffusion and
incompressible Navier-Stokes equations. In this approach, for the elements which are
designated to be implicit, the element level matrices are kept as they are, whereas for the
explicit elements the element level matrices are approximated by a diagonal matrix. The
implicit element-explicit element decision is based on the local stability criterion.

In the adaptive implicit-explicit (AIE) scheme the implicit element-explicit element
decision is made dynamically. The stability and accuracy criteria applied to each
element, based on the solution from the previous iteration or previous time step,
determine whether an element needs to be implicit. In this approach we can adaptively
have implicit refinement where it is needed for stability and accuracy. Compared to
other adaptive schemes which are based on grid movement or element subdividing, the
AIE approach involves minimal bookkeeping and no geometric constrains; therefore the
method is very easy to implement.

_ In section 2 model problems are described and their spatial and temporal
discretizations are given. The EBE, implicit-explicit, and AIE schemes are discussed
in sections 3, 4 and 5 respectively. Numerical results are presented in section 6 and the
conclusions are given in section 7.

2. Model Problems -- Spatial and Temporal Discretizations.

We consider model problems governed by the convection-diffusion equation and
the vorticity-stream function form of the two-dimensional Navier-Stokes equations. A
formal statement of the problem and the corresponding spatial discretization for both
cases are given below.

convection-diffusion equation.

Time-dependent convection-diffusion of an unknown scalar function @ is governed

by the following set of differential equations, boundary conditions, and initial
condition;
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D, +uVO=V(xVD)+f on Qx]10,T[ @.n
d(x,t)=g(x,t) Vxe l"g, te 10,T[ (2.2)
n-xkVO(x,t)=h(x,t) VxeIp, te]OT[ (23)
D(x,0)=0(x) on Q 2.4)

where Fg and I'y are the mutually exclusive but complementary subsets of the boundary

I" with Dirichelet and Neumann type boundary conditions respectively. The velocity

field u = u (x ) is given and x is the conductivity matrix. The source term is given as
f=f(x,t). The unit normal vector to the boundary is denoted by n, whereas g, h

and @, are prescribed functions.

Finite element spatial discretization of (2.1) - (2.4) leads to the following
semi-discrete equations:

Md+CO=F @.5)
®(0)=, 2.6)

where M, C, and F are the "mass" matrix, "stiffness" matrix, and the generalized

“force" vector, respectively; @ and @ represent the dependent variable and its temporal
derivative at the nodes. The information regarding the initial condition is contained in

vector d)o.

equations.

The field equations consist of a time-dependent transport equation for the
unknown vorticity function ® and an equation which relates the unknown stream
function ¥ to vorticity. They are given as follows:

o, +uVo=v Ve on Qx]0,T{ @7
V¥=-0 on Q 2.8)

The velocity field u, which is now an unknown, is related to the stream function by the
following equations:

u; = 0¥ /ox, 2.9)

u,=- ¥ 3x, (2.10)
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and v is the kinematic viscosity.
The boundary conditions for @ and ¥ are given below:

®(xt)= F(xt) Vxe Ty te]OT[ (211
vn-Vo(xt)= h(xt) Vxe T'f, te10T[ (212)
W (xt)=g(xt) Vxe T, te]OT[ @13
nV¥ (xt)=h(xt) Vxe Ty, telOT[ .14)

where FE and I'§; are the subsets of the boundary I" with Dirichelet and Neumann type

boundary conditions for ®, whereas I' g and '}, are similar boundary subsets for ¥,
The initial condition for the vorticity is given as

m(x,0)=o30 on (2.15)

Finite element spatial discretization of (2.7) - (2.15) leads to the following
equations:

Mo+Co=F 2.16)
®(0)=0, @.17)
“Ma+K¥=F (2.18)

Lnd oy
where M, C,F, M, K, and F are the matrices and vectors resulting from the spatial
. - ” . . . . . .
discretization; ®, ®, and ¥ represent the vorticity, its temporal derivative and the
stream function at the nodes. The initial condition for ® is represented by ©,

Remarks:

1. A streamline-upwind/Petrov-Galerkin (SUPG) formulation is employed for the
spatial discretization of the transport equations. The formulations are well-known
for their robust and accurate performance for problems with nonsymmetric spatial
operators. Several papers can be found in scientific literature on this type of
schemes. We will only mention the one by Tezduyar and Ganjoo [17] for the
readers' information. For the purpose of this paper we describe the SUPG scheme
employed in terms of the weighting function basis N_; that is:

N, =N, +C, h2sVN, (2.19)

or
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o~
N,=N, +TuVN, (2.20)

where the subscript "a" refers to an element node; N, is the solution function basis,

h is the "element length" in the direction of u, and s is the unit vector in u direction.

