On the Schwarz Alternating Method. 1

P. L. LIONS*

Introduction.

In{1 ], H.A. Schwarz proposed an iterative method for the solution
of classical boundary value problems for harmonic functions : it consists
in solving successively a similar problem in subdomains, going alternatively
from one to the other as we recall more precisely below. The convergence of
this process was proven by the use of the maximum principle. Since then, this
method was studied by various authors including S.L. Sobolev [2 ], S.G. Michlin
{31, M. Prager [4 ], D. Morgenstern [5 ], I. Babuska [6 ], R. Courant and
D. Hilbert {7 ], F.E. Browder [8 ]... In some of these references the varia-
tional interpretation of the method as convenient successive projections

was emphasized.

More recently, the interest in such iterative methods was renewed
because of the applications to the numerical analysis of boundary value

problems. This method was then considered as a method to decompose the original

*Ceremade, University Paris-Dauphine, Place de Lattre de
Tassigny, 75775 Paris Cedex 16, France.
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problem in a sequence of subproblems or as a domain decomposition method.

Many variants, based upon optimal control considerations for instance, were
proposed and all these domain decomposition methods have been studied both
theoretically and numerically together with their relations with numerical
methods for the solution of linear systems. We refer for instance to P.L. Lions
[9 ], R. Glowinski, J. Périaux and Q.V. Dinh {10 ], [11 ], R. Glowinski {12 ],
A. Fischler {13 }, Q.V. Dinh, A. Fischler, R, Glowinski, J, Périaux [14 ],

Q.V. Dinh, J. Périaux, G. Terrasson and R. Glowinski [15 ], J.M. Trailong and
J. Pakleza(16 ], Q.V. Dink {17 ], P.E. Bjorstad and 0.B., Widlung {18 ],

P. Lemonnier [19 }, L. Cambier, W. Ghazzi, J.P. Veillot and H. Viviand {20 ],
P. Anceaux, B. Gay, R. Glowinski, J. Périaux (21 ], J.P. Benque, J.P. Grégoire,
A. Hauguel and M. Maxant [22 ], Q.V. Dinh, R. Glowinski, B. Mantel, J. Périaux
and P. Perrier [23 ), G.I. Marchuk, Yu.A. Kuznetsov and A.M. Matsokin {24 ],

M, pryjal25], [26 ], A.M. Matsokin [27 ], A.M., Matsokin and S.V. Nepomnyashchikh

[28 ] and their references...

Our goal here is a mathematical study of the Schwarz alternating method
where we will emphasize several remarkable properties such as its simplicity,
its versality and its good convergence properties for very different classes
of equations such as Laplace type equations or Stokes equations and nonlinear
variants but also the Hamilton-Jacobi-Bellman equations of optimal stochastic

control...

As we will see below, the Fact that the Schwarz method does converge
for many different types of problems is due to two reasons : the first one is
that it has a variational interpretation and this is the viewpoint that we
emphasize in section I. The second one is its interpretation in terms of
maximum principle and successive exit times of diffusion processes and this
is the viewpoint that we emphasize in section II. Finally, in section III,

we present and study various variants of the Schwarz method.
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I . Variational interpretation of the Schwarz alternating method.

I.1 Presentation of the method and interpretation.

We consider a bounded, open domain 0 in R" and we assume (to simplify)
that (@ 1is smooth and connected. We then decompose ( in two subdomains 0l .

0 o such that

(n 0 = 0,V0,

and we denote by I'=30 , I, =30, , T, =30,, v, =230,Nn0,,
1 1 2 2 1 1 2

Yo = 30,00, , 0,=020,, o”-olnv‘;. ozz-oznv‘;.vmous

decompositions are possible as it can be seen from the following figures

<_-—’02 ‘-—-Oﬁ
—>
0l 0[
i.a I.b
0, - 0,
1)
'
[ . 02
Gy
ol
2.a 2.b

(even if in case 2.b 0 is only Lipschitz). We assume that Y;sY, are smooth...

Next, suppose that we want to solve the following model problem
2) -fu=f in ¢ . u=0 on 30

where f is a given function in ¢ say in L2(0) (or in H-I(O) ves)e
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The Schwarz alternating procedure consists in solving successively the

following problems : let u° be any initialization say in H;(O) , u2n+l
(n>0) , u2n (n ? 1) are solutions of (respectively)

3) - Au2n+l =f in 0] , ulnt! uzn on 801

(4) - Auzn = f in 0, . u?® . L - 302 .

where the solutions are taken for instance in Hl(Ol) . Hl(02) respectively.

2n+1 2n 7 2n 2n-1

Observe that we may extend u by u on and u by u on
Un so that
(5) L HL(O) , u2n4-l 2n € H (0 ) , 2n+2 2n+l e H (02)

for all n=20.

In all that follows, we consider H (0 ), H (0 as closed subspaces
of H ()] by extending their elements to ( by 0 . And we take as scalar

product on H (0) the usual ome i.e.
(u,v) = f VaeTv dx  , ¥ u,v € H (0)
0

where V denotes the gradient. With these notatioms, it is obvious that (3),

(4) are equivalent to

2n+1 1 2n+l  2n 1
(6) (u -u, vl) = 0 ¥V, € Ho(ol) , u -u" € Ho(ol)
for all n=>0,

2n 1 2n  2n-1 1
(7N (u -, v2) = 0 ¥ vy € HO(OZ) , U ~u € KO(OZ)

for all n=1 .

Now, if we denote by v, - H:(Ol) » V= H;(OZ) we may rewrite (6) and
(7) as follows
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(6') (u2n+l_u2n , Vl) - (u_UZn s vl) v Vl e vl s %n+l_u2n e Vl
for all n>»0,

2n 2n-1 2n-1 2 -
" (u Py R v2) - (ueu™, vz) ¥ v, € Vo, u n_u2n le V2

for all n21 . And this obviously means

u2n+l__u2n - Py (u-uzn) for all n#0
1

(8)
[¢)] u2n_u2n-l = P (u—uzn-l) for all n=>1 ,

or equivalently

2n+1
u

(10) u~ (u_u2n) for all n=0

W
1

(1n u—uzn = P (u-u
2

2o-1, for all n > 1

where P denotes various orthogonal projections on the subspaces appearing

as subscripts.

1.2 Convergence of iterated projections and interpretation.

As we saw in the preceding section, the Schwarz method for the model
problem (2) is equivalent to a sequence of projections in an Hilbert space.
More precisely, if Vl,V2 are two closed subspaces of an Hilbert space V
we have to investigate the behaviour of sequences (vn)n built as follows :

E - = 1 -
v, v, Vonel PVL Von * Von+2 Pv[ Yo+l for n”2 0 ., It is well-known

1 2
that v_ converges (in V) to P 1 v_ - we will recall this standard
n °
vpn V.tz

fact below. In addition observing that if we denote by V =v -pP v
o o VL A vl. o

n ! 2'\,

then the sequence Va generated by the above projections starting from v,

instead of ‘V° is given
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we deduce that without loss of generality we may assume Vﬁ n V; = {0} . And
we have the

Theorem I.] : Assume that Vﬁ N V;

then v, converges to 0. If V1+V2 = V , then there exists k € (0,1 [ such

= {0} or equivalently that V = Vl+V2 ,

that
“” [P 2] <
2 1
therefore
Ivnﬂl < kn|v°| for all n >0 .

