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Abstract. The interest of subdomain decomposition principle is well
established by an algorithm point of view, as well as for the storage
management. Another possibility offered by this technics gives some
flexibilities for the choice of the discretization of each subdomain.
For example, finite element approximation can be used in the part of
the domain with irregular data, but finite difference working for the
regular one.

The purpose of this article is, firstly, to justify and clarify this em-
pirical approach in the case of the Schwarz method, secondly to point

out some constraints when usingit.,
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Actually, this approach is intensively used in industrial fluid mecha-

7

30 the boundary of Q

nic simulation,

//

v

n=n' unz

% subdomain I Q,
N subdomain II Q,

w the overlapping domain
1‘I = BQ] nnz
I‘2= anznnl .
The purpose of this article is, firstly, to justify and clarify this em-

pirical approach in the case of the Schwarz algorithm method second-

ly to point out some contraints when using it,
. The overlapping subdomain must be independent od the mesh size h,
. The intersection of 1"l and 1"2 is empty.

. The constant of approximation is directly dependent on the regula-

rity of the solution z; of the following problems in neighbourhood of

T; i

—Azi+ kzi=0 in ﬂi
1) z,=0 on Q- T,
z. =1 on I‘i

i
Consequently, as soon as the overlapping becomes thinner, the cons-
tant grows while the approximation get to worth.

This paper consists of two parts :
1 - the finite element approach
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2 - the mixed discretization case.

The first part deals with the subdomain decomposition for the stan-
dard Poisson'!s problem. A standard finite element approximation
(F’l by triangle) for the two subdomains is considered. Each sub-
domain supports an independent mesh, Our main result is to get the
usual order of approximation under suitable regularity properties,

the regularity of the solution of problem (I) being of crucial interest.

In the second section, we adapt the methodology previously developed
to the case where one subdomain is discretized with finite elements,
and the other with finite difference. We get the same kind of approxi-

mation order as in the previous section,

An approximation problem about some domain decomposition methods

1. Notations - Basic assumptions,
Let Q be a bounded polyhedral domain of r? (or RY) with, in

(1. 1)< both cases, acute angles only, for the boundary of (jnoted 30Q;
let keR, k>0, and f a regutar function on Q.
Let (1 be decomposed into two overlapping subdomains Q,, 02,
(1. 20 cach o i= 0, 2) satisfying (1. 1)
0= nl U 02.
In all the sequels we shall use two indexes i, je {1, 2} with the follo-
wing convention i is different from j whenever i and j are both pre-
sent,
.3) Let . the b =

(1.3) Le an, the o_undary_of Q and T, aninnj.
The intersection of I‘i and rj is supposed to be empty,
Let z be the solution of the following problem :

-pztkz=f in
(1. 4)

z=0 onan

We associate to this problem a system; the solution is {z,, 22}

pz tkz =f =f in Q,

(1.5) z,=0 ona@ naa
r4 Z.
T, “i/T;

and yi is the solution of the Dirichlet problem :
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—Ayi+k yi=0 in Oi
{1. 6) yi=0 onaﬂinaﬂ
yi=vi on I‘i .

Moreover let us introduce the following uncoupled probiems :

A + ~ _ = 3
(. 7) Ayi k yi fi f in Oi
yi=0 on ani

I 1 1 ;= =
It's easy to identify z, i=(1, 2), z, z/ni.

The fixed point application in the continuous framew ork :

{1.8) LetE= E'xE2 with Ei=C(I‘i)

We consider the following application :

(1.9) T:E —>E,
K | j

v, —> Tj(vi)
where : Tj(vi)=yi/1‘j‘
obviously z =y, y; on Qi .

The fixed point application :

Let T be the following application :
T:E —>E

{1.10) v=(vl,v2) »——>T(v)=(TI(v2)+:l ; T2(v1)+t2)
=(TI(V2) ; TZ(VI))
We associate to T the fixed point problem :

(1.11) u; = Tj(ui)+tj=Tj(ui)

by { 3] we know that:

T o o TGS
T, L))

Moreover T'J is isotone with respect to the natural order T being a

201

contraction, the system (1, 11) admits a unique fixed point u= {u1, uz}

which can be easily identified as the solution of {1.5).
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More precisely, we get that Zi=z/0 is the solution of the following

problems : t
-Azi+kzi = fi:f/ﬂi

(1.12) z,=0 on 3, N30

Z.=U, onT.
i i i

2. The discrete case.

Upon each subdomain Qi we consider a quasi-uniform regular

triangul ation,

The two meshes being mutually independent On n' n nz a trian-
(2. 1) || gle belonging to one triangulation does not necessarily belong

to the other.

