On Some Difficulties Occurring in the Simulation of
Incompressible Fluid Flows by

Domain Decomposition Methods
J. CAHOUET*

ABSTRACT. This paper deals with the main problems encountered when applying domain decom-
position methods to the solution of NAVIER-STOKES or Shallow Water equations. After a
brief summary of the difficulties related to industrial fluid dynamics computations using
the F.E.M, we analyse on a simplified STOKES model the theoretical formulation of the
matching operator and the main obstacles raised when implementation of domain decompo-
sition methods is considered. Those considerations lead us to inquire about the relevancy
of such methods, to the industrial problems we face,

INTRODUCTION

Accurate simulation of industrial flows governed by NAVIER-STOKES or SAINT-VENANT type
equations requires a great number of discretization points which can lead to saturation
of computer's mass storage. To get along with this restraint a first approach is to
devise solution algorithms which decouples the linear system for each unknown (e.g.
GLOWINSKI-PIRONNEAU [1] or preconditionned UZAWA's algorithm [2] ). This allows the
numerical treatment of turbulent models involving heat transfer, for 3-D finite element
computation of NAVIER-STOKES equations with up to 100, 000 degrees of freedom
(N3S-code [3} for example).

A second complementing approach is to split the geometrical domain into sub-reglons which
can be dealt with separately. Quite naturally this partition implies the use of a
coupling operator to define boundary conditions on each sub-domain.

Three more attractive properties back up this method which applies to a great number of

fluid mechanics problems :
- One can take advantage of geometric smoothness of certain sub-domains which can

represent up to 80 % of the whole domain (e.g. in marine or external flows,e.s) 3
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this smoothness can be taken into account algebraically (adequation of the linear
system solution) or through the discretizations of equations (e.g. use of finite
differences, multigrids or spectral methods).

- The algorithmic structure is well-adapted to multi-processor parallel computers such as
CRAY XMP,

- Distinct physical models, based on the relative importance of phenomena in each sub-
domain, can be coupled.

This paper is an overview of major difficulties one encounters when implementing the
domain decomposition methods applied to incompressible or weakly compressible flows. The
theorical results coming along in this note are, in their great extent, taken from J,P.
MARTINAUD'S thesis [4] .

In the first part we thoroughly present the theoretical formulation of the coupling
operator for a generalized STOKES-type problem. The presentation of numerical results is
the scope of the second part. Iwo sets of benchmarks give the validation basis of the
choice we made and a first analysis of the resulting cost of the decomposition method. As
a conclusion, the relevancy of the application of such methods to the presented problems
are investigated.

A) THEORETICAL FORMULATION

The principle of domain decomposition is quite general (cf. BENSOUSSAN, LIONS, TEMAM[7]
LEMONNIER {8] ) so that many choices can be made. For the sake of simplicity, we can
divide the approaches according to two criteria :

- the level at which the decomposition is taken into account ; the most internal corres-
ponds to sub-structuring of the linear system (LICHNEWSKY [9] ) or of the elementary
elliptic operators (DINH [_l(a); the most external involves the choice of the model for
the physical phenomenon,

- the decomposition of the initial domain, either by partitioning the domain (non-over-
lapping sub-domains (Fig 1a, MARTINAUD [4 ,GOUTAL 17] ), or by overlapping
sub-domains (fig 1b, GLOWINSKI, LIONS, PERIAUX 13] ,DINH 10] ).
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Fig. la : Non-overlapping sub-domains Fig. 1b : Overlapping sub-domains

Figure 1 : Possible decompositions of domain oo,

In this paper, we will restrict ourselves to the a priori costless case of non-overlap-
ping sub-domains, since this decomposition do not require the solution of an adjoint
problem (cf. DINH [lq ). After having chosen a weak formulation and a time-discretization
which decouple the hyperbolic and parabolic parts (cf. CAHOUET [S] ), it can be shown
that the solution of the NAVIER-STOKES equations requires at each time-step :
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- the computation of the right-hand-side terms taking the non-linearities into account,
- the solution of a (generalized) STOKES problem in the velocity-pressure (V,p) non-
dimensionalized formulation :

av - v Av + Vp =t on £,
~ ~ ~e ~

viv -0 on @, V=0 onT,

where @ andy are time-dependent, non-negative functions defined in{l( @ involves
time~discretization and loss of charges contributions, v embodies laminar or turbulent
viscous effects). This problem will be subsequently referred to as the initial or global
problem, its solution as the global solution .

