On the Coupling of Viscous and Inviscid Models
for Incompressible Fluid Flows

Via Domain Decomposition
Q. V. DINH%, R. GLOWINSKI*, J. PERIAUX$, AND G. TERRASSON#

Abstract. We discuss in this paper the coupling between the Navier-

Stokes equations for unsteady incompressible viscous flows with the
Laplace equation modeling inviscid incompressible potential flows. The
coupling is done through a domain decomposition procedure with over-
lapping; with such technique one can take advantage of an operator
splitting technique for the time discretization of the Navier-Stokes
equations.

Numerical results obtained from finite element approximations are

presented showing that the present method provides a matching technique
of good quality.

1. Generalities. Synopsis.

The main goal of this paper is to present a computatiomal method
for the coupling of two distinct mathematical models describing the
same physical phenomenon, namely the flow of an incompressible viscous
fluid. The besic idea is to replace the Navier-Stokes equations by the
potential one in those regions where we can neglect the viscous effects
and where the vorticity is small.

Consider for example a flow around an obstacle; we can split the
computational domain into two overlapping subdomains:

A first one, containing the obstacle, where the flow is
modeled by the Navier-Stokes equations.

A second, that we suppose to be far emough from the obstacle
so that the Navier-Stokes equations reduce there to Laplace equation
for the velocity potential (assuming of course that in this second
region the flow is vorticity free).

Our goal here is to discuss a method for coupling both the Navier-
Stokes and Laplace equations for incompressible fluids. We will there-
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fore describe the continous equations, and then using a time discreti-
zation of the Navier-Stokes equations by operator splitting, reduce
the original problem to a sequence of matching problems for linear
models.

Then we will solve the matching problems-which can be seen as
linear control problems-by a conjugate gradient algorithm.

The possibilities of such techniques will be illustrated by the
results of numerical experiments for two dimensional flows around a
cylinder and around a NACA 0012 airfoil.

2. Mathematical Modeling of the Flow Problem.

We consider the unsteady flow of an incompressible viscous fluid
around an obstacle B. This flow is modeled by the time dependent
Navier-Stokes equations, which here take the following form

(2.1) %o+ (@Du+T=0 in Q,

~ S

at
(2.2) V'u = 0 in Q (incompressibility condition),
(2.3) u(x,0) = u, (x) (initial condition),

(2.4 u=0 on 9B = FB (no-slip condition),

(2.5) u

Here: N
(i) u = {ui }i=1 is the flow velocity (N=2,3 in practice),

u, on the external boundary T, -

(i1) p is the pressure,

(iii) v dis a wviscosity coefficient,

~ o~ o~

N
(iv) (u-Vu = {E ug -é—;ji L
5 J1=

If we assume that the flow is potential in some region of the flow
domain { , we have

(2.6) Vxu =0 ,
i.e. there exists a potential ¢ such that

2.7 u= Z¢ .

Combining (2.7) with the incompressibility condition we obtain

(2.8) Ap =0 .

If we assume that the potential flow region contains T, partly
or entirely we shall take as boundary condition there
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(2.9 %9 = 4 n

n ~ 00

where o, denotes the unit outward normal vector at Fm

We decompose the computational domain (still denoted by )
in two subdomains 3 and 2 such that the flow is governed by
(2.1), (2.2) in 5 , and by (2.8) in ) . The notation is like
in Figure 2.1, below

Tp

Y

Figure 2.1

where:
(a) le = Ql N Qz s

(b) v, and Yy, are interfaces between ,, and R, , S,
and 8, , respectively,

() T, =T, nde, , T,=T_noQ

Our goal here is to solve (2.1), (2.2) 4in Q, coupled to (2.7),
(2.8) in Ql . Actually some extra boundary conditions have to be

specified to obtain well-posed problems for {u,p} and ¢ ; we shall
take ~

(2.10) ¢ Y on Y1 »
(2.11) u=y on Y,

~

If the (yet unknown) traces Y and y are specified we can compute
Y and {g,p} (p 1is in fact known within an arbitrary additive
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constant) if v satisfies the following flux condition (direct
consequence of the incompressibility):