We consider the usual basis of affine functions cpe 1 0={1,2,...,

2. 2) m(h)} defined by : CPe(Mk) =bek where M,_is a summit of the
considered triangulation, Let " h be the usual interpolation
’

onl..
I‘1

We consider the following discrete spaces :

(2. 3) Tih ™ {vhe C(T)i) /vh/Khepl}.

For every w, € (f‘i) we set :
{w.)

12 = =
(2. 4) Vi,h = {vhe'yih/vh 0 on 30, N30 v, r, h(wi)°nri}'
Thus :
(2. 5) '1/(0)={v €7%./v,=0on 30}
. i, h h€ "n/ Vh afk}.

The space Ei h will be the range of the trace application Y4 defined
?
onvy. ..
7/.]’ h

(2. 6) Let Eh=El’ h sz, h

2.7) Let aluyv)=[_1( % U Y ykuv)ax
i Qi e’saxe axs

(2.8) f,v), = j‘n fvdx.

1

We then consider the following system :

(u.)
. ih .
(2.9) Let {th, u2h} €E |, xE,, and 2, € Ty such that :
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_ (o)
a(z; ) = v ), V Vh€Tih
(2. 10) 2 =y
ih/rj ih

The discrete fixed point application :

.

For Wj belonging to C(fj) we consider vih and Yih defined by :
(o)

) Vi Vi) = B v); Y Vh€ Vi
(2. 11
~ {0)

Yih € ¥in
and : (wj)
( . the qu, h such that )
2.1 - (0

aj(ylh, Vh) 0 Y Vh€ 7/.]., h

L.et Ti p, the mapping which associates to w;
?

(2. 13) T h(wj) =r, h(Yi(yjh))'

The mapping Ti h is defined by :
t]

Tiht C(I‘j) R—— Ei,h

?
(2. 14 . ) =T, J+t
14) Wi —> T, h(wJ) Tl’ h(wJ) th
with t. =, h(Yi(yjh))'
Then the system (2. 10) is equivalent to the fixed point problem :

(2. 15) U, = Ti’ h(ujh) = Ti’ h(ujh)+tih .

Remark :

203

As the two meshes are independent over the overlapping sub-

) domains, it is impossible to formulate a global approximate

(2.16
problem which would be the direct discrete analogue of pro-
blem (1. 4).

(2.17) Let Ty = AT Tanke

The discrete maximum principle assumption :

The matrices w hose coefficients are a.(® ,CPS) are supposed

2

(2.18) ||to be M -matrices. F or convenience in all the sequels, C will

be a generic constant independent on h,
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Theorem :

Under the assumption (1. 1) to (1. 4), (2. 1) (2. 18) it exists h>0
such that for all 0<h<h, the system (2. 10) admits a unique so-
lution {Zlh’ ZZh}' Let {z,, zz} be the solution of {1.12) or
equivalently z be the restriction to Qi of z the solution of the

global problem (1. 4). Then for h small enough

(2.19) max |z, < Chz\Log hl.

l—zih” )
16{1’2} L (q)

The proof lies upon several lemmas,

Lemma { :

Under the previous notations and assumptions the application
(2.20) Tj’ j, 1S isotone on C (I_‘i) endowed with the natural order.
Proof :
The discrete analogous problem (1. 6) can be defined by the following
system :

VPEOJ- aj( Py

,h {x), cPp(x))

= -aj( z wj(M), cpp(X))
or equivalently by :
vPe th z yjh(M) aj(CPM, ‘Pp) =
(2.21)

-3 w.M) a.(p ,0 )
MeT; | ! JTM TP
?

-—

Let us consider v. and vi2 such that for natural order :

-

(2.22) v! > 2

-
.

