Iterative Methods for Substructured Elascticity

Problems in Structural Analysis
PETTER E. BJORSTAD* AND ANDERS HVIDSTEN*

Abstract. This study of iterative methods applied to problems in structural analy-
sis, has been motivated by new results and methods for solving elliptic problems on regions
partitioned into substructures. An implementation of a recent algorithm in the framework
of a large commercia)] finite element analysis code is described. Results from several dif-
ferent -problems in structural analysis are given. They include the use of membrane, shell,

beam and solid elements.

Introduction. Structural analysis provided the problems, motivation and pio-
neering work that led to the development of the powerful finite element method and this
field is still the most important application area of finite element based analysis. There
exist a number of highly successful commercial codes that can be used to analyze the be-
havior of almost any kind of structure under rather general conditions. In almost all of
these codes the technique called substructuring [1] is used in order to simplify modeling
and post processing. The physical domain is divided into several disjoint pieces called sub-
structures, and each substructure can be assembled separately. The global stiffness matrix
is then usually formed in order to solve the equations. Omne commercial code Sesam [2],
pioneered the further use of this concept, by also taking advantage of the substructures (in
particular identical ones) in the solution algorithm. In this code the solution procedure is
carried out by the elimination of interior unknowns from each substructure, followed by
the calculation of Schur complements corresponding to the unknowns on interior interfaces
between substructures.

The renewed interest from the numerical analysis community in substructuring as a
way of breaking up the solution of elliptic problems into problems on smaller domains has
provided a new understanding and a theoretical foundation for the use of iterative methods
in this process. An early numerical analysis paper in this direction is [3]. More recent work
is described in [4], [5], [6], (7], [8], [9] see also references found in these papers.

In our paper the use of preconditioned conjugate gradients to solve the {nterface
equations arising from structural analysis, is investigated. Issues of actual efficiency of

¥ Institutt for Informatikk, University of Bergen, Allegt. 55, N-5000 Bergen, NORWAY. Supported by
NTNF contract TT0228.20484

30

302 BI@RSTAD AND HVIDSTEN

this approach are discussed, and the numerical results are compared with results obtained
with state of the art software. The results from a comprehensive number of different
problems are reported. The paper briefly describes the issues involved in actual software
implementation of these methods into a large structural analysis package. This report
demonstrates the feasibility of using iterative substructure methods in structural analysis
codes. An important aspect of this paper is the generation of suitable test examples and
a nontrivial set of computational results. We plan a continued study of additional test
examples and algorithmic variants for these problems.

This investigation reveals an important difference between the model problems
treated in earlier papers, having only one degree of freedom in each node, and the typical
problems in structural analysis with at least two and up to six unknowns per node. This
difference causes problems for the algorithm that work very well in the case of only one
variable in every node. We report on preliminary experiments in order to address this
difficulty. More extensive experiments will be reported in a forthcoming paper.

Substructures in Structural Analysis Codes. The partition of structural
problems into subproblems or substructures is a technique that has been used since the
finite element method itself gained popularity in the early 1960s [10]. In most finite element
codes the modeling of each substructure and the assembly of the corresponding finite
elements can be performed independently. These tasks can then be assigned to different
engineering groups, computer systems or processors with coordination required only at the
interior boundaries in order for the triangulation to match.

In order to understand the underlying data structure in more detail, consider the
case of a structure divided into two substructures 1 and 2 with an interior interface 3 be-
tween them. The corresponding stiffness matrices are K31, K22 and K33, and the coupling
between the substructures and the interface K;3 and K33. Note that K33 is assembled
from two parts coming from elements belonging to the two different substructures.

Koo~ K+ K
The global stiffness matrix is then assembled from these submatrices.

Ky 0 Kis
K= 0 Ky K
KII:; KZT:; K33

The solution of the global problem is most often carried out in one big step using a
direct, secondary storage form of Cholesky decomposition.

One commercial code however, carries the substructuring idea one step further [11],
[12], by computing the Cholesky factorization of the individual substructures indepen-
dently. This code became operational in 1969 and was called Sesam’69. The code used in
this paper is a redesigned successor of Sesam’69, it became operational in the early 1980’s.