2, Sub-gtructuring of the STOKES operator

2,1 Notations

For the sake of simplicity, we only consider here the partition of § into two sub-
domains §1 and {1 _, lying on each side of the coupling boundary 2 ., With each sub-
domain 'Q'i is assoclated variables with subscript 1 (see fig. 2).

h T,
Q; ‘)2 r { boundary of 'Q'i
iJ exterior unit normal

'y'i’ pi velocity field and pressure distribution

on i

(,Y)'Pl) (,l’z-Pz)

Fig. 2 - Partition of §1 and main notations.

The jump of variables along 2 will be denoted by [] ; we have mainly

[2.] = A

s Iz '
dy;
n + -—r

(] - £1|z',€2|z » @ =-Pig+ v 5L
The stress vector appears naturally as the dual variable of the velocity on 2 in the

case of the varlational formulation of the STOKES problem.

The two following sections, which are taken from MARTINAUD'S thesis [lo] concern the
theoretical results and require the following additional notations for non-standard
functional spaces :

-V the velocity fileld of STOKES problem lies in H; (§1) ; this implies,
taking into account the incompressibility conditions ;

o1/2 12 ¢\" j’ }
(1) ¢ B “ () {xc Hoo (2) , Js XndT =0
N N
where Ht{,z is the half-interpolated space between H (2) and L2 (2 ) (this allows
to take the decay of V at the ends of 2 into account).
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- Py is defined within an additive constant, in L2 ({);) ; this implies
[g) 7. 7= u"2D)V/q
-1/2 N
where the equivalence relation %0 is defined over H / (2) by

-V-(L‘z)e H-1/2 (52N L(RE@ES = ¢n, cer

2,2 Principles of sub-structuring

If one wishes to deal with the solution of STOKES problem separately on each Q , one
requires the boundary values on each side of z. t

If one wishes the solutions on each ) , those boundary values must involve the conti-
nuity of velocity vectors and of stresses across > s to be the restrictions of the global
solution (cf. MARTINAD (4] ).

It is thus natural :

- either to look for values of ¥ along 2 which imply the null value of the jump [U]
across 2 ;

- or to look for a value of stress with imply the vanishing of the jump of velocity [!],

the coupling of iy andglzresulting in the STOKES operator.

Those two intuitive approaches which can be given the names primal and dual (with respect
to the functional spaces u, s and g'Z lie in), are developed in the next two
sections.

2.3 Primal formulation

Consider the following operator M

Moo RV2 1
o

Ly Mgy
Mes) =[gx)] = g1l is- g2l s

where the stress vector gi (‘gz) is associated with the following (quasi-) homogeneous
STOKES problem :

avi - VA’\\/'; +2pi =0 ON £,

t -
ViVvi =0, yj=00N[}, vi-usonZ,

This is a well-posed problem so that‘&/gefines an isomorphism to which we associate a
symmetric bilinear form m coercive on Hoo (Z). This classical extension of the

POINCARE-STEKLOV operator (cf AGOSKOV [18]) allows us to compute the jump of stress
associated with a velocity-boundary value, with flux vanishing on 2. On the other hand,
- the linearity of equations makes it possible to find the boundary condition by solving :
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Mug) = - [29
where oo results from the solution of STOKES problem taking into account right-hand
sides and non-homogeneous boundary conditions of the initial problem, that is :

a vi-v BN + Vel =t
V'vi=0,vi=00NT,via UpyoONE,

where the boundary value u_. on 2 is any function which ensures the compatibility
condition resulting from fluﬂ incompressibility :

Uey .n d[ =0
fN ~
z

It is readily seen that the boundary value V3 defined by :

Vs = M7 (- [EO(E,FN’])"H,FN
e 82
[o]¢]

does not actually depend on Sy (2 ). Existence and uniqueness result in the
application of LAX-MILGRAM lemma to operator M.
2,4 Dual formulation

We consider now the following operator K :

K: T — o~ 8235
A ——— = K(A)
K= (U] sm |z -2 o|s

where u (A )Izis the trace of the solution of the stress-formulation of STOKES
problem :
Q'E‘i—llA’E‘id-gPiso oN Qi ,

Vtu-00N&i,y=00NT;, gi=2oON Z.