Proof : We first observe that

2 .
Voerl ™ * 1¥oe1™va , forall n>0 .

Hence, |vn'* 2 for some 2 » 0 and Vel Va2 0 . Now, if for some subsequence

o vnk converges weakly to some v we remark that since v also con-

+1
verges weakly to v them v € Vﬁ N Vt i.e. v=0 and v, converges weakly

to 0 . To conclude, we observe that

[v.1? = (v s vy 3 0 /

n 2n-1

and thus v, counverges strongly to 0 .

Next, if V1+V2 = V , we deduce (12) from the following
Lemma I.l1 : There exists a constant co >0 such that for all vE€V
2 2,1/2
(13) Iv| < ¢, (IPvlvl + |pv2v| ) .

The proof of this lemma is given below. We now conclude the proof of

Theorem I.1, To do so, we observe that (13) yields
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hence
2 2 2
P, v = P P, v| + |P P, v
lvl]l lv;vﬁlivzvﬁ]
2 1 2 7
2 |p, P, v["+ =P v| =) 4137
I Vt Vﬁ | co | Vﬁ 4 Co
or

/2
(14) e, e, vl < a-1e) e v, wvev .

In particular, this yields (12) and we conclude since we may write PVL Pvl Pvl
2 1 2

as (P?Pvll)(Pvlva;)' .

2

Proof of Lemma I.l : We first observe that by a simple application of the open

mapping theorem to ((vl,vz) - vl+v2) from vV, x V, onto V then there exists
C, >0 such that

2)1/2 < colvl ,

v o= Vl+V2 .

(15) ¥vEV, 5(vl,v2) € vV, xV,, (|v1l2+|v2|
Next, we write
W7 = e+ vy s (g i) By ve )
2 231/2 2 2y1/2
< lpy vl®+ 17y v1%) 2 (v, 12+ Iv,13)

2 v1/2
< cylvl g vi*+ Iy v1%)Y

We may now go back to the Schwarz alternating method for the model problem.
In view of the preceding results we have to investigate whether v+, is dense

in or even equal to V . A simple criterion for the first fact is the following

(16) VOEDWO) , 29, €D00) , 29, €00 , ¢ =9 +9, .
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Indeed, this implies D(0) CW hence V = W . Next, we claim that

(16) always holds if 0 = Ol U 02 . Indeed, observe that if K 1is a compact set
in 0 then there exists € > 0 such that K C (Ol)s Y (02)5 where A_ denotes
{x € A, dist (x,Ac) > ¢} . Therefore, if ¢ € V(0) and K = Supp ¢ , there
exists "’1 € D(Ol) R wz € D(Oz) such that 0 <wi <1 (i=1,2) and \Pi =1

on a neighbourhood of K N (Oi)E (i=1,2) . Then, we conclude since
-1 -1
RN I R TR S

Now, if we wish to check V = V1+V2 , the situation is a bit more subtle. It
is clearly true if we assume that there exist Xq2X2 smooth on U (WI’E(O)
is enough in the case of the model problem (2)) vanishing respectively on

Yl ’Yz such that

(17) X; * Xy = 1 on O .

Indeed, if u € EL(O) then x,u € E‘I,(Ol) y X and our claim is

proved.

i
u € HO(OZ)

2

This assumption is satisfied provided there is some uniform overlapping
of Ol and 02 as in Figures l.a or 1.b but it does not hold in the case of
Figures 2.a or 2.b. In order to analyze those cases we observe that in those

cases we have

1,0 .

3 XXy € WIOC(O) » X ™ 0 on Yi o X3 20 for i=1,2
(18)

12y,%x, on 0, ]Vx.l\ <C dist:(:t,w)_l a.e.on 0 ¥i

for some C 20 . Indeed, take for instance the case 2.b
Ly

3
1

x
b

it Bttt IR IR 2074

v a i
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bx
then we set x,(x) = 1 if <0, x(x) = (I—El- if 0<xl<a and
2
0<x2<b, x](x)-O if x2<0 and xzsl-xl on 0.

Observe that X; and X, are Lipschitz continuous on 0 - {0} and if

0<xl <a, O<x2<b
b bxl
X, (x) = [-—— -—2] l(ax > bx,) a.e.
ax, ax 2 1
2 2
hence

l I b2 172 1
Vx < [— + l] —_— 1 )
1 a2 x (ax2 > bx})

2
2 172 2 1/2
b a 1
< [-5 “1) (;f <) i

and -~|-}l?-|--<dist:(x,80)"l so (18) holds.

Next, we claim that (18) implies that: Vo=V+Y, . Indeed arguing as
before we only have to check that if u € H (0) then xju € H (0 ) and this

reduces to examining if V()(lu) € Lz . We then compute

f [\7()(ltx)|2 dx < J [x,7u + VX1“|2 dx
< 2 f val? + |vx, |2 o? ax
2 u2
< 2[ |vu| dx+2cf-—dx
a2
where d(x) = dist (x,90) and by a classical inequality

j |V()(lu)|2 dx < CI IVu[2 dx .

In conlusion, we have the

Corollary I.1 : If (16) holds, the Schwarz alternating method for the problem
(2) converges. In addition if (18) holds, then it converges geometrically.

9
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Remarks : The above arguments also show that the convergence factor k may

be estimated by (l - CL) 1/2 where Co is any constant such that (15) holds.
o

Now, if (18) holds we may choose VI T XV s Vg = XgV - And we may estimate
Co as follows

2

? - IIV(Xl“”z + Vo |2 ax = I odexd) (vul? ax +

+2 J Xqu VxpoVudx+. 2 I Xqu Xy Vu dx ff u2(|vxl|?+|vxz|2)dx
and using the relations X1¥Xg = 1, V)(l = -Vx2 we find
2 2 2 .
c- = |Yu| € ax - 2 x,leVul dx + 2 | (x;~Xp)u VX;*Vu
+ 2 J u? lellz dx
2 1 2 2
= (+8) | [Vul%dx + (2¢3) | u'|Vx |%ax ,  for all §>0 .

Now, if there is a uniform overlapping between 0l and 0, i.e. X12Xg € Wl’“(o);

we deduce

c, < (1+6+ (245 122712 for all §>0

where L = IVx1|w » A, is the first eigenvalue of -A on H;(O) . Therefore,

we find in particular

c < 1+2027Y2
o 1

If (18) holds we just replace Lz)\'l-l by Cl such that

JuZIVxllzdx < ¢ [ vl lix < c, J qu|2dx . L]

We now conclude this section by observing that the above interpretation
of the Schwarz alternating method as iterated projections immediately yields

similar convergence results for general classes of symmetric variatiomal
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boundary value problems. In particular, we may consider higher-order problems
(biharmonic operator for instance) or more general second-order elliptic problem

such as
n
A= - 7
i,j=

] ]
P 7 21500 E] ‘e

where aij = 8ji. ELO) (V1< i,j<n), c€L7(0) and for example we
suppose that
n

(19) 3v>0,ae x€0,¥EER", | a.mEE, > v]gl?
g BT

(20) c=0 a.e. in 0 .