Elimination of the interior degrees of freedom belonging to each substructure, corre-
sponds to block Gaussian elimination computing the Schur complement of K with respect
to the interior unknowns represented by the two diagonal blocks Ky, and Ks;. This cor-
responds to a certain update of the coefficient matrix for the unknowns on the interior
boundary between the substructures:

KQ) = k§) - kLK K

K = k) - KLK; Koy

ITERATIVE METHODS 303

Ka3 = K;(,;) + K:g).

In this way one may take advantage of identical substructures. The approach is also
quite flexible when only some particular parts of the solution (corresponding to specific
substructures), are wanted. Perhaps most important, is the ability to solve very large
problems with limited computer resources, in a structured way. This was indeed the
original motivation in the algorithm design.

In the Sesam package, all the primitive submatrices introduced above, keep their
individual data structures throughout the analysis. It is therefore fairly convenient to
access and manipulate the individual pieces. In the next section it is shown that an iterative
method for solving the interface equations, without computing the Schur complement K33
above, can be implemented within this framework.

Iterative solution of substructured elliptic problems. In this section, we
will give a detailed description of the actual implementation of an algorithm based on {7] for
problems in structural analysis. This demonstrates that it is feasible to incorporate such
an algorithm into a large, real world, commercial structural analysis package. A detailed
understanding of the data structures described in the previous section is crucial for the
actual implementation work.

We refer to 7] for a detailed analysis of this algorithm for elliptic problems in one
unknown. Here, we implement the same algorithm for problems from structural analysis.
Following the notation in this reference, we permute K into the form

Ky Kz O
K=| KL K K
0 Kz Ki
We will solve the problem
Ky=5

by using the preconditioner corresponding to the matrix

Ky K3 O
Ko=| K% K{) o
0 Kz Ko

It should be noticed that Ko is lower block triangular and that the upper 2 by 2
block corresponds to solving a problem on substructure 1 having the interface variables
included as unknowns. This corresponds to a free boundary on the substructure. On the
other hand, all unknowns of the second problem are specified on the same interface. We
assume that these two problems can be solved. In the current implementation the Cholesky
factorizations of the two matrices are computed. The upper 2 by 2 block problem need
not be formed explicitly, only pointer information to already existing data structures are

manipulated.
Set y = u — v where Kou = b, v must satisfy

Kv=(K - Koyu=b=

S ov 0

304 BJORSTAD AND HVIDSTEN

Write this as
KK;'Kov =b.
Set x = Kov and
KKy'e =b.

As is shown in [7], this problem can be solved by a conjugate gradient algorithm.
An implementation of this algorithm in the present context, is given below. Finally one
must solve Kov = z and compute y = u — v.

A conjugate gradient algorithm. Let Ex extend the vector z defined on the
interface, to the entire region and let Ry be the restriction of a global vector y to the
interface variables.

Given an initial guess « for the interface unknowns, the conjugate gradient iteration
proceeds as follows:

b— R(K - Ko)K3'Ez — x

T R aend

p = r

w K[)'IET

g <« Rw

t — R(K - K())’U)

a; — rIg

For k=1,2,.. until convergence do

s «— p+t
a « ay/sTq
ay < az
T «— zT+ap
T — r—as
w «~ K 'Er
s <« Ruw
az <+« ’I‘Ts
B — azfa
g < st+pq
p « r+Pp
s « R(K-Kow
t «— s+p06t

This implementation requires one solution on both substructures in every iteration
when solving the linear system K¢, but the multiply by K has been changed to a multiply
by the sparse (K — Kj) instead. The iteration requires one long temporary vector w, the 6
other vectors have length equal to the number of unknowns on the interface. The vectors
r and b can share storage. It should be mentioned that in a completely secondary storage
based implementation like this, the vector storage is insignificant. The vector arithmetic in
the algorithm itself is also quite modest. The operation count is completely dominated by
the operations involving Ky and (K — Kj). In our work the initial guess has been taken to
be z = 0. This eliminates the arithmetic in the first line of the algorithm. The convergence
criteria used in all experiments reported in this paper, has been

1 N 1/2
()"

=1

ITERATIVE METHODS 305

with ¢ = 1075. This has been enough to get the printed displacements from the code
identical to the results from a traditional run. To develop a practical convergence test
would require a more detailed study and a more sophisticated criteria and could save work
by stopping early. The required reduction of the residual vector r in the algorithm, may
be different for different problems.