As in the preceding section, this operator is an isomorphism associated with a
symmetric bilinear form k coercive on T.

Operator K, which makes the coupling between g5 and u (g)z explicit, via the
homogeneous STOKES problem, yields the boundary value of the stress vector on 2. In

order to do this, one inverts this operator as follows :
o o
K()\)=—[U°]= -U1|z+u2|2

where u; is the solution to

aul-vAuS+Vel =t ON O,

~l
V'wWa0 oN Q;,u5=00NT;, gi=0 0N 5.
Those two formulations allow to find the trace of the velocity on z (primal form.) or
of the stress (dual form.) of the solution of the initial problem by inverting a
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boundary operator defined on 2 (referred to as the coupling operator). The solutions in
each sub-domain, computed independently, are the restrictions of the initial problem
solution to the corresponding sub-domains.

2,5 Finite element discretization

2.5a Space discretization
For the numerical solution of each problem in each sub-domain we use a so-called
TAYLOR-HOOD lagrangian-type finite element discretization which assures continuity of
pressure (see [14] ).

COMPATIBLE UNCOMPATIBLE

Figure 3 : Definition of compatible meshes

e=1,2
Two compatible meshes T n ’” (see fig. 3) being defined, the approximation spaces

are :
1£
Hh = {¥h 590(9.6)2;!0 'k‘ Pz(k),v-ke'r,t, } for the velocit:y’\\{1
)
Q - {q:e%O(.ﬂ.Q); q,'; lk‘ Pﬂk),-\ﬁkerﬁ} for the pressure Pl(-/;)_gq’t‘ dx =0)
P_ - interpolation for velocities, P_ - interpolation for pressures ensure the conser-

vation of discrete coupling operators properties since they satisfy BREZZI'S discrete
*inf-sup' condition (see GLOWINSKI-PIRONNEAU [1] ), from which existence and uniqueness
for the discrete STOKES problem are derived.

2.5b Discrete coupling operator

The choice of space-discretization induces quite naturally the discretization of the
coupling operaiir. Velogity and stress space is spanned by the traces of trial
functions of H (or H ' since their traces coincide by constructions)., With each
degree of freedom 18 associated a column of the coupling operator through the discrete
(coupling) bdilinear forms and k , discrete analogous of form m and k.

The discrete form of the coupling operator is a ND-dimensional symmetric matrix (ND is
the number of P2 - nodes on 2 times the dimension N of the physical space) and of rank

R=ND - 1, since we did noflzlntroduced in our space of approximation the compatibilty
condition associated with ﬁm and T spaces :

- zero mean-flux for the primal formulation ;
- uniform stress quotient for the dual formulation.
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2.6 Solution to_the coupling equations

In these formulations, sub-structuring into non-overlapping sub-domains is equivalent
to the solution of a linear system which dimension is proportionnal to the number of
nodes on the coupling boundary. Two efficient solution algorithms can be used according
to the physical origin aspect of the problem,

2.6a Assembly and factorization

When a (relatively) small number of coupling nodes is involved and in the case of
time-independent coefficients, the coupling operator can be derived numerically at a
small cost. This requires, in the first place, the solution of a STOKES problem for
each coupling degree of freedom while elementary computations are made on each
sub-domain independently. The assembly of all these contributions yields the columns of
the operator associated with an unfortunately non-sparse though symmetric matrix.

With kernel of rank 1 eliminated, the factorization of the matrix can be retained to
compute at each time-step the boundary values on the coupling boundary by inversion of
a small boundary system. The computing time of the solution method (incomplete
Cholevski factorizations preconditionning of conjugate gradient method) can be
neglected in front of the computing time of the velocity~-pressure solution process.