(2.12) J v.n dy, + f u, 'ndl, = 0.
Y2 T,
To compute Y and vy and couple the two models, we use
a least squares approach in which we minimize over the overlapping
region {,, some distance between u and V¢ . The minimization
problem takes the following formulation

Find @ and E such that

2.13)¢
J(W’Z) < J(‘P,X,), ¥ {w:X} s

where in (2.13), we have

(2.14) I(W,0) =% JQ Ig—j(blz dx,

12

and where u (resp. u) is the solution in ; of the Navier-Stokes
equations associated to v (resp. y), with a similar definition for
¢ and ¢ (we obviously assume that v and vy satisfy (2.12)).

To solve this matching problem which is definitely nonlinear we
will take advantage of a time discretization of the Navier-Stokes
equations founded on operator splitting; with such technique the time
dependent coupling problem is reduced to a sequel of matching problems
for linear elliptic equationms.

Remark 2.1: Problem (2.13), (2.14) has the structure of an optimal
control problem in the sense of LIONS [1 ]; this interpretation is
quite interesting since it will suggest applying classical techniques
of optimal control to the solution of the above problem, and also of
the matching problems obtained at each time step.

3. Time Discretization of the Matching Problem Via an Operator
Splitting Time Discretization of the Navier-Stokes Equations.

3.1. Time Discretization of the Navier-Stokes Equations. Synopsis.

Following [2 ] - [4 1, we describe here a time discretization
which reduces the solution of the unsteady Navier-Stokes equations in
22 , to a sequence of steady Stokes problems and nonlinear elliptic
systems.

Let At>0 be a time discretization step and with 0 ¢ (o,k%)
define o and B by

= (1-20) /(1-0) , B = ©/(1-0).

If zé denotes the approximation of a time dependent variable
z at time AAt, we approximate the Navier-Stokes equations on {3 by

(3.1) u°=ua in Qz >

n .
then for n20, assuming that u is known we compute first
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{“n+6’ pn+6} solution of
( un+6_un
= - avAun+e + ¥ oo gudy" - (un‘Z)gn in 2 ,
BAt o <P 4 i)
3.2 { g™ = o0in 2,
0 +6
nt+6_ 0 on FB , 2n+ _ o0 on Ts, En+9 - xn on Y23
L ~
then
( un+1—6 un+6 - o "
b s - - n+l- n n+o.
a0t BvAun+l e+(un+1 e-V)u = aviu -¥p" Tin Q, ,
(3.3)
- - - 1-6__ n+1-6
5n+1 o _ 2 on FB , gn+l o _ 32+1 ) on Ty, En+ =zn n Y,
and finally
(ol -0
~9At ~ _ 0“’Aun+l_,_zpn+l=B\)A}\l‘n+l—9__(};"n+1—9.z)2n+1—6 in 92,
Gy ™ a0 in 0,
un+l =0 onT., un+1 - un+1 on T,, un+1 _ vn+l on Y2
~ ~ B ~ ~0 ~ ~
\

The basic idea behind the coupling method presented below is to
require the optimal matching (defined in Section 2) only for the

solutions of the linear subproblems
the Interface condition for the nonlinear subproblem (3.3).

(3.2), (3.4), and to "freeze"

The

implementation of this idea is described in Section 3.2, just below.

3.2,

Time Discretization for the Coupling of the Navier-Stokes and

Potential E

quations.

With At as in Section 3.1, we generalize scheme

(3.1) - (3.4)

as follows, in order to solve the problem coupling the Navier-Stokes
and potential equations according to the matching criterium of

Section 2.