Indeed, for such an operator we just have to endow H;(O) with the scalar

product <Au,v> i.e.

a(u,v) = I 3 2. %:i--:—:--ﬂ-cuvdx
0 i,j=1 Y % %

and everything we said above adapts immediately.

Similarly, we may replace Dirichlet boundary conditions by various kinds
of boundary conditions. The only noticeable modification concerns the case of

Neumann boundary conditions. For example, let us consider the following model

problem
21 -Mu+u = £ on 0 g—n‘l-o on 30

where n denotes the unit outward normal to 30 . We then set V = Hl((?) ,

vy = {uGKI(O) ,u=0 on UZZ} » Y, = {uEHl(O) ,u=0 on 0“} . The
Schwarz alternating method is then defined exactly as in section I.! and each
subproblem in 0l and 02 is now a mixed boundary value problem with Neumann
conditions on aoi N30 (i = 1,2) and Dirichlet conditions v =v _, on

Yy oo Again, the process converges if v_l:‘TZ- = V and the convergence is
geometrical if Vi#V, =V . And if one can show easily (same argument as before)

that V¥, =V in the case when 0l and 02 overlap (l.a, 1.b), one can
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only show that V1+V2 = V in the cases when ;1 ,;2 touch on 30 (provided

everything is smooth...) i.e. in the cases 2.a or 2.b.

Finally, it is obvious that we may replace homogeneous boundary conditions

in (2) or (21) by general omnes...

I.3 The case of Stokes equation.

We now consider the case of Stokes equation : let u be the solution in
208

(22) -Au+Vp=f in (0 , u=u on ' ,divu=0 in 0

where u° € Hl(O ;]Rn) , £ € L2(0 ;]Rn) (for instance) satisfy the compatibility

condition

23) I wWends = 0 .
T

As usual, p denotes the pressure (determined up to a constant). We consider
of course the space V = {u € 31(0;195 / divu =0 in 0} and we recall that
(22) may be written

(24) (u,v) = I f v dx . ¥vEV; u€ W+ v
0

where, possibly, we have replaced u® by W such that : 6 =u® on T N

div ¥° = 0 in 0.

We now explain how the Schwarz alternating method applies to this problem.

Let u, €u® + vV, we introduce u (n > 0) solutions of respectively

20+1 * Y2n+2

(25) =By 1t VPonay = f in Ol » Uyr,p=Uy, Om 30l .
divu, ., =0 in 0,

(26) “M9nez* Ponez  F 18 0y 0 Uppp = Uppe o 30z,
div Uye2 = 0 in 0,
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and we extend Upnel * Yonseg t© 0 by respectively Upn v Uong)

This sequence is well-defined since we have by induction for all n 2 |
divu = 0 a.e. in 0 :
n

indeed, we have, for example, div Uyl ” 0 a.e. in 01 , divu = div Uy

2n+]
=0 a.,e, in 022 and Ug, = Uyryp OB Y2 . Now, the results and methods

presented in the preceding section apply and we obtain the convergence of this

sequence to u as soon as V = V1+V2 where
1 1} : :
vi = {uGHO(Oi,IR),dlvu-O in Oi}

for i = 1,2 , where we extend u € Vi to 0 by O . Furthermore, the conver-
gence is geometrical if V = V]+V2 . Indeed, we just have to observe that (25)-

(26) may then be writtem : u-u, ., = Pvl (u=uy ), umuy o ® PV'L (umuy W) -
1 2

Hence, the only question we have to investigate is to check that V = VY,
. : 1
or V=V+, . In fact, we claim that if H;(O) - H;(Ol) + H°(02) then

T i1 ie ql 1 1 . :
V = V#V, , vhile if H (0) = H (0)) + H (0,) then V = V;+V, . And since we
already explained in the preceding sections how to check these conditioms, the

remaining question will be solved.

To prove our claim, we consider u € V such that u = u tu, where

uy € Hl(()l i R™) » Uy € H;(O2 ;]Rn) . And we immediately conclude if we show

a
that there then exist '\\fl € Vl . 32 € V2 such that u = Ql'l'*uz .

Indeed, set g = div uy € L2(0) so that
div u, = -8 a.e., in 0

and g=0 a.e. in 0-10,, -

Next, observe that we have
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gdx = I ul-ndsl = f uen ds
02 02

l

where n denotes the unit outward normal to Y, " 302 NQ , and in addition

12

denoting by n; the unit outward normal to 30“

[ uen dS = -J uen; dsS = —j (divu) dx = 0 .
Y2 30y, o

Therefore, there exists @ € H;(Olz) such that
divid = g a.e. in 012

and extending & by O to (¢ we conclude easily setting

n
] = y-u , u, = u2+ﬁ .

1.4 Extensions to more subdomains.

There are various ways to extend the Schwarz alternating method to geome~
trical situations where (¢ is split into more subdomains. We will explain these

various methods on the model problem (2).

The first one is purely "sequential"” : we assume that

m
(26) 0 = U 05 , 0j open set in R" for 1 <j<m
=1

and we denote by Vj = H;(Oj) . And we consider Vj as a closed subspace of
V= Hi((?) by extending its elements to (¢ by O ., Then, we introduce the

following sequence : let u, € Hé(O) , for k » 0 we consider the solutions of

27) -A“knwj = f in 0j , Yemej = Ykmej-1 00 BOJ.

and we extend L to 0 by Yemej-1 * for 1 <j<m.
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Or in other words,

(28) YUy = PVI' (u-ukm_j_l) . ¥k>0,¥%1<j<nm .
3
m
And exactly as in section I.,2 we show that (26) implies that Z Vj =V
m j=1
while Z V. = V holds if we assume
i=
1,00 .
3xiew1;c(0) > X; ™ 0 on 30.100 . Xi>° , for 1 <i<m
(29) o
) X; 1 on 0, || <c dist(x,30)"! a.e. on 0 for 1<i<um.
i=]

And we obtain the

Theorem I.2 : The sequence (un)n converges to u in V . In addition if

m
I v
i=1

5 = V , there exists k€ [0,1 [ such that

n
|un-u|V < k Iuo-ulv . for all n»0 .

Remarks : 1) Exactly as in section I.2, it is possible to estimate k in

terms of geometrical quantities (see also the proofs below).

2) The geometrical convergence result is still valid if we replace (un)n
by sequences of solutions of subproblems chosen "somewhat randomly". More
precisely, if we consider (un)n defined by

LI B Pv'l' (un-u) for n20
Jn+1
where jnﬂ € {1,...,m} , then the above convergence result still holds if we
assume

(30) IM>1, 3k°>l » ¥ k2K, {1,...,m} C{jn/kH<n<(k+l)H} .