2.6b Iterative solution

On the other hand, one will better use an iterative solution process for the coupling
operator whenever either one deals with time-dependent problem, domains involving a
large number of coupling nodes (as in the 3-D case) or when coefficients @ and v are
time-dependent (as with case of turbulent flows). The matrix properties (symmetric and
positive definiteness) allow the use of efficient method such as the conjugate gradient
method. A solution of STOKES problem in each sub-domain is then required at each
iteration.

2.7 Conclusion

The choice of either approach depends highly on the type of applications one has in
sight. In our case (large number of unknowns, time dependent P.D,E. coefficients) as
well as for technical considerations (definition of normal vectors, handling of
operator kernel ; see ref. [5] ), the primal formulation associated with an iterative
solution process of the coupling operator is best-suited,

In this frame, we shall study in the second part of this paper the main features of the
method for two types of benchmarks : numerical simulation of the flow in a square
cavity and around a cylinder.

A first estimation of the comparison of computing costs in the cases of domain
decomposition methods and of global solutions results in the quantitative analysis of
these first tests.

B) NUMERICAL RESULTS

1 - Introduction

As we mentioned earlier, the coupling operator discretization is a rather natural
consequence of the finite element discretization of the velocity-pressure variables and
implies no particular difficulties.
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The reader is invited to refer to [5] in order to deepen the problems occuring with
implementation and convergence acceleration method. Thoroughful flow diagram, numerical
treatment of the zero-flux condition applied to the gradient, possible preconditionning
as well as refined algorithms to ensure the continuity of the pressure across the
coupling boundary are presented there.

We will, in what follows, focus on the presentation and analysis of a few numerical
simulations.

2, Moving cavity benchmark

2.1 Physical problem and discretisation

We study the flow confined in a unit square cavity, set in motion by the displacement of
the upper boundary (v.i = 1 m/s). A rotation motion of the fluid is induced by the shear
along the upper boundary, and a stationary phase is obtained once all of the input
energy is dissipated by viscosity.

We do not_ consider here the efficiency of UZAWA'S methods which are presented by
LABADIE [15) s CAHOUET and CHABARD [2] , but we rather focus on the comparison between
global and domain decomposition methods.

The features of F.E, meshes of the whole domain and of the sub-domains are summed up in
table 1 and displayed on fig. II1.1. We choose a domain decomposition into two balanced
sub-domains, one of them not interfering with the global boundary, in order to have a
large number of coupling nodes (48 P_ ~ nodes, viz. 96 degrees of freedom). As a matter
of comparison, the rank of the coupfing operator is the same of the one MARTINAUD [h]
used in a realistic case (study of storm surges in the Northern sea) involving a 4
sub-domains decomposition.

Number of Number of Number of Number of

triangles P2-nodes Pl-nodes unknowns
global region 200 441 121 1003
outer sub-region 1 128 320 96 736
inner sub-region 2 72 169 49 387

Table 1 : Features of the finite element meshes

2,2 Study of the stationary problem

Though we are generally faced with time~dependent problems (in order to take hyperbolic
terms into account), we prefer to present first the results of a stationary problem
which allow a straight forward analysis of the influence of the various parameters

involved in the algorithm, leaving aside time discretization. A conjugate gradient has
been used for all these tests.
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A null vector is chosen to initialize the iterative process for the velocity field along
the coupling boundary. As soon as the 8th step of the iterations is reached, a rather
good approximation of the vortex is obtained ; subsequent steps lead to a refinement of
the flow in the corners of the cavity. The limit of the solution is reached after 17
steps, slight discrepancies of the continuity of pressure (cf. fig. II.2) can be pointed
out which are emphasized in the vicinity of high gradient regions.

Stopping~criterion of the iterative process and comparison of costs

One 1is immediately faced with the problem of choice of a stopping criterion in the
conjugate gradient iterative process bearing on the coupling operator. The acuteness of
the criterion has a great influence on computing times and on the conclusion concerning
the ratio between quantities involved in sub-structuring and global methods.

We propose a stopping criterion, based on the variations of two evolutive quantities, to
study both the convergence of the iterative process and the quality of results ; these
two quantities are :
&y ny+ oo poll

i orepll
(¢ referring to the number of the step of the iterative process)

- Relatiyve jump of stress along z , viz sct .