Problems with two substructures. A number of different problems have been
tried using different finite elements in 2 and 3 dimensions. The following tables have two
typical layouts. The table columns represent different meshes on the same geometry or
comparisons between the iterative method and the standard direct solution algorithm (Ses-
tra), (13], {14]. The substructures are numbered 1, 2 and 3 consistent with the previous
sections. Note that the number of unknowns in region 1 also include the interface un-
knowns. All entries in the tables are operation counts in Mflops (millions of floating point
operations). It should be noted that these numbers are counted during the execution, oper-
ations on zeros are not included if the sparse code take advantage of them. The figures are
most accurate for large problems since the counting is restricted to certain computational
kernel subroutines. Factor refers to the Cholesky factorization, Schur to the explicit
computation of the Schur complement after the factorization has been carried out. Total
is an estimate for the arithmetic work in the solution algorithm, when solving a problem
with one right hand side.

Figure 1: Plate consisting of two substructures.

The eigenvalues of the iteration operator are estimated during the iteration process,
and the maximum eigenvalue is listed. Since all eigenvalues are larger than one, this also
gives us an estimate for the condition number of the preconditioned system. Finally, the
number of conjugate gradient iterations and the work per iteration are listed.

The numbers show that the factorization of the two substructures often dominate.
The factorization of substructure 2 should in principle, be equally expensive in both meth-
ods. The standard solver uses a bandwidth minimization algorithm at the node level in
order to minimize fill. The solver applied to substructure 1 in the iterative algorithm,
must factor a matrix that is built from 3 different submatrices. This matrix cannot be
easily reordered at the node level. The matrix is never explicitly formed, the factorization
algorithm will access it by fetching 42 by 42 sub-blocks directly from disk storage. Wl}en
used in the iterative algorithm, the factorization algorithm was directed to reo'rd.er, using
a minimum degree algorithm applied at the block level, in order to at least minimize block

306 BIJPRSTAD AND HVIDSTEN

fill. This is likely to degrade performance somewhat on smaller banded problems and it
makes the factorization of substructure 2 different in the two cases.

Two-dimensional membrane problems. We first present a rectangular mem-
brane problem cut symmetrically into two squares. The membrane element has 4 nodes,
each having two unknown displacement components. The membrane is fixed along the
entire edge. The conjugate gradient iteration will converge in one step if the two Schur
complements K :(3:13) and K :(3;) are equal. The two matrices are not equal due to the different
orientation of the two displacement unknowns with respect to a common global coordinate
system. A local change of the coordinates in one of the substructures does not affect this
situation. In this special case

kY =pPr@Pp

where P is a diagonal matrix having alternating +1 and —1 on the diagonal. A permutation
of the Schur complement is therefore block diagonal since Ks3 = K. :%) + K :S:Z;) Notice that
this means that the x and y displacements have been decoupled. The convergence of the
preconditioned system now depends on the values of a Rayleigh quotient that takes the
form
«TPK$Y Pr

2TK :%) z

If no specific information is known about K :(,;), then this preconditioning is no better than

just using the conjugate gradient algorithm on the problem K3;3. In order to use a good
preconditioner also in this case, we have tried using

1+

K + PEY)P.

This preconditioning will cause the symmetric problem to converge in one step. It is imple-
mented by subtracting the coupling between x and y displacements off from K g;) and add

the same quantity to K gg) . Using this method, we observe one step convergence both for
symmetric regions and for the problem dividing a square membrane into 4 smaller squares.
The method also behaves very well for unsymmetric cuts, the spectrum of the iteration
operator and its dependence on aspect ratios are very similar to the results reported in [7].

An efficient implementation of this modification has not yet been attempted. The
modified algorithm depends on a global change of coordinates. The results above require
the interface between the regions to line up with the global coordinate system. If this is
not the case, a rotation can be applied in the conjugate algorithm. The effect of this on
larger unsymmetric problems has not been investigated.

This discussion shows some of the problems that surface when trying to apply
a method that work well for a problem having one unknown per node, to a system of
equations leading to several coordinate dependent unknowns per node. Similar problems
must be expected in the other cases reported here. This may explain some of the very
large eigenvalues observed for plates and solids in the last sections of the paper.

All the computational results reported in the following sections, are based on using
the original algorithm without modifying the preconditioning K :(3;) in any way.