Indeed, we just observe that the proof of Theorem I.2 shows that there exists
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a constant k € [0,1 [ such that if Qi = Pvl' for some o, € {l,...,m} and
a

[T

for 1 <Ki<M and if {1,...,m}C{ai/l< <M} then
IQMQM_l e gt <k »

Proof of Theorem I.2 : The same method as in Theorem I.l shows that Vp = ypu

converges weakly in V to 0, v

-v_  converges strongly in V to 0 and
2 n+l n
lvpl© 4 & for some 220 .

Next, we argue as in J.B. Baillon and P.L. Lions {29 ] and we observe
that if S denotes [PVL Pvl)p for some p # | then for all w,2 €V

m 1

1 2 1 2 1 2 1 2
[(w,2) = (sw,82)| < 5 [w]" + 3 2] -3 [sw]” -5 |sz{* .
This yields for all n=20, p21, k=20

' (vnm ’ v(n+k)m) N (v(n+p)m ’ v(n-fpﬂc)mJl
1 2 2 2 2
< 7 (Ivnml + lv(n+k)ml - ]v(n+p)m| - lv(n+p+k)ml )

. 2 < s R ]
and since lvnl t £ , this implies that (vnm’ v(n+k)m) converges to some £k
uniformly in k as n goes to += . Next, on one hand, recalling that
v__.,~v_+ 0 we obtain that £ = £ for all k20 and on the other hand
n+l ‘nn k

letting k going to + we deduce that 1lim R’k =0 . Hence, £ =0 and
k

v >0,
nn

The geometrical convergence result is obtained by showing that there
exists k €[0,1 [ such that

|<k .

31 P ... P
Iy ey

To prove this claim, we first observe that Lemma I.] and its proof may be easily

adapted to yield
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: m 1/2
°* Ya Y

for some co >0 . Next, to show (31), we argue by contradiction and we assume

there exist (vn)n such that

I = jv|= lim [P, ...P,v .
nl a V: Vl.nl

1

Obviously we also have for all j € {1,...,m}

+

|P, ... P

A
j 1

therefore for all j€(l,...,m1}

P P . v > 0 and P.v. =+ 0 .
Vj+1v§ V]inn Vlnn

an""’PV v, o7 0 for some j € {l,...,m-1} we deduce
| .

And if P
therefore Pv ve 2 0 . This means that

P,v. =+ O for all 1< j<M

and we reach a contradiction with (32).

The second extension of the Schwarz alternating method consists in using

at each step a possibly new splitting of ¢ i.e.

(33) 0 = OTUOE . 02 open set of r" (i=1,2) .

We then consider u, € H(I,(O) and for n » 0 the solutions Upnel * Yanse2 of
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- Auznﬂ' = f in 01.11 , uznﬂ' = u2n+1-l on 30;l (i=1,2

2n+i 2n+i~1

and we extend u to 0 by u (for i=1,2).

Now, if we assume that (for instance) (18) holds for some constant C
independent of n , then this sequence (un)n converges geometrically in V

to u . Observe only that there exists k €[0,1 [ independent of n such that

P P ’ P P < k
I Vrlll Vrzi.Ll I sztl Vxlxll

n 1,.n N
where Vi Ho(oi.) for i=1,2.

Of course, this extension of the Schwarz method may be combined with the

two others described in this section but we will skip such considerations here.

The final extension we wish to consider concerns "parallel" versions of
the Schwarz alternating method. We again assume that (26) holds but we assume

now that

(34) Uin'o‘jnvk = ¢ , for all distinet i,j,k in {I,...,m} .

Then, given m initializations ug € H;(O) (Fi<j<m we build m sequences
inductively as follows : for all n >0 and for all i€ {1,...,m} , u:ﬂ

is the solution of

ui
n+l

i = f in 0, , =0 on 301080
(35)

i _ .
u uy on 30if‘|0j for all 1<j<m .

In the case when m = 2 , we immediately see that the subsequences
(ug,u},ug,u;,uz...) and (ul,uf,u;,ug,u}. ...) are in fact sequences generated
by the usual Schwarz alternating method (interchanging 0, and 0, in the

second case).

As soon as m » 3 , the situation becomes more interesting. And even if,
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as we will see in section II, each sequence u: converges in 0i to u,

this method does not have always a variational interpretation in terms of
iterated projections. A related difficulty is that, using the sequences

(“;)n . (u:)n sesey (u:)n it is not always possible to define a single-valued
function defined on the whole domain 0 in a continuous way. In fact, the
necessary and sufficient condition for these two difficulties not to happen is
that

For all distinet 1i,j,k € {1,...,m} , if 0i n Oj $0, Oi n Okfo

(36)
then oj N ok - ﬂ .

Hence, if (36) holds, the results proved above adapt provided we use some of

the ideas described below in the particular cases m =3 or m= 4 .

To be more specific, let us consider the particular cases m = 3 and
m= 4 , It will be convenient to use the notation 0i G'Oj if Oi n Oj $0.

Then, if m = 3 , up to an irrelevant change of notations, two cases occur.

Case 3.1 : 0l **02 003

Typical examples are

>
] 02!'
i
[} y !
Figure 3.a ' :‘
10 i
Ol 03
P e 4 D ——
= e
Figure 3.b 0; {F--- ---1l o,
0
Case 3.2 : 0 g 2
—_—— 1y $
0
3

A typical example is

Figure 3.c
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Observe that (36) holds in Case 3.1 but does not hold in Case 3.2.

Then, the variational interpretation of (35) in case (3.1) may be obtained as

follows : we define 3n as follows for k20

(37)

", 1 2 3
Uppep = B OO Ul » =W, on 02-('(71UU3) » = uw om 63

N = ! _ - 2 - 3 _
Uppep = U OD 0, Ué , w, on Ué . u on 03 Ué .

1 2 3
(In fact, the other "half" of the sequences (un)n , (un)n . (un)n may be used

similarly to define another sequence of functions on ( with the same properties

n
than u_ ).
n

And we remark next that (37) may be interpreted as follows

u = Pvl (EZR-u)
2

n N "

(38) Upps™8 = Pvlrmvl (u2k+l_“) s Ugpyg”
13

(observe that Vl 1l V3 ). So, a posteriori, these sequences are in this case

somewhat equivalent to sequences generated by a "Schwarz alternating method”.

And we have of course the same convergence results as before (strong convergence

of ﬁn to u in V and geometric convergence if Vy+V,+Vy =V as it is

the case in Figures 3.a and 3.b).