- Relative velocity variation on > from one step to the other

e ¢
U -y
AP _A=ZF CYF o L2(3)

NYRerl
which can be alternatively read

1] [cr]! I
Aue =|pl ——— [Q,'Je = direction of descent at step [.
I Yrer
In these definitions o il 'smrlluxl_lef are estimations of the norm of both stress and

velocity vectors along 2'.

In the stationary case a good approximation is known as soon as the 5th step of the
iterative process is reached ; with time-dependent case, we can take updated values.
Table 2 sums up the evolution of both quantities as well as the ratio of CPU time asso-
ciated with sub-structuring, -to CPU time associated with the global method. Those results
were obtained with a quite sharp stopping criterion for the iterative solution of STOKES
problem via UZAWA'S method :

ny' yo L2(Q) <2108 or WY yn<c2i0®

Iy Lz(.Q,) v
Such a degree of accuracy is only needed when one wishes to refine the quality of the
coupling because the incompressibility condition works as a control over the pressure
field, which is directly involved in the estimation of the stress jump. (An insufficient
precision might lead to divergence of the conjugate gradient iterative process while
computing the coupling operator).
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v Ratio
Step of the sC relative variation Sub.Str.
iterative process stress relative jump of velocity global
CPU time

2 - - 1,05

% 0.96 0.35 1.84

6 0.91 0.18 2,55

8 0.74 0.06 3.33

10 0.19 0.08 4.04

12 0.22 0.007 4,52

" 0.11 0.013 5.08

16 0.04 0.010 5.56

18 0.02 0.002 6.00

20 0.01 0.001 6.15

Table 2

The conclusion from this first (small) stationary test are :

- an important increase (up to a factor 5 or 6) of CPU time is implied when sub-struc-
turing is used, when one does not take the smoothness of sub-region meshes into account
in any way.

- a stopping criterion on the iterative solution of the coupling terms of the form

sC<l%or QAu<0,5%

ensures a satisfactory solution whenever the UZAWA'S stopping criterion is coherent
with those criteria.

2.3 The time dependent case

a ?_u_e_limiting stationary state

In running this test we have set @ = 0.01 and DT = 0.1 s which corresponds to C.F,L,
element-built number of order 2 in the regions where the velocity is maximum.

The stationary state 1s reached after 7 seconds (that is 70 time steps). In our analysis,
we only consider the 50 first time-steps since the evolution of solution is quite insensi-
tive aftervwards. The reference solution of this test was obtained after convergence of
the coupling operator at each time-step according to the stop criteria :

-2 -2 -
SC <10 or Au<10” (or A u < 5,10 3)

At each time-step the initial values for the iterative process are the final values of
the preceding time-steps for both the coupling terms and preconditioned UZAWA's method,
In doing so, we lessen as much as possible the number of iterations on the coupling terms
when a steady state limit exists.

The following table shows up the variation, with respects to time of the number of
iterations of the conjugate gradient induced by the afore mentiomed stopping criteria,
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T in second 0,1 0,2 0,3 0.4 0.5 1 2 >3
NUMBER OF U<10% ]| 10 8 7 7 7 |5t06]|2to5|1or2
G.C.ITERATIONS v<s0) 1 11 10 7 7 6 [2to5|1to3

The overcost induced by substructuring, computed on the time interval from O to 5 s., is
given by :

Ts, -2 Ts.
228 . 6.5 for A u <10 or =% 277 for Du < 5.10

TIglob Tglob

-3

for a computational test we consider as a benchmark. In other configurations, it is
possible to lessen this overcost (while, of course, losing some of the quality of the
results at each time-step).

A first method is to bound the number of iterations in the computation of the coupling
independently of the stopping-criteria. This approach is correct 1if one is only
interested in the stationary state and it gives the  following ratic.is (when applied
together with the preceding stop criteria, viz. SC < 10 ~ and Duc10 ).

Tss

4 iterati limit : —— =5.3
erations it Tglob
Tss
3 {terations limit : 4,8
Tglob

and the solution at time 5 s is still in good agreement.