Description of the Algorithm:

u’ =

(3.5) u

~e
Then for 120, gn
v{¢n+6’un+8 . pn+9}

given in Q, .

being known we look for a triple

satisfying
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ﬂfr+6 n 5 5
~ = -+ -+
™ _ avAgn +an = BvAgn - (EP-Z)gn in 9 ,
( Jvm“*e =0 in Q ,
3.6),< "7
1) n+o
u = g on PB , 2n+9= Eg+6 on Ty ,
n+0 _  ntb
KE =y on Yz ,
+6
A¢n 6 =0 on £,
o+
3.6, = g2p on Tn,
+ +0
o™= y™ on v, ,
with Xn+6 and wn+6 chosen such that

(J }!‘n+6.E dy, + J Eg+6.g ar, = o,
Yz I'y

(3.6)3J and

~

I Iun+e-y¢n+6|2dx is minimal.
2

n+l-
Next, we look for u o solution of

run+1—6 un+6
L. - - n+1-0 T R—
(1-20) &t~ Bube™ 104 (10 1™ P =auad™ - dn - 9,
3.7 J un+1"6 =0 on [, un+1—6 - u2+1_e
1} ~ ~ B’ R Y

un+l—6 - vn+1—6 on Yz
with
(3.7)2 xn+1—9 - Bn"'e .

Finally, we compute the triple {¢n+l’ un+1, pn+1} solution of a

system analogue to (3.6) - (3.6)3 with n and nt8 replaced by

nt+l-8 and n+l, respectively.
The boundary condition (3.7), is a variation of the approach

introduced in [5 ] for the solution of the Navier-Stokes equations

by domain decomposition methods.
Solution methods for problems like (3.7)l . (3.7)2 are discussed
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in, e.g., [2 1-[4 ]; we shall therefore concentrate (in Section 4)
on the solution of the matching problem (3.6). - (3.6)3 which is a
problem of a quite new type, belonging however to the class of

optimal control problems for partial differential equations, in the

sense of J. L, LIONS [1 1.

4, Solution of the Matching Problem.
4.1. Generalities.

The matching problem (3.6)l - (3.6)3 is a particular case of
the following problem:

Find a pair {y,y} and a triple {u,p,¢} such that

-
ou-vAutVp = £ in o,

Veu =0 in 2,
(4.1)4 u=g, on TB uTlsy,
usv on Yz,

3

-~

in @1 ,

A = 0
(mﬂk§=gl on Ty,
\¢=w on Y, ,

(u-Y$)? dx is minimal,

J(‘P, V) = LEJ
~ Q12
(4.3){ with

!

where, in (4.3), u and ¢ are the solutions obtained from v

and ¢ by solving (4.1) and (4.2).

Yoo dy, *I g ndl, =0,
2 F2~2~

4.2, Variational Formulation of Problem (4.1) - (4.3).

We can formulate problem (4.1) - (4.3) as an optimal control
problem by

(4.4) Min J(n,z); {n,z} e W, ox W

{n,z} 2
where
(4.5) Wl is a space of suitable functions defined over Yy
(4.6) W, = {5! J z-n dy, +J Yoo *n AT, = o} ,
Y2 Ty ~
and

4.7 J(n,z) = % I lu-v¢|? dx,
~ Q2 ~ ™
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re ¢ and u are the solutions of

Ad) =0 in 1 ’

8)
3
% =8, on T s & =n on Yl s
oy -Vl + Y% = f in Q2 ,

9) Veu =0 in Q2

e
1
200

» on FB ula, wu=2z on v,

The following spaces will be also useful in the sequel:

10) Vo = {w|w e H'(@), w=0 on v1} ,
1) Voo = (Hi(2,))N
12) Vin = {wlw € HI(QI), w=mn on Y1} ,
13)  Vop = {gly € @ @Y, ¥=z on vy, ¥=8, on I ula} ,
14) Q2 =12 (2) .
The state problem (4.8) can then be reformulated as
(b € Vln >
15)
J Vo-Vw dx = J gwdl'y , ¥ w e Vy
Q1 I‘1
Similarly, the Stokes problem (4.9) can be reformulated as
.J (ou-w + vu-Vw)dx + J Vp-w dx = I fw dx,
Q2 (971 (973
16)

1
VweVy s ue V2,

(4.16)2 J (v-g) qdx=0,¥%¥qeQ,; pe Q/R
Q"
4.3, Conjugate Gradient Solution of the Matching Problem (4.4).