1
i
pective boundary values v

Then if we consider y' and yi2 solutions of problems (1. 6) with res-
1
i
crete analog gives rise to the following systems.

and v, on 1"1' their corresponding dis-

1 1
VPEﬂlh: z yh(M)a(CP ;CP)= —2 V. (M) aA( ,Cp)
Meoih 1 1 o Merih 1 1 :pM [
and :

2
VPEQ,, ¥ viMla(®, ,p)=-S 2
h ’ viiM) a (¢
i MEﬂih ih i p MeT, i i M'ch)
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and by substraction :

2 1
VPER, T M-y (M) a(®, )
€0
ih
1 2
Y (v. M)-viMD alw ,, 9 ).
Merih i i i c‘DM p

it

Following (2.22), we have :
1 2
2 M) > 2 M) v Mg l‘ih
and by (2. 18) we have :

ai(cpM,CPp)so vMeQ,, vPe ri’h.

These inequalities imply :

= 2 1
Men, h(yih(M )'Vih(M)) a9, cpp)so vPeQ,
?
Hence, (2. 18) implies :
y2 M) -y M) < 0 vMeq,
and so :
T.oh =T v
jih i’ = "j,hi
Lemma 2 :

exists a constant Me and a function h —>el(h) wi th Osei(h)s

Me hz\l_og h| + € such that :

(2.23) .0 < q.+8 (h)
ih a(l_°°(1‘i),l-°°(rj)) I

where 9 = ||'1"j Hi(t_“’(ri) ; |_°°(I‘j)) .

Proof :

i
following auxiliary problem :

: X
-Azz(l +kzil =o/q,
(2.24)
Z. =X
i /aﬂ1 Ti

Using the maximum principle it is classical that :

205

Under assumptions (1. 1) to (1. 4), (2. 17), (2. 18) ¥ ¢>0 there

X‘I‘ being the characteristic function of the set I‘i, we introduce the
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qj =max z, JT.°
I‘j J

In the same way, taking into account the discrete maximum principle

{lemma 1) if z:(;l1 is the solution of the discrete analog of (2. 24), then

I

%
| =sup z,
hh LL7T) 5 |_°°(1-j)) T, ih/T;
which has now to be estimated.

we know (cf. [ 2 ]) that with our assumptions, Tje,g(L](I‘i),Loo(l‘j))
and we note :

{2.25) C=max ||T.|| .
i T L)

~ v~
Let now i{i and XI% be such that :
i i

~s

~J ~ ~J
o€ ve . ~€ v'e .
(2.26) 'x,riz Xrizxri with xri and Xri belonging to
S ni), and such that
(2. 27) IxE -x & || < &
'[‘i 1"i L'(ani) C
Let ﬁi and Ei be the respective solutions of :
. - A. + A. = . A. = -~ e
(2.28) AZ + Kz, o/ﬂi, Zl/ani xri
and
_ v + v - .Y =v
(2.29) AZ tkz 0/01’ %/ Q Xri

The maximum principle implies :

~ Xl
2. 30) zZ.>z '> z,
1 1 1

N<

and moreover, by (2.25), (2.27) and (2.30) :

~ ‘qu. ~ A4
(2.31) Mz -z "), | < tz.-z)) <%
! /T3 ) W2 -% / I\j“Lw(I‘.) €
xi J J

Zih’ Z Eih being the respective solution of the discrete analogs of

(2.24), (2.28), (2.29) then using (2. 18), we get :

~ ‘X‘i v
(2.32) zp =z >z,
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~J

by the regularity of ;(15 and y

1 1

assumptions (1. 1), (1. 2) we get :

ol

12, - 2,0 o =M, h2|Log h|

(2.33) L)
v v 2
lz, .-zl <M h®|Log h|
Lh i ) %
where the constant M_ depends on T.
€
In order to simplifi our notations, we write :
A - Xioo_. .y _
Zi/I‘j a,; zi /Fj =b ’Zi/I'j_c
~ M v
= af . = i - =c!
%in/T, a P 3/ bt %/, "€
andalso | | =\ , -
L (I‘J.)