Another method 18 to choose a more coarser stopping-criteria for which the incompres-
sibility condition can be relaxed as to lessen CPU time at each step. The adaptation of
the various parameters is then quite tricky, and small improvement in CPU time 1is
balanced by a noticeable loss on global accuracy.

d Conclusions

Those series of numerical tests run on a mesh involving a relatively few number of nodes
allowed us to validate the primal coupling technique and to have a good idea of how
influent the different parameters are.

About stopping-criteria, we consider that the limit with recurrent process in the compu-
tations of the coupling terms is reached when either the relative jump of the stress
vector or the relative velocity variation on the coupling boundary is less than ope
percent, while the relative norm of the divergence over each sub-domain is of order 10
When all these hypotheses hold, sub-structuring and classical finite element solution in
each sub-domain yield an increased CPU time with a scaling factor of about 5 with respect
to the classical solution on the global domain,
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In the following those comparisons are made on a larger scale problem in which the number
of unknowns is of the order of the ones one meets in 3-D problems and in which one hopes
to take the geometrical smoothness of the sub-domain meshes into account.

3. Flow around a cylinder test

3.1 Physical problem and discretization

In what follows, we are interested in external flows {(such as aerodynamics, weather
forecast,...), in which the refined part of the mesh covering a small domain nearby the
obstacle, is small with respect to the physical domain relevant for the computation of
the flow.

We have chosen the 2-D flow around a cylinder lying in a uniform flow of unit-velocity
field at infinity. The discretization of the global domain (of length 25 D, where D
denotes the diameter and of width 8 D, see fig. II.3) is made after IBLER [?q .

In the case of sub-structuring, we have chosen a 2 sub-domains decomposition with the
same number of nodes as in the global discretization. In the acute mesh of the inner
sub-region (enclosing the obstacle) a finite element method is carried out while the
outer region is regularly gridded by a finite difference type of mesh (fig., II.3). The
features of the discretization of the 3 regions are summed up in the following table;

Number of Number of Number of Number of

triangles P2-nodes Pl-nodes unknowns
global region 1158 2440 641 5521
outer sub-region 1 840 1804 482 4090
inner sub-region 2 318 684 183 1551

3.2 Convergence of stationary and transient time-dependent and independent solutions

We display on figure II.4 the velocity field and pressure distribution of the domain
decomposition time independent solution after 8 iteration steps on the coupling term
computations,

3.3 Stationary and transient CPU time comparisons

In order to refine our CPU times estimations, we will distinguish between them in each
sub-region computation, Several reckonings can thus be made while supposing that the
smoothess in the outer sub-domain implies an improvement (speed up) time factor denoted
by g. We can then follow the evolution of ratio between sub-structuring and global CPU
time when factor g goes from 1 (present computation) up to 50 (expected speed up
resulting from finite differences computations)(cf Table 3).

a Steady case
One can see that 88 % of CPU time is required in the solution of STOKES problems in the
outer region (which only involves 2.6 times as much unknowns as the inner region).
The slightest speed up due to smoothness improving brings a noticeable improvement of the
ratios. A speed up factor of order 5 (expected through the use of frontal methods) makes
the sub-structuring computation competitive as far as CPU time 1s concerned.
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One can also note an appreciable improvement of the ratio for classical finite element
computation (g = 1), with respect to the mobile cavity problem ; this improvement results
from an enlargement of the rank of the linear systems involved. Under a 1,000 P2 - nodes
limit (mobile cavity test), the increase in CPU time for each UZAWA iteration is linear,
then behaves as a power function n?Y , y = 1.3, as the 2,000 nodes limit is reached. We
may conclude that the "gross" overcost implied by direct domain decomposition (g = 1)
decreases as a function of the number of unknowns. In doing so we assume the number of
UZAWA iterations does not decrease proportionately with respect to the number of
unknowns ! though this is the practical case since the number of iterations 1is always
less than 5.

b Transient case
The speed up factor is much less sensitive in this case (75 % of CPU time spent on the
outer region which represent 72 % of the unknowns) and the resulting overcost ratio is of
order 3 in the standard solutions (g = 1) when the stopping criteria are

-2 -2
SC < 10 or Au<10

Those results agree with the nearly-linear variation ( ¥y = 1,1) of CPU time for each
preconditionned UZAWA iteration (two linear system solutions for the velocity, one for
the pressure) VS, the number of unknowns. This linear variation of CPU time (-VS. the
number of nodes) for STOKES solution by preconditionned UZAWA method has been recently
confirmed by large sized transient 3-D computations (of about 80,000 unknowns, see
CAHOUET-CHABARD [2] ).