Shell problems. We first give results for an 8 node shell element. Figure 1 shows
a plate fixed along one side only, with the internal interface being normal to that side. The
element has nodes at all corners and midpoints of its four sides. Each node has 5 degrees of
freedom, three displacements and two rotations (the third rotation being fixed for coplanar
elements). The fine grid has 900 unknowns in 1, 600 in 2 and 100 in 3. The coarse grid

ITERATIVE METHODS 307

has 225, 150 and 50 unknowns in the 3 domains. The largest eigenvalue of the iteration
operator is 10., the problem is slightly better conditioned than the corresponding coarse
grid problem (with largest eigenvalue 11.). Table 1 shows that the two methods are quite
close in performance. The extra work forming the Schur complements compete against the
cost of the conjugate gradient iterations.

Coarse grid Fine grid

Cg Sestra | Cg Sestra
Factor 1 1.8 0.5 | 16.0 7.6
Factor 2 0.5 02| 3.7 2.5
cg-iterations | 19 - 24 -
Mflop/iteration | 0.2 -1 09 -
Schur 1 - 1.6 - 17.8
Schur 2 - 0.7 - 8.4
Total 5.7 3.1 431 37.5

Table 1: Plate problem.

Three-dimensional solid problems. This problem consist of two boxes, one on
top of the other as shown in figure 2. The box is fixed at the base.

%

Ay
N

Z
]
K

INCIN N
NN N
NN NN
N

N

ek
Figure 2: Solid box.

The elements used are 8 node solids with 3 displacement unknowns in each node.
The coarse problem has 18 unknowns on the interface, 234 unknowns in the lower box
(region 1) and 18 unknowns in region 2. The finer grid is a uniform refinement resulting in
1593, 135 and 45 unknowns in region 1, 2 and 3. The eigenvalues of the iteration operator
ranges from 1.0 to 1.93 for the coarse problem while the range is from 1.0 to 2.58 for the

fine problem.

We next turn to the influence of the geometry (aspect ratio) of the two regions. In
principle, there is always freedom to choose which substructure should be 1 and then call
the other 2. In practice, the current implementation will require at least some external
Dirichlet boundary condition on the region 1. This is to ensure that the solution procedure
for the substructures do not encounter singularities. We use the same solid model, but with
a fixed top as well as bottom. The largest eigenvalue of the iteration operator increases

308

BIORSTAD AND HVIDSTEN

Coarse grid Fine grid

Cg Sestra Cg Sestra
Factor 1 1.3 0.5 43.9 33.2
Factor 2 0.02 002 09 0.6
cg-iterations 5 - 7 -
Mflop/iteration | 0.06 - 07 -
Schur 1 - 0.4 - 15.7
Schur 2 0.04 - 1.5
Total 1.7 1.1 50.7 52.0

Table 2: 3-dimensional solid problem.

to around 35 when the small, top box is numbered 1. This nearly doubles the number
of conjugate gradient iterations. In addition, each iteration becomes more expensive. On
the other hand, a substantial saving in the initial factorization cost, is obtained. It is
interesting to observe that the total cost is almost the same for the two alternatives.

Bottom is 1 Bottom is 2

Small Large Small Large
Unknowns in 1 252 1638 36 180
Unknowns in 2 18 135 234 1593
Unknowns in 3 18 45 18 45
Factor 1 1.31 43.9 0.02 0.9
Factor 2 0.00 0.6 0.9 33.2
cg-iterations 5 6 11 13
Mflop/iteration 0.06 0.7 0.07 1.1
Largest eigenvalue | 1.98 2.7 349 36.5
Total 1.7 49.6 1.9 50.5

Table 3: Solid dependence on geometry.

Three-dimensional frame problems.

The structure in figure 3, represents a

crude model of an offshore oil drilling platform (a jacket). The jacket consists of beam

Jacket

Cg Sestra
Factor 1 8.2 5.0
Factor 2 1.7 1.2
cg-iterations 22 -
Mflop/iteration | 0.4 -
Schur 1 - 1.1
Schur 2 - 0.6
Total 19.1 7.9

Table 4: Jacket problem.

elements having 6 unknowns at each node. The lower part has 900 unknowns, the upper
part 600 unknowns, while the interface contains 100 unknowns. The jacket is fixed at its
base only. All eigenvalues except one, of the iteration operator are in the interval 1.0 to
10., the largest one is 167.

ITERATIVE METHODS 309

4) "‘
/

..\ \ I ‘
, \i'm‘l;

Figure 3: Jacket model.