In case 3.2, the situation is not as simple and in order to have a
variational argument to prove convergence (we will see in section II that the
process does converge via maximum principle...) we have to modify (35). We give
an example of such a modification below which, however, is not parallel : ui

is defined for n> 2 and for i =1,2,3 as the solution of

- Au; = f in 0l , u_ =0 on aOl n 30

n
u; = ui_l on 30, N0, , u; - ui_l on 3¢ N 03
-bu =f in 0, , ui =0 on 30,N 30

ui - uL_] on 30, N0 , ui - ug_l on 30, N 03
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3 .
—Aun-f in 03 . u:-O on 303030

WGeul o on s0,n0 3.2 30, N O

n " Yn-l 3 1 * Y%7y, on 3 Y2 ¢

We may then define a sequence (’l\.{n)n as follows

U =ty 0 =T, 5 =uf o0 T, =), on 03 @ VT

A"

Ude] = Yoy OB 0;-@0,V05) , =uw on U,-0;, =~u on 7,

\

1 2 3
Ugyp = W,y OB UI » =uw on Uz-(UlUU3) » =y oo 53-31 .

And we observe that

N \ ", N

Usgep™ = PVL (Ugpep™ 5 Ugp -u = PVL CE
1 3

4"} N,

g T R Gy

2

So we see that this modification of (35) is in some sense equivalent to the

sequential algorithm (27) and thus presents the same convergence properties.

Now, in the case m = 4 , up to irrelevant changes of notations, six cases

may occur.

Case 4.1 : 01002003*’04.

A typical example is

% , &%
T TT T
Figure 4.a v ' : !
L TH ] 2
ol 03

Case 4.2 : 0l ‘*02 ‘*04
$

O3

A typical example is
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N
W

02
T (N (B 1
1 i ) [} : :
] 1]
| ]
] ] ] t
Figure 4.b vy _0_ p 1
—> e
0, 0,
0
Case 4.3 : ¢ 2% 0
il AL g 1 4
2’ 0 z
3
A typical example is
0, -
T 13
' t
Figure 4.c 0l e e _—— 04
f '
- "' J g
03
0
Case 4.4 : 0l ‘*02: @3
Yo
4
A typical example is
05—
2 0
Figure 4.d 0l . A -
g — 04
02———-—)
0
Case 4.5 : 0 d tz "0
i 4
% 0 ¢
3

A typical example is

2
Figure 4.e 01@

R

.
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0
2 %y

v, ¢
o&

A typical example is

Case 4.6 : 0

I 3

Figure 4.f

It is quite clear that (36) holds in Cases 4.1, 4.2 and 4.3 but does not hold
in Cases 4.4, 4.5 and 4.6, In these latter cases, however we can modify (35)
along the lines of the modification of Case 3.2 proposed above to obtain an
algorithm consisting of iterated projections and yielding the possibility of

defining globally approximated solutions on the whole domain 0O .

We now explain the variational interpretation of the parallel algorithm

in Cases 4.1, 4.2 and 4.3. In Case 4.1, we introduce for k » I

Yy muly 0 =T, =of i 0,, = u_ in T,-@,00),

4
39 =y in Uz
A, 1 . 2 ., 3 .
Upgal = ey 1R Op s N in 0,-@VT , =uy, in Ty,
=y in U;-Us
so that

n N - ) N - - P ('\J _ )
Y™ T P10 T ooy e
1 3 2 4

and the convergence properties are easily analysed.

In Case 4.2, we introduce for k 21
Y =u  in 0,-7,, =ul in 0, ,=u_ in 7,-T
Sz T el P 172 T V2 Tk~ M V3TV

=u.y in 0,-0,

40 1 2 3

N . A - - .

Upper = Yoy 1B 0) o S 0-@UT,U0) , = w,, in T,

=y in T,
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so that
", " " n
u -u = P (u,, -u) u,, -u P, (u -u)
2k+1 vli an:;th 2k ’ 2k Vlé 2k~-1

and the convergence properties are easily analysed.
In Case 4.3, we introduce for k =1

N 1 . 2 . 3 .
uzk = uk'-] in UI—(UZU?B) , = uk in UZ , = uk in 0'3 ,
(1) = ey dn T@V0p

n

St = Wt B2 Ty mu in Tp-@UT, = in T, U7,
- v B0 T
so that

Yy e p & N
Uopel ¥ Ayt G W, Uyt
17,

n
P (u ~u)
2k-1

and the convergence properties are easily analysed.

1.5 Nonlinear monotone problems.

First of all, we begin with some general abstract minimization conside-
rations. Indeed, observe that the model problem consists in minimizing over

H;(O) the functional
1 2
“2) W = f Lvu)? - £u ax
0

Then, the Schwarz alternating method is equivalent to : u, €v, J(uo) <o
and

Uont1 = Yon is the minimum over Vl of J(u2n+')
(43
is the minimum over V2 of J(uzn_”-f-)

Y2n+2 ” Y2n+1
for all n 20 . In the form (43), it is now quite clear that the Schwarz
sequence (un)n >0 is related to classical minimization methods over

product spaces (see for instance J. Céa [30 ]).
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We now give a brief study of the algorithm (43) assuming that V is
an Hilbert space (we identify V* with V), VI,V2 are two closed subspaces
such that V = Vl +V, and J is a proper, lower semi-continuous, coercive
convex function from V into R U {+»} . It is possible to give many conver-
gence results for the method (43) and the one which follows is only the
simplest we could think of. Let us also emphasize the obvious fact that such
convergence results have immediate applications to convergence results for
the Schwarz alternating method when applied to general classes of nonlinear
monotone partial differential equations (or at least those having a variational
structure). We will assume that for all R <« , denoting by KR = {u€v/

J <R}, Jec'Ky) and
2
(44) EaR >0, ¥vyau€ Kg » Jw)=J(u) - ' (u),vu) > uklv—ul
(45) J' is uniformly continuous on KR .
Then we have the

Theorem 1.3 : Under the above assumptions, the sequence (un)n defined by
(43) converges in V to the minimum u of J . If in addition, J' is

Lipschitz in a neighborhood of u then (“n)n converges geometrically to u .

Proof : Obviously, J(un) % g for some 2 €ER and thus u, is bounded in

V . Furthermore, (43) may be written as

(J'(u l)’vl) = 0 ¥v, EV

€V Uy €V

2n+
(46)

€V

' uyp,p)svy) = 0 ¥y €V U™ € V2

for all n 20 . We choose R >'J(uo) , and we denote by a = g » ® the

modulus of continuity of J' over K -

Newt, if we apply (44) with v =u, , u= Uyel and with v = Upiel ?

U=y, and if we combine the resulting inequalities with (46), we deduce
n
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(%)) J(u) = Iy alun—unﬂlz , for all n>0 .

n+])

Hence, in particular, 0 in V.

S
Now, we recall from the proof of Lemma 1.2 that for each v € V there

€V v, € V, such that

exist v 1 V2 2

1

ve=viv, ,  max (Jvi|,|v,]) < c|v]

for some Co > 0 independent of v , Combining this with (46) we deduce for

all np»0
[Q'@),W| < € ]J'(un+l)-J'(un)] Iv] , ¥vEY
i.e. using (45)

(48) ['u)] < € w (fu -u D) s ¥n>0 .
Using again (44), we deduce, denoting by u the minimum of J

|un-u‘2 < 'cl-x' (J'(un)-J'(u) , un—u) = ?;- (J'(un) , un-u)

hence

[
o
49) Iun—ul < - m(|un+l_

unI)
and the convergence is proved.