¢ Conclusions
As the overcosts implied in the domain decomposition decreases as the number of involved
unknowns increases, the importance of this reduction depends straight forwardly on the
influence of the number of unknowns on the CPU time solution of STOKES problem.

In the case of external flows,an estimated minimal speed up factor of order 10 is
expected for the solution of 3-D time-independent problems. On the contrary when applied
to transient problems, domain decomposition methods are hopelessly harmed by the effi-
clency of STOKES problem solution.

3.4 Use of parallel processing computers

In the beginning the attraction bornme to domain decompositions methods resulted in their
possibilities to get rid of mass-storage bounds on the computer. For instance, in the
beginning of the 80's, the bound was of about 80,000 unknowns on a 17,000 triangle mesh
for & 2-D problem on E.D.F.'s CRAY 1 S, To day, with the increase in mass-storage, those
bounds are obsolete, and the limitations bear on CPU times which are required for large
computations, To overcome these limitations one naturally thinks of parallel computers.

We have, quite intentionally, checked that the algorithm we use, have an important rate
of "parallelism-ness" (> 99 %) and is thus quite suitable for multiprocessor computers. A
thoroughful study of computing times shows that the theoretical speed-up factor, decrea-
sing time factor for resuming the job (though accumulated CPU time {is slightly
increased), strongly depends on the balance between the different sub-domain size as the
following table demonstrates :
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DRIVEN CAVITY CYLINDER TEST
STEADY UNST, STEADY UNST.
g=1 g=1 g=1l)]g=3)1g=10g=1|g =3 g = 10
Theoretical Speed-up| 1.81 1,62 1,12 1.38} 1.78 [1,33 1,99 1.3

Table 4 : Theoretical speed-up using a 2-domains decomposition computation
run on a 2 - processor computer ( => speed-up < 2).

Since every elementary computation requires more than 1 s of CPU time, we can neglect the
overhead elapsed time so that the estimations presented here are quite realistic ; and
thus a balance of each elementary task, which is required for an optimal efficiency, is
an additional criterion in the domain decomposition process which we feel as extremely
constraining.

CONCLUSION

Starting as soon as 1980, the members of the L.N.H., quite aware of the growing interest
in domain decompositions methods in fluids mechanics, have developped a great amount of
work concerning the numerical solution of incompressible (NAVIER-STOKES) or weakly
compressible (St-Venant) flows. This work led the frame to devise the notion of STEKLOV-
POINCARE coupling operators for those mixed-type problems and to analyze the efficiency
of several solutions methods involving finite-element discretizations.

Those methods are proved adaptative and reliable on many applications and seem quite
competitive in the case of time-independent geometries and P.D.E's coefficients. In many
cases the overcost in the computation of the coupling operator is balanced by the
speeding up of the iterative algorithm process.

Nevertheless, the increase of computer powerfulness, the growing efficiency of numerical
methods and the complexity of embraced P.D.E's (time-dependent coefficients) do not seem
to justify the use of such methods in that context ; as matter of fact their overcost
(almost as 5 times as high as an equivalent global solution) make it appear quite impro-
bably balanced by the use of the smoothness of the mesh of certain sub-domains. Moreover,
for the time being, the parallelization of such algorithms is rather out of question ;
the modification into parallelism of a 3-D industrial code (tens of thousands of FORTRAN
instructions) in a multitasking structure would require many years of an engineer for an
hypothetical result, and, the running of such a code which requires a computer dedicated
to the user, is not compatible with the constraints of an industrial computing center.

Thus, those considerations lead us, for the time being, to inquire about the relevancy of
such methods to the industrial problems which we are faced to.
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CYLINDER TEST
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Figure II.3 : Global and sub-structured meshes.
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