C,. and T are related by the following expression:

Cy =llull2t/h (2.21)

Various choices for C,, have been investigated by Tezduyar and Ganjoo [17].

2. The difficulty associated with the lack of boundary conditions for vorticity and its
normal derivative on the no-slip surfaces is tackled by a discrete Green's formula
approach which will be described in a future paper by Tezduyar, Glowinski, and
Glaisner.

mpor: i

Consider the following class of semi-discrete equation systems:
Ma+Cv=F (2.22)
v(0)=v, (2.23)
where the vector a is the temporal derivative of the vector v. We employ a

predictor/multi-corrector transient integration algorithm [18] to solve (2.22) - (2.23).
The algorithm can be summerized as follows:

(1) given Vo

n — n+l
(2) predictor stage

vol=v,+(l-a) Ata (2.25)
a,,°=0 (2.26)
i—> i+l

(3) corrector stage

R i=F -Ma i-Cv_,i .27
M*Aa , i=R_ i (2.28)
a1 = a i+da, (2.29)

Voitt= v i+ AtAa i (2.30)
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where o € [ 0,1] is a parameter which controls the stability and accuracy. A subscript
denotes the time step and a superscript denotes the iteration step. Convergence 1s

checkedby inspecting the normof R_,;' and Aa_,,'.

Remarks: )
1. A consistent derivation for M* gives the following expression:

M*=M+aAtC (2.31)

If left as it is, this expression for M* leads to an jmplicit formulation which requires
only one correction for linear systems. However, for nonlinear systems one needs

to have as many corrections as the convergence criterion dictates.
2. A choice of

M* =M, 2.32)

where M, is a lumped version of matrix M, leads to an explicit formulation.
Explicit formulations in general are less stable, less accurate, but also less costly

(tess memory and less CPU time) compared to implicit schemes. The conditional

stability of these methods are usually expressed in terms of a limit on the element

Courant number. The element Courant number C,, is defined as
Cp=llultAt/h 2.33)

3. In the SUPG formulation the choice of

T=0At (2.34)

leads to a symmetric positive-definite M* for purely hyperbolic problems.

Proof:

an Consider the following semi-discrete ( spatially continuous) formulation of

(D

n+l

D)/ At=uV ((1-) O +a D) 2.35)

For the weak form of (2.35) we employ a weighting function W which is given as

W=w+tu Vw (2.36)

where w and @ come from the same space. Note that for this purely hyperbolic

system a Dirichelet type boundary condition for @ is required on the part of the
boundary where the information comes from outside the domain, and w has to
satisfy the homogeneous form at the same boundary condition. That is

D(x) =g(x) Vxe {xilxel,n(x)u(x)<0} (2.37)
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w(x) =0 Vxe {xlxel,n(x)u(x)<0)} (2.38)

The weak form of (2.35) with the weighting function of (2.36) can be written as
follows:

w, @ )+aAt(w,uV ® . )+aAt(uVw, ®..)
+(0At)? @ Vw, uV®O  )=RHS. (2.39)

where the bilinear form ( e, ®) is defined as
(w,®) = J w D dQ (2.40)
Q

Note that only the L.H.S. of (2.39) corresponds to M*,
Rewriting (2.39) we get

(w+ o Atu-Vw, O . +OoA u-Vd)ml) =R.H.S. (2.41)

1

We need to show that the L.H.S. is a symmetric positive-definite form. Itis
obvious that this bilinear form is symmetric and that

(W+oAtuVw, w+aAtuVw)20 (2.42)
It also needs to be shown that if

VaAt)w+uVw=0 (2.43)
then

w=0 (2.44)

Note that (2.43) is nothing more than a linear, steady-state, convection-reaction type

equation for w. Since (1/ o At) is always positive, the reaction is a consumption on
w. If the value of w at any point can be traced back to a boundary point, because of
(2.38) w =0; if not, w = 0 because of consumption. This completes our proof,
based partly on physical reasoning, that M* is symmetric positive-definite.