If J' is Lipschitz in a neighborhood of -u then for n large enough

we deduce from (49)

2 2
fuul® < ¢y fu y-u i

for some ¢ >0 independent of n . And going back to (47) we obtain
o] 2
(50) [J(u)=3W] = (I, D-Iw] > T lug-sl® .

It is then easy to conclude since J' being Lipschitz near u we have
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2
Ju) = J@ < c, |un-u|
while on the other hand by (44)

Ju) - I > cxlun--ul2 . L]

We next give another convergence result for functionals J of the type

1 i@ = e’ - s M@, vuev

. . * :
where'IIK(u)-O if uEK,’IIK(u)-«n if u¢K, LEYV and K is
closed, convex, nonempty set. Recall that a typical choice for applications
to partial differential equations is V = H;(O) in which case the minimum u

of J over V solves the following variational inequality
(52) f (Vu,V(v-u)) dx » J f(v=u) dx , ¥VvEK,u€K
0 0

vwhere £ € L2(0) for instance (H-I(O) in general). Typical examples of
convex sets K are

(53) K, = {VEH;(O) /v>0¢ a.e. in 0}

(54) K, =~ (vEH () /08 <v<g, ae. in 0}
where ¢, ¢l , ¢2 € H’(O) for instance and ¢, ¢l <0 on 30 while 02 >0
on 30 .

Then, on such variational inequalities, the Schwarz alternating method
yields the following sequence : let u, €K, Upoul and U, 4 aTe determined

respectively for n 2 0 by the solutions of the following variational

inequalities
(u2n+l , v—uan) > L(v-u2n+l) , ¥VvEKRKN (u2n+vl) s
Upne1 S KN (V)
(55)
(Upnez » V"U5042) > Liv-y, ,,) , ¥VEKN (uy01*Y2)

Upnez S KN (uy 47
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1 1 1
In the case when V = HO(O) and V, = HO(OI) » Vo = HO(OZ) » (55) become

) = f(v-u 1)dx>0 , ¥VvEK,

2n+

J (Vu2n+l sV (v—u2n+
0

- c -
VEuy, om Op, uy g €Ky uy, Tuyen

(56)
LJ (Vu2n+2,V(v—u2n+2)) -f(v—uzn_'_z) dx 2 0 , ¥vE€K,

2 =
vu

c
[ =
on 0y s upy ) SRy Uy pFuy o8

2n+l
For general K, V, Vl , V2 (even such that V = Vl + V2 ) the algorithm
does not necessarily converge to the minimum u of J i.e. to the solution

of the variational inequality

€2)) (u,v=u) # L(v-u) , ¥vEK,u€K .

Indeed, assume that there exist u €K, Vi, V¥, closed subspaces such that
Vi + V=V, KN (u+v) = {uo} » KN (u+v,y) = {uo} » them u =u  for

all n 20 and if u ¢ u, the method does not converge.

Example : V -]Ri y Vo= {(xl,xz) er? / x; = 0} for i=1,2,
K= {(xlpxz) ER" / xlsxz} > Uo =0 .

However, if V = H;(O) , V. = H:,(Ol) » Yy = H;(Oz) as in sections

1

I.1-I1.2, then we prove below that the method (55) or equivalently (56) converges

to u provided (18) holds and K has the following structure
(58) K = (vEH () / v() €C® ace. in 0}

where for each x in 0, C(x) 1is aclosed (nonempty) interval in R .

Observe that I(I,K2 given respectively by (53), (54) satisfy the above
property. As we will see below, the fact that we obtain in this case the

convergence to u 1is based upon the following property

(59) ¥Fv,w €K, X1V * XgW¥ € K .
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The abstract version of this property may be written as follows

J1:VvxV+V, T(v,w) is uniformly continuous in v bounded,
¥Yw€vV,

(60) T(v,w) + T(w,v) = viw , ¥ v,w €EK
¥v,wEK, T(v,w) € KN (w+Vx) N (v+V2) .

Then, we have the

Theorem I.4 : Assume that Vl + V2 = V and that (60) holds. Them, the sequence

(un)n generated by (55) converges to the solution u of (57).
Remark : As we will see in section II, it is possible to prove the geometric
convergence in the case of elliptic variational inequalities with K given

(for instance) by (58).

Proof of Theorem I.4 : Exactly as in the proof of Theorem 1.3, we see that

J(un) é » Uy is bounded and inserting v = Uy, OF Vomup in (55) we

deduce also easily

! 2
J(unH) + 3 un-un-o-]l < J(un) for all n=0

and thus L - 0 in V.

Next, we take in (55) v = T(u’uZn) and v = T(u2n+l’“) and because of

(60) we find

(Uppgp > TCUuy ) =0y ) 2 L(T(u,uy )=y )

(Uppeg » T oWy o) 3 LT Uy aw)-uy 4 ))

and summing we deduce easily using again (60)

(Uppel » Wlgn™UpneTUopeg) 2 Llutuy —uy ) +

M (u2n+l’T(u2n+l’u)-T(uZn'u)) * (u2n+2_u2n+l’T(u2n+l’u)—u2n+2)’
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Now, by the uniform continuity of T(s,u) on bounded sets we obtain

(Uppey » Ulppy) —Lumuy ) 2 65 2 O

arguing similarly for Uy e deduce for all n =0

(un , u—un) - L(u-un) » £ 0 .

n 1
While on the other hand (57) yields for all n =0
(u, un-u) - L(un—u) 2 0 ,
hence |un-u|2 < €, » and we conclude. .
Remark : We want to conclude this section by a few observations on a different

extension of the Schwarz alternating method to variational inequalities. We

first rewrite the usual "Schwarz sequence" as follows : set LA SO and then

(61) vy ® Pv](u-wn) s Vo " Pvz(u-vn) for n=0 .
We then claim that VatWo T Uoiir 0 VatVner T Yonio where (un)n is the

sequence generated by the Schwarz method (u2n +1 92 * Pv (u—uzn) ,

Upn42 %onel = PV2(U-“2n+l)) . Indeed observe that

(vo+w°)-u° - (voﬂ'o)-wo = v, = Pvl (u-wo) = Pv (u—uo)

and if our claim is proved up to n-1 then

Va*t¥n ¢ Pvl(u—vn-vn-l) YVt Vo T PVI(“—uZn) * YUn

i.e, vatv, = u , and

n 2n+1

v_+w = P

n n+l V2 ) +u

(u—vn-wn) tvo+ v, = Pv (u=-u

2n+1 2n+1

i.e. wv_+ = oving thus o laim.
i 2 Voel one2 * PF g s our claim
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I ol ol
Next, we observe that if V HO(O) » 9 Ho(ol) » Y, H°(02) s
(18) holds and K 1is given by (53) with @ = 0 , then K = K,
Ky =KNV, , K)=KNV, . Indeed, one just observe that if $€ K ,
¢ = (Xl¢) + ()(2¢) and Xi¢G Ki (1 =1,2) while if ﬁie Ki (i=1,2),
¢ = ¢] + ¢2 €XK.