A comparison with direct methods. The results from the previous section
show that the new method sometimes are quite close to the direct solution strategy, but
also examples where the direct method appears to be superior. The actual factorization
algorithms used on the individual substructures and in particular, the reordering strategy
clearly have a critical influence on the performance. A test confirming that the current
factorization algorithm is far from optimal in our algorithm reported here, is discussed
towards the end of the paper. It should be possible to improve the implementation such that
the factorization of problem 1 takes at most the same time as the sum of factorization and
Schur complement for the standard method. If this is the case, then the conjugate gradient
iterations will compete with the computation of the Schur complement with respect to
region 2 plus the cost of the final factorization of the interface problem. There are also
clear indications that larger problems with relatively many interface unknowns tend to
favor the new method.

One should keep in mind that the standard code has been through a long history
of improvements, while the current iterative method is implemented first to demonstrate
feasibility and robustness. There may be cases where the initial factorization of the indi-
vidual substructures can be ignored. This is to a large extent true when building a library
of factored substructures in order to perform reanalysis of a given (large) structure during

its operational life.

Problems with many substructures. This section will report on experiments
dividing a membrane into 4 pieces, a plate in 4 and 16 pieces, and a solid box into 8
substructures. In each case, the number of unknowns within one substructure is varied.
The experiment is carried out using only two substructures. We divide the region in a
red-black fashion. In the experiments that we report here, the red domain is called 1 and
the black 2. Figure 4 shows the red half of the domain using both plates and solids. This
will make problem 2 block diagonal. The substructure 1 will be almost block diagonal,
since the coupling between the individual pieces will be cross points in two dimensional
problems and lines in three dimensional problems. This means that the matrix can be
written as a block diagonal plus a correction of low rank. Thus, it can be separated into
independent problems by standard linear algebra techniques, see [15].

There are several alternative strategies, the most appealing is perhaps to solve
for the unknowns that couple as part of a much coarser problem. This approach ties

310 BI®RSTAD AND HVIDSTEN

PM4B PM4C | PS4A PS4B PS4C PS4D

Unknowns in 1 62 254 35 155 625 2555
Unknowns in 2 36 196 10 90 490 2250
Unknowns in 3 26 58 25 65 135 305
Factor 1 0.04 0.6 | 0.010 0.24 5.1 66.8
Factor 2 0.01 0.2 | 0.000 0.05 2.3 30.9
cg-iterations 7 17 10 19 39 50

Mflop/iteration 0.02 0.1 | 0.005 0.06 0.6 2.6
Max eigenvalue 2.23 52.1 6.95 32.48 30347 1500
Total 0.18 320341 3.07 341 2498

Table 5: Membrane and Plate divided in 4 pieces.

the substructure methods to the methods based on multigrid. The approach taken here
assumes that problem 1 can be further simplified, the convergence rates and the spectral
information are of course independent of the specific solution algorithm. An algorithm
that allows more than two substructures will be implemented in the near future.

Figure 4: Red half of a plate consisting of 16 substructures and of a solid divided into 8
pieces.

The results for membrane and 4 node shells are displayed in table 5. The numbers
are not too encouraging, in particular, two cases had not converged after 50 iterations.
The residual in these cases had been reduced from 403 to 0.2 for PS4D and from 288. to
1.6E-4 for PS16C. The eigenvalue estimates are also quite erratic, PS4C being the most
surprising. It should be noted that PM4B and PM4C both converge in one step (having all
eigenvalues equal to 2) if the modifications discussed earlier had been implemented. The
results clearly show that the standard method needs changes in order to be attractive on
this class of problems.

Finally, we give results for a three dimensional problem consisting of 8 boxes. The
numbers looks much better than for the plates, the second largest eigenvalue in S8B is
substantially smaller than the largest eigenvalue in S8A. The increase in iterations is also
quite modest.

In order to show how critical the factorization algorithm influences the comparisons,
substructure 1 in problem S8B (including the interface unknowns) was also factored using

ITERATIVE METHODS 311

the standard method. The required work turned out to be 120.0 Mflops to be compared
with 172.3 in table 6. This shows that there is substantial room for improvements in the
new algorithm.