3. Element-by-Element (EBE) Approximate Factorization.

The equation system of (2.28) can be rewritten as follows:
Ax=b @3.n

where x is the increment vector Aa, b is the residual vector R, and A is the coefficient
matrix M*,
A parabolic regularization of (3.1) can be expressed as

Wdy/d8+Ay=b (3.2)



288 TEZDUYAR AND LIOU

where 0 is a dimensionless "pseudo-time" and

y(0)=0 (3.3)
We assume that
x=lim y(96) G4
60—

The choice of W depends on the properties of A. For a symmetric )
positive-definite A Hughes, Levit and Winget [12,13] proposed W to be the diagonal
part of A; thatis

W =diag A (3.5)
This was found to be effective for all problems studied in [12,13]. Alternately W can
be chosen to be the lumped mass matrix mentioned in Section 2. That is

wW=M; (3.6)

This choice was proposed by Hughes, Winget, Levit and Tezduyar [14].
Since we are interested in the steady-state solution of (3.2), we employ a
backward difference pseudo-time stepping algorithm. This is summerized below:

(W+ABA)Ay, =A0T,, 3.7
r.=b-Ay_ (3.8)
Y1 =¥m + AYp (3.9)

Equation (3.7) can also be written as

Ay_ =D (I+DAD)!'D r, (3.10)

where I is the identity matrix and

D =(W1A6)2 3.11)

Note that (3.11) requires W to be positive-definite. While the choice of (3.5) does not
guarantee this when M* is not positive-definite, the alternate choice of (3.6) does.
One also needs to note that for problems in fluid mechanics M* in general is not

symmetric, positive-definite; however, as mentioned in section 2, the choice (2.34)
assures that it is.

The two-pass EBE approximation is based on the following expression:

nel 1
(I+DAD) = [T1(I+12DA*D) x [T (I1+1/2 DA®D) (3.12)

e=] e=nel

where nel is the total number of elements in the domain. Clearly, this approximation
depends on the element ordering.

Weupdate y , according to the following formula:
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Yma=Ym+sdy, (3.13)

where s is a search parameter obtained by minimizing llr__, I with respect to's; that

m+l

is
s =(A Ay )r. /A Ay, I? (3.14)

Remarks:

1. The need for the formation and storage of the global matrix A has been eliminated.

2. There is no need to store the element level matrices A®'s; however, if desired,
instead of recomputing for each EBE iteration, the element level matrices can be
stored. Even then, the storage requirement is far less than that of a global matrix.

3. The EBE approximate factorization procedure is parallelizable.

4. It must be well understood that if the EBE procedure converges, it converges to the
solution of (3.1), which is the equation system of the implicit method.

4. Implicit-Explicit Approximation Schemes.

Let € be the set of all elements, € = 1,2,.....,nel. The assembly of the global
matrix M* cab be expressed as follows:

M*=A (m*y @.1)
€e

where A s the assembly operator.

85 and 8,‘; be the subsets of € corresponding to "implicit elements” and
"explicit elements" respectively, such that;

€=guE 4.2)
D =€ NnEg 4.3)

Rewriting (4.1) we get
M*=A m*e+ A m*r (4.4)
ee § ee &

Implicit-explicit approximation [15,16] is based on the replacement of (m*)¢ by the
element level lumped mass matrix (m)® ; that is:

M*= A (m*)°+ A m), 4.5)
ec &g

ee &

The selection of the implicit elements is based on the stability criterion which is defined
in terms of the estimated element Courant number.
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5. Adaptive Implicit-Explicit (AIE) Approximation Schemes.

We propose that the set £; and 8’1-: are determined dynamically. The
determination will be based on several criteria including stability considerations for all
types of transport penomena present. Stability and accuracy characteristics of
algorithms are described not only in terms of the element Courant number but also in
terms of the dimensionless wave number ( see [19]). Therefore, we believe that in the
determination of the implicit elements the dimensionless wave number for the solution
from the previous time step (or iteration) should play a significant role. We can achieve
this by defining a determination criterion which is also based on some measure of the
jump in the solution or jump in the flux across an element under consideration. The
jump values are computed based on the previous time step (or iteration). Currently we
employ the following definition for the jump in the solution across an element:

[®]=max (D, )-min( D,) 5.1)
a a

where a is the element node number. Note that the threshold value for this jump which
makes the element eligible for the implicit set £; should be based on the global scaling
of

the solution field. Such a global scaling idea is closely related to the global scaling
concept of the "discontinuity capturing” scheme described in [20].