+ K2 where

And the above considerations lead  to the following algorithm
(62) v, le(u-wn) AR PKZ(u-vn) for n20
with LA arbitrary in K, and u is a given element of V , where 1’K
denotes the orthogonal projection onto K .

Let us give now some convergence results concerning the method (62) :
for general convex closed sets K,.K, in an Hilbert space V , denoting by

n
if K= K; +K, , then (v“)u and (wn)n converge weakly to some v € Kl R

K= Kl +K2 , we can show v'-:-wml , V +wn converge to u = PK(“) . Furthermore,
weE KZ such that u = v+w . Indeed, we have for all n >0

(vnﬂ’n-u ’ kl.vn) >0 v kl € KI ’

(vn+wn+]-u . k2-wn+]) 2 0 ¥k, € K,

then choosing k) =V . k2 =w we deduce for all n»0

n-1

-2 2 1 -2
! l-ul +-;- Ivnﬂ-vnl < 7 |v +w_ =y

2 lvn+l+wn+ n n+l

1 -2 1 2 1 -2

2 ’vnﬂ"n'i-l_ul * K lwn-""nw‘ll < ¥ Ivnwn-ul
and thus VL Vatoer 2Te bounded and Vel ¥a o 0, Vel Vn o 0o .
Hence,

(vn"’wu-"l ’ I“14'1(2-":1"":1) > ("n—wm-l ’ k2~wn+l) +

- ‘wn.vnﬂl |vn+wn-u| ¥ k) k)

while

(u-u, vn+wn-u) 20 .
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Therefore, we find for all n>0 , kl € Kl , k
2
lvn+wn-u| < C |u-(kl+k2)| + C ]wn-wn”l + (wn+l-k2’wn—wn+l)

for some constant C » 0 independent of n .

Let n' be a subsequence such that |v_,+w_,~u| =+ Tim |v _+w -u| . Then,
n' 'n o' o n o n
if ([wn,|)n, is bounded, we deduce easily letting n' go to « in the
above inequality

Tm |vy+v ~ul? < ¢ |u-Ge*ky))| , ¥k €K, ¥k EXK
n

2

and since K = Kl +K

we deduce : v +w_* u .
2 a nn

On the other hand, if (|wn.|)n. is unbounded, we can find a new sub-

sequence n, such that

and we deduce
2

S

|vn +wnk-u] < ¢ |u-(k +ky) | + C [wnk_w“k”' + ]kzl v -w

Letting k go to = , and using the fact that K = K, +K2 we deduce

Iim |v +w ~u| = lim |v_,+w ,—u| = lim |v_+w -u|l = 0 .
n o n s n' 'n
n n k

Therefore in all cases vt U One proves similarly that v +w u .

>
n n n+tln

If K= K1+K2 , we observe that u = kl+k2 with ki € Ki (i1=1,2)

and we remark that

kl = PKl(u—kz) R k2 = PKZ(u—kl) .

In other words, we see there exists a fixed point of the contra ctioms

T = P, (u-P, (@-*)) , § = P, (u-P, (u-*))
Kl( K, ) l(2( K
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and since v = Tv = Swn for all n 2> 0 , we immediately deduce

n+l n* “n+l
that va and v, are bounded.

In additiom, if k, is a fixed point of T then ky = PK (;_kl) is

2

a fixed point of S and kl+k2 = u , Furthermore, if for some subsequence n',
Vv,s converge weakly to some v then w,r converge weakly to u-v = w and
one checks easily that v = Tv, w = Sw . Since finally |v k| }, lw ~k,| &
for any fixed points respectively of T ans S , we deduce that Vn and Vo

converge weakly using Opial's lemma {31 ].

We conclude these observations by remarking that if K = K1+K2 but
K ¢ K1+K2 then in general (vn)n and (wn)n are not bounded (take for instance

1

vV=g’, K = {(xl,xz) er’ /x>0, x2>x—} , Ky = {(x,0) / x, €R} ,
1

1

u=1u=0 then for all LA |vn|; © |wn]g o ), We wish also to remark that

even if V=H.(0) , K= {#>0,08€H O}, K =KNV , K =KNV,
in general the sequence generated by (62) is distinct from the one generated by

the Scharz alternating method.

I.6 Evolution problems.

A model evolution problem is of course the heat equation : let T2>0,

we now want to approximate the solution of

(63) -2—:— -tu=f in 0xOD  ,  ulyy, o) "0

with the initial condition

(64) ult-O =y, in ¢

o -1
where for instance u € H;(O) , £ € Lz(o x (0,T)) "L (0,T; H "(0)) . Then,
as it is well-known, there exists a unique solution in (say) such that

wetto,r; a2 n u;)
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ia’% e 120 x (0,1)) (and thus u € c((0,T1; B)) .
The above problem is of course a model problem for the following class of
evolution problems

u

(65) u +Au = f » uling = U,

. *
where A 1is a bounded, self-adjoint, coercive operator from V into V and
VgH &V* with V,H Hilbert spaces... We could treat as well such abstract

problems.

The first (and naive) way to apply Schwarz decomposition idea is to
consider the following sequence of problems : take for instance ¥ (x,t) = u®(x)
for all (x,t) € 0 x (0,T) and solve for n =0

2n+1
(66) B - 0™ e 0x0D , WP W™ e 30x0,D)
2n+2
(67) auat -Au2n+2-f in OZx(O,T) , u2n+2_u2n+l on 302:{(0,'1‘)
with of course the initial conditions : u2n+2|t,0 u2n+l|c_0 =u, in 03
and one extends u2n+l,u2n+2 to 0 by respectively uZn’u2n+l . This simple

adaptation of the Schwarz alternating method does not seem to converge for
variational reasons : it does converge but we will prove this convergence in

section II by maximum principle arguments.

Then, since for any practical purpose one is obliged to discretize the
various evolution equations (63), (66),(67), it is obviously tempting to combine
the Schwarz procedure with the iterations of schemes corresponding to time
discretisation. We will explain these possibilities by combining the Schwarz
procedure and the simplest implicit scheme. To this end, for each N1 ,
we set § -% and we consider te ™ k8§ for 0Kk €N . We are going to
build (hopefully) an approximation of the solutiom u of (63) : to this end, it

. t,
£, - % J k f(s) ds for k # 1 and we wish to define in Ol , 0
t

k-1

2
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approximations of u on (tk_l,tk) that we denote by up,vy o The main

question concerns of course the approximation of %% : since we are dealing

. . o s du 1 " av

h = -

with implicit schemes, we want to replace 5T by 3 {uk uk—l} and =T by

1 N
3 {vk-vk-l} for some %k-l’%k-l to be determined. It is quite obvious that
various choices are sible : u = v - H p =

pos PVl T Vet 0 Vel T Vel P OF Yeg T Vi

%k-l ® Up_) -+ We also have to determine the boundary conditions for u_ and

Vie like for instance : u = v on 80l » Ve Ty, on 302 ; or

=V ; on BOl . Ve " Uy om 302

(and of course in all cases we extend the functions to (¢ as usual by the
corresponding functions appearing in the boundary conditions). Of course, in
Gt sesoqs . NoA

all cases, we take u  as initializations of W sVl (for k =0) . At
this stage, we wish to observe that if we choose the simpleminddlanalogue of the
Sch thod i ¥, = v, = and =v, on a0

chwarz method i.e. w _, =V, , Vi =y , U % 1
Ve =y, on 302 i.e. if we solve first at step k