Then by (2.30), (2.32), we have :

azb>c and a'x=b!'=c!

which imply :
|b-b'| < |b-a] +l|a-a'|_ +]a-b'|
< |a—c|°°+]a-a'|°°+|a'- c'loo
where :
la'-c'|_<la'-a| +|a-c| +|c- e
and so :

|b-b'| <2|la-c| _+2|la-a'| +|c-c'|
and analogously :

lb-b'| _<2ja-c|_+|a-a!| +2}c-c'|
after adding each members of the above inequalities :

3 3

|b-bt| <2|a-c¢| *+5la-a'| +5lc-c'| .

Then taking into account (2.30), (2.32), we get that:
Xi i ~ 2
|z, -zl < 2€+ 3M~¢h |Logh|

Let us write now ¢=2¢ and 3M~=M we get (2.23).

’
3 €
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Remark :
In lemma 2 we can choose h such that for all h<h,

2 _1-q 1-q
M, h®|Logh| <e ~~ and then el(h)s—2 .

So, (2.23) asserts that :

(2. 34) = _ 1-q _1+q
| <g=qt—= <
) L) 2 2
or . H
T, < 1.
b, L)
Lemma 3 :

With the assumptions (1. 1) to (1, 4), (2.1), (2.2) {u], uz} being

the solution of (1. 11), then :

(2.35) ||TJ., W CH

[-2)

) =T .(u)| <6°th) = C, h%|Log h|
L (TJ-)

Proof :

{Zl’ zz} being the solution of (1. 5) ; z,,2, are also solution of (1. 12),

2
that we approximate by their discrete analog

Search Zn such that :

a(z; v ) =thv) = o fy sy very,
(2.36) "

Zih/I‘i=rh(ui) Pz h=0/aninan

Then with our regularity assumptions :
= 2
Nz, -2 | < 9°(h) = Ch®|Log h|
i ih Loo(n)

and as | Zi/I‘J- - Zih/l"j\ = ‘Tjh(ui) - Tj(ui)l

we get (2.35).
Lemma 4 :
Under assumptions of the lemma 3 , we have :
29 _(h)
uul_ulhn 00 = 'Se .
L (I‘i)

(2.37)

Proof :

lly, - uih”l_w(l‘i) <l - Tih(uj) n|_°°(1‘ ) + “Tih(uj) =u

o0
i L (1‘1)
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< [ITtup) -Tih(uj)ul_oo(l_ N Ty =Tt o
i i
Following (2.34), (2.35)

lu, -u. || <e%th) + ¢gfu.-u. ||
1Y o) UL LT

and by symmetry we obtain :

o

lu; -y, ) <@ (h)+e¢llu, - uih“l_“(r )

I
b e )

so, we get (2.37).

Proof of the theorem :

z, and zih being respective solution of the following problem :

ai(zi,v)=(f, V)i= J‘Q f.vdx VRY, eH;(O)
(2.38) 2 !
z,eH 0 ; Zi/I‘i—ui ' 2 /300 ani—o
- {o)
3z, vp) =th v )y Y Vhe Tin
(2.39) (u.h)

]
Zh€7%, h

Let us also consider the following continuous auxiliary problem :
- {o)
3(Z ) vy,) = v ) VVheéTi h
(2.40) o (ui)
2,h€%,h

209

with our regularity assumptions, classical approximation results in

L= norm, assert that:

2 =
I, - Zi”L°°m : < Ch®|Log h| =g_(h)
i
28,(n)

M <
ib L= T

Hrh(uih)- r'h(ui) ”L_°°(I‘ )s ||ui—u
i

and by the discrete maximum principle (closed related to lemma 2} we

have also :
~ 26,(h)
||zi, h 4, hul_°°(n )SIIrh(ui)- Ph(uih)nl_m(n )S =%
i i

so, we get :
29,(h) 3¢ (h)

—¢ = T1-¢

lz,.-z || < g _(h)+
ih i Loo(ni) o
. 3C )
and if we replace here -l_—e by C, we achieve the proof,
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3. Mixing finite elements and finite differences.

Oon “1 we consider the discretization by finite elements pre-

(3.1)
viously used in section {2),

(We consider a regular square {(or cubic in 3D cases) grid with
size step h on Rn ; let 02’ h be the points of this grid which
are inside 02 ; we assume that 502, h {which is the set of the
points of the grid which ly at a distance strictly less than h of

(3. Z)ﬁ nz) is included in an,.