In the AIE approach one can have a high degree of refinement throughout the mesh
but can raise the implicit flag only for those elements which are proposed to be treated
implicitly.

Compared to other adaptive concepts such as adaptively moving grids or adaptive
element-subdividing the AIE scheme is far easier to implement because it involves no
geometric changes; the bookkeeping involved is minimal.

6. Numerical Examples.

The EBE, implicit-explicit, and AIE schemes have been tested on various problems
governed by the model equations stated in section 2. The results are compared with
those obtained from the implicit and explicit schemes.

two-dimensional advection of a cosine hill (translati .

This problem consists of advection of a cosine hill from the extreme left to the
right. Two meshes are tested: a uniform mesh with 30 x 30 elements in a 1 x 1 domain

and a nonuniform mesh with 45 x 30 elements in a 1 x 0.75 domain.

For the uniform mesh an initial cosine hill profile with unit peak amplitude and
base radius of 0.2 is centered at (x,,x,) = (0.267, 0.5). The diffusion coefficient is set
to be 10°; the advection velocity is unity in x,-direction, and the time step is adjusted to
give a Courant number of 0.6. Homogeneous Dirichelet boundary condition is
specified on all boundaries except at x, = 1.0 where homogeneous Neumann boundary

condition is imposed. Figures 1(a)-1(c) show the results at various times obtained by
one pass AIE scheme (AIE-1). Figures 2(a)-2(c) show the distribution of the implicit
elements at the corresponding times for the AIE-1 computations. Implicit, EBE, and
explicit one pass (EXP-1) schemes are also tested.The peak amplitude value of the
cosine hill at t = 0.72 is: 0.972 for the implicit and EBE schemes, and 0.974 for
AIE-1. EXP-1 gives a stable solution with poor accuracy.

For the nonuniform mesh the element length in the left region of the domain is half
of that in the right region. Time step is chosen such that the Courant number is 1.8 in
the left and 0.9 in the right. The initial profile is centered at (x,,x,) = (0.233, 0.375)
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Fig. 1. Elevation plots for the translating Fig. 2. Distribution of the implicit
puff obtained by the AIE-1 scheme. elements for the AIE calculations of the
(a) Initial condition. (b) att= 0.3 . translating puff. (a) att=0.
(c)att=0.72. M)att=03.c)att=0.72.
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with base radius of 0.2. All other set-up conditions are the same as in the case of the
uniform mesh. Figures 3(a)-3(c) show the elevation plots at various times obtained by
the two pass implicit-explicit scheme (IMEX-2). Figure 4(a) shows the distribution of
the implicit elements. The peak amplitude value at t = 0.72 is: 0.969 for the implicit and
EBE schemes, 0.985 for IMEX-2. The results for the explicit two pass (EXP-2)
scheme are shown in Figures 4(b)-4(c). It can be seen in Figure 4(c) that in the left
region of the domain the solution becomes unstable due to the high Courant number.

The mean bandwidth (averaged over the number of time steps) of the global
coefficient matrix for the AIE scheme in the case of the unifrom mesh is 25% of that for
the implicit scheme. The average number of implicit elements at each time step is 173.
For the nonuniform mesh the mean bandwidth for the IMEX scheme is 78%;, and the
number of implicit elements is 1016.

_dimensional risid bod ion of a cosine hill (rotafing pufD.

The set-up conditions for this problem are the same as in the uniform mesh case of
the translating puff problem except that the velocity field is rotational with respect to the
center of the domain. (i.e. u, = - x, + 0.5, u, = x, - 0.5), and all boundary conditions

are Dirichelet type and homogeneous. The time step is adjusted to give a Courant
number of 0.216 at the tip of the cosine hill. A full revolution is achieved in 200 time
steps. Figures 5(a)-5(c) show the results at various times obtained by AIE-1. Figures
6(a)-6(c) show the distribution of the implicit elements at the corresponding times. The
peak amplitude after a full revolution is found to be 0.984 for the implicit and EBE
schemes, and 0.980 for AIE-1. The mean bandwidth (averaged over the number of
time steps) for the AIE scheme is 26% of the implicit scheme. The average number of
implicit elements at each time step is 173. As in the case of the translating puff
(uniform mesh), the results for EXP-1 are not satisfactory. Figures 7(a)-7(b) and
Figures 8(a)-8(b) demonstrate the performance of EXP-1 in both cases.

y { a circular cylinder.