1 1 . .
(68) TV TV T f t oy, in 0, + v =u_; on 3,
and then

1 1 . -
(69) T du = £+ TV in 0, , yo=v on 30l

. N :
and if ve set uw'(e,t) mu _ () if t_ Se<r , v,0 =v_ () if
t-1 St < e then by the same arguments than the ones we give below we can

show that u ,VN converge to the solution of

Ju : - = i
(70) X35 Au=f in 0x(0,T) , “‘aﬁx(o,r) o, u[t-o u, in 0
. _ . N : . .
with y(x) =1 in 0]] V] 022 » =3 in 012 ! This apparent mistake is due
to the fact that roughly speaking there are twice more iteratioms in 012
than in 0ll v 022 . Clearly, this observation shows that some care is necessary.
To simplifiy the presentation, we will study only four different methods and it

will be clear that many variants are possible. Let us mow describe these four

methods.
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Method | : At step k , we solve
1 1 .

(7 TWe TAuy = ftyy B0 . wmomv on 30,
-1

1 .
(72) TV AV = £ ¢ T V-1 iB 02 » V= uw_, on 302 .

Method 2 : At step k , we solve first

1 . 1 : .
(73) TV “A = fetyv in 0, v =y on 30,
and then

1 1 .
(74) Ty Ay o= fk+5uk-l in Ol y oW Ty on 301 .

Method 3 : At step k , we solve first

(75) TX T A 7 B v Eguoy dn 0y 4 vomu on 30,
and then

(76) % Xy < Ay = £ ¢ % XV im0, y=v, on 30,
where x, 21 in 0ll , £2 in 012 i Xp 21 in 022 , 22 in 012 .

Method 4 : At step k , we solve

1 ! . .
an Th% A T Bt E iy BB 0 s wem vy on 30,

! 1 . )
(78) TV T T Bt E ey i 0 s vty om 30,
with Z, = %. in 011 , =1 in 012 3 G, = %- in 022 , =1 in 012 .

Then, in these four examples, we define uN and vN as above. Further-

more, in the case of Method 1 we set
VN(° t) = l( +V)-1(u +v, ) for t <t <t
’ s KK T T ke V-1 k-1 k

while in the cases of Methods 2,3,4 we define w?, wY on the same interval by

2
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respectively : (Method 2) w? --é— (uk-uk_l) . wg -% (vk-vk_l) ; (Method 3)

yaol - N_L - . N1 -
VI T X ) s Wy T Xy ) 5 (Method &) wp = w g (umv ),
N1

Vo =3 L2ty

And we have the

Theorem 1.5 : As N pgoes to +o , for the four above methods, uN,vN
converge in Lw(O,'I' H H‘l)) to u . In addition, the following convergences hold

N N N du

in L2(0,T;L2) : (Method 1) w & %%—; (Method 2) ViV, §3E (Methods 3,4)

N Ju N du

wlﬁlolﬁ-,wz-ﬁlozﬁ-.

Sketch of proof : We first explain how to obtain a priori estimates. In

Method 1, we multiply (71) by (uk-vk-l) and (72) by (vk-uk_l) and we integrate
by parts. We then obtain

(1 1 2 1 2 1 2
3 [’2‘ Ea RS JLWL SIARS JICR LR N ] *
1 2 1 2 1 2 1 2 1 _ 2
(79) { + i Iukl + -i- lvkl - 7 Iuk~l| - 5 Ivk"ll + -2- luk vk‘{‘

1 2
B S L GRS Wl C AL WRES

. 2
where we denote by (¢,y) the scalar product in LZ(O) , by J|e| the L® norm
and by fpl the H; norm (= |%|) . And summing from k =1 to any n =21

we find by Cauchy~Schwarz inequality

1 2.8 ¢ 41 2 1 2.1 2
7 ol 7 L Iy )=ty o P + gttt by

k=]

n
17 2 _ 2 2 2
t 3 ) (luk-vk_ll -c‘ﬂvk uk-ll ] < luol +8 ] Ifk[
k-] k=1
N . 2 2
hence uN,vN are bounded in Lw(O,T 3 Hé) , W is bounded in L°(0,T;L%) .

In the case of Method 2, we multiply (73) by (vk-"k-l) and (74) by
(uk-vk) and we find
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(1 2 1. 2 1 2 1 2
AR AL N RS SIS B L

2

1 2 1 _
ab AL VRLER S AL S (£ » viemuy )

(80) )
1 2 1 2 1 2 1 2 _ 1 2
7% [ = sl s laevd ez Tnd T -z IndT e

1 2
L * Iuk-vkl = (f,u vk) .

And, summing and using the fact that £ € LQ(O,T H H-l) , we deduce easily that
uN,vN are bounded in Lm(O,T H H‘l)) . wb:,wg are bounded in L2(0,T;L2) .

In the case of Method 3, we multiply (75) by (vk-uk_l) and (76) by
(uk—vk) and we find

1, 1/2 2 1 2_1 2, 1y, 42 . -

LA I RS R LR AL R UL S S WL (Epovimiyey)
(81)

1, 1/2 2 1 2 _1 2.1 2

LSRG R L R AR A (Epr o)
And summing, we deduce that uN,vN are bounded in Lm(O,T ; H(l’) , wl;‘,wg are
bounded in LZ(O,T H LZ) .

Finally, in the case of Method 4, we multiply (77) by (uk-vk_l) and
(78) by (vk—uk_l) and we find

1,172, _ 2,1 2_1 2.1 . . 2 _ _
318 e g a0 by (e lyew, B9Vt
(82)
1 1/2, _ 2 1. g2_1 2,1y g2 . -
3 18 G Pz Il og du (1P g bvpm | (Eya Vi Uey)
And summing, we deduce that uN,vN are bounded in Lw(O,T 3 Hcl’) . wt:,wg are
bounded in LZ(O,T H Lz) .

The rest of the proof is a standard exercise in evolution problems :
one first shows that the weak convergence to the solution holds and then that

the convergence is strong because of the above equalities... .
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It is of course possible to obtain some more precise convergence estimates

but we will skip here these technical considerationms.

It is also possible to consider different evolution problems such as for

instance linear wave equationms

2
37u .
(83) ;:7 Au=f in 0 x (0,T) , uIBO x (0,T) 0
with initial conditions
(84) ul - u du - u in 0
t=0 (-] ’ at|t=0 1

Then, it is possible to combine the Schwarz alternating scheme with time discre-

tizations along the above lines. And again some care is needed in the approxi-
2

mation of 2—% . The analogues of the above methods and results still hold in
at

this case.
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