Let Qz,h K Yo ﬂz,h and Tz,h=302,hnﬂl.

02’
Then of course I‘z’ h< I‘2=602n Ol .

Oon 02 p Wwe consider the usual five points (or seven points in

$4
\the 3D cases) finite difference scheme.

Moreover we assume that the nodes if triangles of Q' (tetra-
{3. 3)< hedrons in 3D cases) lying in Ty belong to Q, L
?
Let then I‘l’ h- 02’ hnr‘,

Let r ,h be the restriction from I‘ to I‘ ,h and ph the prolon-
(3. 4) ganon oper-ator from I‘ ,h by piecew ise I1near interpolation to

a continuous function defmed on 1"1 .

Then we can get here the operator PI h used in the previous section
?
by :
1

(3.5) P,h =Py h

Then taking for the 0 part of our system notations very close to the

ones of the previous secnon, we consider the system :

(p] )
. h1,h .
Find zI hE'V‘ h such that :
- (o)
3,0z vy = v V VL €T

and AS being the discrete five points analog of the L.aplacian }.

(3'5)4 Find the grid function z2 h such that :
>
)

M) + kzz’ h(M) =fM) v M¢ 02’ h

=o;

851z, |,

Z z =u
2,h/30, N30 2,h/T, ,, “2h

(z ).

L Uz,h = Fa,h ° Y2
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The discrete fixed point application associated to system (3, 6) :

Oon Ol, we consider first
(o )
yl hevrl h such that

(3. 7) o
3,0 v = v 5 v ey
and then :
Wl, h being a gmd function on I‘I h
o, w, h)
Find y hE')f h ’ such that
(3. 8) Lh=TT,
. O
a,(y"h, vh) =0 v VhE'[/']’h

Oon y we consider first :
2, h

2, h
'ASWZ, h)(M)+ kyz’ h(M) = (M)

Find '3/'2 , defined on Q such that :
?

(3.9)
~ -
yz’ h(M) o v Mg 802, h
and then :
( Wy being a continuous function on 1‘2
Find yz’ h defined on 02’ h such that :
- + =
(3.1 o)< bgly, R M +ky, (IM)=0 v Meaq, |,
Yo, h(M)=o v Mg anz pN3n;
L Ya, h(M) rz’ h(wz)(M) on I‘
We define the linear- application :
F!
{Tl h? 2, h}
-—1 i .
Tz,h which to w1’ h associates :
! ~
(3.11) Tz’ h(wl,h) =T h °Y2(yl,h)

where Yz(yl’ h) =Y, h/rz

3.12) T,

i a ciates :
1, h which to Wy ssoci S

H]
and then the affine application T' = {T'l hi T'2 h} with :
?
! =7 +t
(Tl,h(wz) T, wal ¥ty T, h™Wy, =T 2, b1, *in

]
[

211
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(3. 13)<with :

G, -

Hon Van/r, TV e02,0) 5t n TV ey, TFane va
’

1, h

Then, the system {3, 6) is equivalent to :

e

Search the fixed point {u]h H u2h} :
Ui T TR, e
and then find : 1
p, u,,)
h™1h .
Zl,hé 'V" h such that :
(3. 14)< (o)
afz o vp)=(f,v), Y VhET) h
and :
- + =
(Aszz, n M) +k zy pM) = fiM) v Me 9, h
z =0; z =u
L 2,h/30, | N30 2,h/T, ,, 2h

Theorem 2 :
Under the assumptions (1.1) to {1.4) and (3.1) to (3.3), it exists
F\>0, such that, for all h<h, h> 0 the system admits a single

solution {z } and Zi being the restriction of z solu-

L,h'%2,h
tion of problem (1.4) to Q -

Then :

2
tz, -z, |l < Ch®|Loghl|
o L™a,)
{3.15) | | 5
z -z < Ch“|Logh|
2/0, , 2,10 L™(a, )

]
where C is a constant independent of h,

The proof lies upon several lemmas,

Lemma s :
Under assumptions (1.1) to {1.4), (3.1) to (3.3), v ¢>0 there
exists a constant Mc and a function h->e‘(h) with Osel(h) <

MehzlLog h| +e, such that :

(3.16) T

<q.t+8 _(h)
A7 (hls N FRT it
1, )

)

where, here also, qj =HTJ-H ©r ) 0 ))’
2(L(T.); LT,
1 Kl
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Proof :
For T' h the situation is quite similar to the case of lemma 2.
’
For T1 R using the fact that the matrix associated to the usual five

points scheme, is an M-matrix, we associate to problems (2. 24),
(2. 28), (2.29), fori=2, their finite difference analogs and we get

on Q inequalities similar to (2. 32).