In this problem we have 1940 elements and 2037 nodal points. A refined and
implicit zone is located around the cylinder. Diffusivity is 0.0025 giving a Reynolds
number of 100 based on the diameter of the cylinder. The time step is fixed at 1.0. The
number of corrections at each time step is allowed to be as many as the convergence
criterion (10°%) dictates.The mesh, the boundary conditions, and the distribution of the
implicit elements are shown in figure 9(a). Figures 9(b)-9(c) show the streamlines and
isovorticity lines for the symmetric solution at time = 400 obtained by the EBE scheme.
After that, an artificial disturbance is placed shortly to initiate a nonsymmetric solution.
Figures 10(a)-10(c) show the nonsymmetric results at time = 1,200 for the EBE
scheme. The implicit, EBE , and the implicit-explicit schemes all give very close results
(differences less than 0.5%). The explicit scheme diverges. The mean bandwidth of the

@mgéigit—explicit scheme is 47% of the implicit scheme. The number of implicit elements
is 320.

iri ity flow.

A uniform mesh of 30 x 30 elements in a 1 X 1 domain is chosen. Diffusivity is
0.0025, time step is 0.1, and Reynolds number is 400 based on the side length of the
square domain. The number of corrections at each time step is limited to S. Figure
11(a) shows the mesh, the boundary conditions, and the distribution of the implicit
elements. Results obtained by the implicit-explicit scheme are shown in Figures
11(b)-11(d). These results are indistinguishable from those obtained by the implicit and
EBE schemes (differences less than 0.001%). The mean bandwidth for implicit-explicit
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Fig. 3. Translating puff problem on a
nonuniform mesh. Results obtained by
the IMEX-2 scheme. (a) Initial condition.
(b) at t=0.3. (c) at t=0.72.
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Fig. 5. Elevation plots for the rotating puff ~ Fig. 6. Distribution of the implicit

obtained by the AIE-1 scheme. (a) Initial elements for the AIE calculations of the

condition. (b) att =3.14 . (c) att = 6.28. rotating puff. (a) att=0. (b) at t = 3.14.
(c)att=6.28.
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Fig. 7. Elevation plots for the translating Fig. 8. Elevation plots for the rotating
puff obtained by the EXP-1 scheme on puff obtained by the EXP-1 scheme on a
a uniform mesh. (a) att=0.3. uniform mesh. (a) att=3.14.
(b)att=0.72. (b)att=628.
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S\ ()

Fig. 10. Flow past a circular cylinder at Reynolds number 100. Nonsymmetric
solutions obtained by the EBE scheme at t = 1200. (a) Relative streamlines.
(b) Local streamlines. (c) Iso-vorticity lines.
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Fig. 11. Driven cavity flow at Reynolds number 400. Solutions obtained by the IMEX
scheme at t = 10. (a) Finite Element mesh, boundary conditions and the distribution of
the implicit elements. (b) Streamlines. (c) Corner streamlines. (d) Iso-vorticity lines.
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scheme is 44% of the implicit scheme.The number of implicit elements is 403.
7. Conclusions.

In this paper we have presented approximate solution schemes for large equation
systems resulting from finite element formulation of fluid dynamics problems. The
element-by-element (EBE) approximate factorization scheme is essentially an iterative
scheme which totally eliminates the need for the formation, storage, and inversion of a
large global matrix. Implicit-explicit schemes in nature are approximations to implicit

schemes, yet they substantially reduce the cost of formation, storage, and inversion of a
large global matrix. In the adaptive implicit-explicit (AIE) scheme, the implicit elements

are selected adaptively based on local stability and accuracy conditions. This scheme
allows us to have implicit refinement where it is needed.

We have applied these schemes to various problems governed by the
convection-diffusion equation and the vorticity-stream function form of the

two-dimensional Navier-Stokes equations. The results in all cases are indistinguishable

from those obtained by true implicit formulations. We are convinced that it will not be
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very long before these schemes are accepted as powerful tools in large-scale computing.
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