357
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Define
(4.17) Wy = {z| J z.n dl', = 0} ;

problem (4.4) can then be solved by the following conjugate gradient
method:

(4.18) 50
solve then

0 , ,
{z:, z, } e W1 xW, is given;

go

~

{s], g} eW xW, 5 ¥weW xW, wehave

20
(4.19)
]
(gg,WI)YI + (Eg: 22).Y2 =@ (Eo)t Y')
and set
(4.20) 2°= g’ .

Then for n20 update zn, gn s w"  as follows:

~ ~ ~

Solve

Py € R
(4.21)

J(z2"-pp W) S J@Z"p W), ¥ pe R
and set

(4.22) £P+1 =20 - 0 W .

~ n~

Solve then

ntl +
(g, , wl)Y1 + (gg 1 w). = (' (z
(4.23)

Vu={w,wlew xu, ,

~

ntl  ntl +1 +1
(s1 , 81 )Y1 + (g‘z‘ &)
(4.24) A, = 2

n  n n n
g, » 8 +
(l 1)Y1 (52 : §2)y2

ntl n+l
v =8

(4.25) + An zn .

Do n=m+l and go to (4.21).
Ig practice, we have used for (-»-)y, and (-»-)Y, the L2(Y,) and
L°(y2) scalar products (or H!- scalar products on extensions-of the

boundary functions),

4.4, Calculation of J' .
Let's introduce some further notation
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~
3
<‘
A
n
| — ——
a
el

We obtain then for J' the following expression

(J '(U’,X), {ﬂ,g}) = J (Zfb"g) 'Zﬁ dx - [ Zy-z?] dx
le Q1

(4.26)1 + J (u-Y9) . z dx - J (ay.z + Vy.Vz ) dx -J vz dx,
Q12 22 Q2

¥ {n,z} e Wy x Wy 3
in (4.26), ¢ and {u,p} are solution of (4.15) and (4.16),

respectively. Moreover, 7N and Z are extensions of 71 and g

vanishing, in practice, outside a neighborhood of <y; and Y, ,
respectively. Finally, y and {y,ll} are solutions of the adjoint
equations ~

<y, w> = J (Vo~u) *Vwdx, ¥ w e Vyp ,
! "~ 7
(4.27)
Y€V10,

<y,wz + . (VI, w)2 = J (u-Y¢)'w dx, ¥ w € Vo ,
pide ~ Qp <~

(4.28) J Vey dx = 0, ¥ qe Q2 ,
Q

~ ~
2

YyeVa , MTeQ /R .

From the above calculation, we observe that the practical implementa-
tion of algorithm (4.18) - (4.25) will require the solution of

n
(1) 2 Poisson problems for the calculation of the state ¢
and the co-state y in 1,

(ii) 2 Stokes problems in 2 , for the calculation of
{gn,pn} and {z“,n?} .

Since the control problem (4.4) is of the linear quadratic type,
there is no difficulty (in principle) to compute o, exactly in (4.21)
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(see [ 6] for further details concerning the implementation of
algorithm (4.18) - (4.25) and the calculation of J').

5. Finite Element Approximation.

In practice algorithm (4.18) - (4.25) will have to be imple~
mented through finite element approximations of the various problems
involved in the matching process and flow modeling. The page
limitation of this paper prevents us to give a precise description of
the finite element variants of the techniques discussed in this paper
(see [ 6] for these details). Let's mention however that the potential
flow part will be approximated using the finite element space

= 0
(5.1) Vlh = {wh|wh e c°(T), wth eP,, ¥Te¢ Tlh}
and the Navier-Stokes part via

= {Xh‘xh e ( PN, xth € (PI)N, ¥Te ng}

(5.2 Vyy

(for the velocity) and
= 05
(5.3) Q= {qh|qh e C°(Qy) , thT €P1, ¥TeT, }

(for the pressure). In (5.1) - (5.3), T1h and T, ~ are two

overlapping triangulations of 1 and Q , respectively and

Tsh is obtained from T2h by joining the mid-points in each
3

triangle of T2h in order to cbtain 4 similar sub-triangles;

finally, P, 1is the space of those polynominals of degree <1.