S8A S8B | PS16B PS16C
Unknowns in 1 651 2280 205 765
Unknowns in 2 270 1425 40 360
Unknowns in 3 381 855 165 405
Factor 1 174 1723 0.55 5.1
Factor 2 04 267 0.00 0.5
cg-iterations 43 46 30 50
Mflop/iteration 1.0 5.3 0.15 0.8
Max eigenvalue | 154.9 237.5 [55.31 386.2
Total 63.2 451.6 6.31 51.1

Table 6: Solid box divided in 8 pieces (S8A and S8B) and plate divided in 16 pieces (PS16B
and PS16C).

Conclusions and future work. This work demonstrates a fully working itera-
tive substructure code implemented within the framework of a large industrial structural
analysis code. The computational results are of a preliminary nature, substantial improve-
ments can be expected in the time to come. Improvements in the direct solution strategy
for the individual substructures or even the use of iterative methods also for the substruc-
tures, will decrease the cost of each iteration compared to the numbers reported here. Our
work has shown that there can be a dramatic difference between the one variable per node
problem and a problem with several variables defined in each node. Significant changes in
the algorithms may be necessary in order to overcome these differences.

The main motivation for providing detailed, actual operation counts is to get a pic-
ture of what must be obtained in order for this new class of methods to be significantly
better than the old ones. The results are quite promising for the case of separate subdo-
mains. The general case with cross points, is more unclear from our tests, in particular for
membranes and shells.

It is hoped that this investigation will contribute to focus on an important class of
problems, so that more insights will be gained and better algorithms will be developed.

Acknowledgment. The authors extend thanks to professor Olof Widlund for
many helpful discussions. We also thank Veritec Sesam Systems for providing the Sesam
code for these experiments.

References

[1] K. Bell, B. Hatlestad, O.E. Hansteen, and P.O. Araldsen. NORSAM, a prt?gmmmz'ng
system for the finite element method. users manual, part 1, general description. NTH,
Trondheim, 1973.

[2] SESAM’80 Description. Veritec Sesam Systems, August 1986.

[3] P. Concus, G.H. Golub, and D. O’Leary. A Generalized Conjugate Gradient Method
for the Numerical Solution of Elliptic Partial Differential Equations. Academic Press,

1976.

32 BJORSTAD AND HVIDSTEN

[4] M. Dryja. A finite element-capacitance method for elliptic problems partitioned into
substructures. Numer. Math. {4, pp.153-168., 1984.

[5] Petter E. Bjgrstad and Olof Widlund. Solving elliptic problems on regions partitioned
into substructures. Academic Press, 1984.

[6] J.H. Bramble, J.E. Pasciak, and A.H. Schatz. Preconditioners for interface problems
on mesh domains. Math. Comp., 1987.

[7] Petter E. Bjgrstad and Olof Widlund. Iterative methods for the solution of ellip-
tic problems on regions partitioned into substructures. SIAM Journal of Numerical
Analysis., 1986.

[8] J.H. Bramble, J.E. Pasciak, and A.M. Schatz. An iterative method for elliptic prob-
lems on regions partitioned into substructures. Math. Comp. 46, pp.361-370., 1986.

[9] J.H. Bramble, J.E. Pasciak, and A.M. Schatz. The construction of preconditioners for
elliptic problems by substructuring. Math. Comp. July., 1986.

[10] J.S. Przemieniecki. Matrix structural a,nal'ysis of substructures. Am. Inst. Aero. Astro.
J. vol. 1, pp. 138-147., 1963.

[11] P.G. Bergan and E. Alstedt. A programming system for Finite Element Problems (in
Norwegian). Technical Report, The Norwegian Institute of Technology, 1968.

[12] H.F. Klem. SESAM’69, General Description. Technical Report, Det norske Veritas,
July 1978.

(13] Petter E. Bjgrstad. A large scale, sparse, secondary storage, direct linear equation
solver for structural analysis and its implementation on vector and parallel arcchitec-
tures. Proceedings from an International Conference on Vector and Parallel Comput-
ing,June 1986 Loen Norway. To appear in Journal on Parallel Computing., 1987.

[14] Petter E. Bjgrstad and Jon Braekhus. Implementation and performance of the large
scale finite element code sesam on a wide range of scientific computers. Supercomputer
Applications, 1987.

{15] M. Dryja, W. Proskurowski, and Olof Widlund. A Method of Domain Decomposition
with Cross Points for Elliptic Finite Element Problems. 1986.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12