1, h

With our regularity assumptions we get in Loo(ni h) (:zi, Ei being res-
’

tricted to ni h) the analog of {2.33) with their orders of approxima-

?
tion, the sequel of the proof is now the same as in the case of |em-

ma 2.
Lemmaé6 :
with the assumptions of lemma 5 {u], uz} being the solution of
(1. 11), then:
2
(3.17) u'rI h(Nz nluy )R h(u')“L“(r )seo(h) Ch*|Log h|
1,h
(3.18) T play)Fo il <8 _(h)=ch?|Log h|.
2,h
Proof :

On “1 we consider the problem :

Az, JMI+kZ

5'Z3, h (M) = fM), v Mg nz’ h

2, h

z =¥ u, ; z
2,hNTy 20727 “2,0/5q, (oT,

and with our regularity assumption, we get here, by classical L ap-
proximation results :

Iz SChzll_og h|

-z, |l
2/0y 1 20 g D)

which implies (3. 17).

For T! 2, h with assumption (3. 2)
2 ! ~h _
PhTa,n"1 %17 Tz, n
where T is the same as in section (1I).

2, h
By lemma 3, we know that:

1T, ) -usll 5 <8,(h)
’ L “m,)
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which ?:l h being non expensive implies :
’
-7 < h
||'?~'2’hT2’hul rz’huzll w <8l )
L, )
2,h
~ ~ 2 !
but r T = T =T

2,h '2,h "2,nhPh
Then we get (3. 18).
Proof of the theorem 2 :

As in the case of theorem |, we can choose, here by lemma 5, h

such that for h<h

= +
(3.19) T <179 -,y
SRR NS M) A

max |F. u.-u. || <|F u-T. &  ul|
Je {]’2} J’h J J’h L°°(I~J h) Jvh J J)h I’h 1 Loo(rJ h)
’ ’

{u.

T n ) = Ty nt, p i

h )

L (I‘j,h)

<p (h)+p max |F. u -u |

o ie {1, 2) i,h'i i,h |_oo(l.,i’ h)
donc :

(3.20) max |[F. -u. | <

je{nzy BN e ) T e

We consider now the auxiliary problems :
= (o}
a,Z, avy) =ty YVhE€T  h

(U) (p r U)

d 1 _ h 1,h71
h = ?
where ZI,I € ?]l’ 7",'

and :

-a5%, h)(‘M) tkz, pM) = fim) vMeq,

0 u, (M)

Z =0; 2 =7
2.h/anz’hnan z,h/I‘z’h 2,h Y2

and we have the estimates :
”;l,h-zln - )Seo(h)
(3.21) L 1o,

IZ,, h"*2/q, =8,
1

| o
hL mz’ h)

we have also:
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~

(I2,-2, | <lz, % ] ¥, -z,
lz -z, |l <z, %, +
(3.22) < 2/a, p, “2,h L%, ) 2,h ~2,h L%, )
9 2
+z, -2 I
2,h z/nz’h L°°(nz )

by (3.21) (3.22) and the use of the maximum principle, which is valid

for our two distinct discrete problems, we get {3.15).

Remark :

All our results, that is to say as well in the case of theorem 1
of the previous section, as in the case of theorem 2 our results
are presented in the context of the regularity assumption (1.1),
(1. 2), {1.3) which implies standard hzlLog h| order of appro-
ximation for Poisson's problem,

If such regularity assumption is not satisfied, the methodology
presented here acts as well, provided that we can ensure that
ei(h) convergesto zero with h ; but then this would lead to a

reduction of order of approximation by this methodology.
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