6. Numerical Experiments and Results.
The above methodology has been tested on the two following
problems

(i) An incompressible viscous flow around a circular cylinder at
Re = 50 (there exists a steady state solution).

(ii) An incompressible viscous flow around a NACA 0012 airfoil at
Re = 200, for a 30° angle of attack.

We have been comparing the results obtained using the matching
method with those obtained via a full Navier-Stokes solution on
108223 the corresponding results are reported on Figures 6.1 to 6.5
for case (i), and 6.6 to 6.9 for case (ii). The details concerning
the triangulations are reported in Tables 6.1 and 6.2, below. A
natural question arising from those experiments concerns the difference
between the results obtaining using the global or matching techniques
described in this paper and those obtained via a Navier-Stokes calcu-
lation on {2, only (taking this time u = u on Y, U I'y; see

~ ~ CO

Figure 2.1). Indeed the accuracy of the simulation is seriously
deteriorated by taking To too close from B, as shown (for the
NACA 0012 case) on the color* pictures 6.10 (velocity visualization)
and 6.11 (vorticity visualization). The upper>1eft figures concern the
global Navier-Stokes solution on Qlu 2, , the lower left ones are
related to the matching solution and finally the right figure is con-
cerned with the Navier-Stokes solution on {, only.

* These figures were originally submitted in color.
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Global Mesh Viscous Mesh Potential Mesh
2588 v.n. 2050 wv.n. 1015 nodes
5040 v.e. 2872 v.e. 1800 elements

664 p.n. 541 p.n.
1260 p.e. 961 p.e.
v.n. : velocity nodes p.n. : pressure nodes

v.e. : velocity elements

p.e. : pressure elements

Table 6.1 (Circular cylinder)

Global Mesh

Viscous Mesh

Potential Mesh

3114 v.n.
6056 v.e.
800 p.n.
1514 p.e.

2029 v.n.
3884 v.e.
529 p.n.
971 p.e.

1015 nodes

1800 elements

Table 6.2 (NACA 0012)
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Computational mesh for

Global mesh viscous calculations
Figure 6.1 (a) Figure 6.1 (b)
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Figure 6.2 (a) Figure 6.2 (b)
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* e Lal 2L 1]

Pressure distribution
(global calculation)

Figure 6.3 (a)

P Y

S L, L i
: 1.8 L 1L

Pressure distributioen
(matching calculation)

Figure 6.3 (b)

Vorticity contours
(global calculation)

Figure 6.4 (a)

Vorticity contours
(matching calculation)

Figure 6.4 (b)
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Figure 6.5 (b)
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Convergence history
Figure 6.7
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Pressure distribution
(global solution)

Figure 6.7 (a)

Pressure distribution
(matching calculation)

Figure 6.7 (b)
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Vorticity contours
(global solution)

Figure 6.8 (a)

Vorticity contours
(matching calculation)

Figure 6.8 (b)

Streamlines Streamlines
(global solution) (matching calculation)
Figure 6.9 (a) Figure 6.9 (b)
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Velocity Visualization
Figure 6.10
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7. Further comments and conclusions.

We have presented here preliminary results showing that the
matching method presented here can be applied to couple different
mathematical formulations of a given phenomenon.

Actually there is room for many improvements; let's mention some
of them:

(i) Use more efficient Stokes solvers, like these introduced by
J. Cahouet (see [71) and also discussed in [ 8] .

(1) Improve the preconditioning of the conjugate gradient algorithm
(4.18) - (4.25).

We are presently working on these improvements and also to the general-
ization of the above methods to compressible flow calculations.

Acknowledgments: This work was partly supported by DRET under
contract 85/175. We would like to thank Lena Brooks for her careful
typing of this paper.
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