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ABSTRACT.

In Section 1, the boundary value problems are formulated in terms of bilinear
functionals. The finite element method is then used in Section 2 to approximate
these problems. Next, in Section 3 finite dimensional variants of Poincare-Steklov
operators are introduced and their properties are discussed. In Section 4 to 6
iterative domain decomposition methods founded on the properties of the discrete
Poincaré-Streklov operators are presented. Finally, in Section 7 algorithms for
solving some specific elliptic problems are described and their rate of convergence
is analyzed there.

INTRODUCTION

At the present moment, domain decomposition methods have been developed in
various directions [1-22]. One of them is based on a theory of special operators -
Poincare-Steklov’s operators - and it has been investigated in [7,9,16,17,19,20], where
the basic procedure to construct these domain decomposition algorithms has been
presented. In this paper we propose and investigate domain decomposition methods

for abstract boundary value problems in terms of bilinear forms. Our investigations
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are based again on the use of Poincaré-Steklov’s operators. But unlike the above
papers our research will be focussing on applications to finite dimensional

approximations of the problems.

To approximate the problems we use finite element techniques. For simplicity
we will consider only piecewise linear basis functions. Moreover we will study
problems corresponding to Dirichlet problems for second order partial differentional
equations. The investigations will be carried out in spaces of real functions of two
independent variables. But it is easy to see that most of our results are true for
problems in which the above restrictions are omitted.

Let us describe the contents of this paper. In Section 1 we introduce
functional spaces and formulate the problems in abstract form. In Section 2 we
approximate the problems using the finite element method. The Poincare-Steklov’s
operators in finite dimensional spaces are introduced and their properties are
investigated in Section 3. Then using known iterative processes (minimal residuals
method, splitting methods and optimal linear iterative process) we construct some
domain decomposition algorithms for equations in terms of Poincare-Steklov’s
operators and describe the various steps of their implementation (Sections 4-6). In
Section 7 we consider domain decomposition algorithms applied to two concrete

elliptic problems and estimate their rates of convergence.

1. NOTATION. FUNCTIONAL SPACES. FORMULATION OF THE PROBLEMS.

Let D be a bounded open set of R? with a Lipschitz continuous boundary
3D and D ~DU3D , x = (x,, X,) ¢ D. Decompose D into two subsets D,, D2
with Lipschitz boundaries 3D, , 3D, respectively; D, , D, are adjacent along the

set Y. Let T, =3D \Y , mes(T) >0, mes (¥)>0, i =1,2 We denote by

Py the trace operator: Py u = uly (X =28D,8D; ,.., ¥; u=ulx)).

In the paper we will use the following (real) Hilbert spaces of vector valued

functions  u(x) = (u,(x) ,..., u(x)) :
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N 1/2
LD) : () - _}:l (s v oy by oy~ W)
2

N /2
W : -3 - ! .
2 (D) (UyV) ;(D) £ (ut ’ V‘)"';(D) ) ”U”‘ y;(D) (U)U)"'é(D) ’

N 1/2
Jop= 2 Wy v) » Il = (uu) ;
wi/%ap) &= W %(3D) w. D) w’%ep)

w;/z (dD) : (u,v)

o]
WD) = {uueWiD) , Papu = ulyy = 0} .

/ o]
The definitions of spaces L,(D) , WD), W, ‘(3dD,), WD) (i = 1,2) are the
1/2

a
same as for L,D), WD), W, "(@D), WiD) (with the formal substitution of
D with D)) ;
~Jhal]

wl

2,0(r1)(D') = {u:u € WD), uIr’— 0} , luall

W@ wioy

/ /
We introduce the closed subspace W; 02(1‘ )(7) of w; 2(7) , which consists of
i} 1
the restrictions to ¥ of the traces of the functions u € W; oT )(D,) . Let’s
’ i
L,(D) be identified with L3(D) and let’s denote by (Wi(D))*== W; (D) the dual

space of WiD), i.e.

fu,v) |
W3'D) = (WHD)" = {u:lluliyy-1ny=  sup L L(D)
WD ewim Mhwip)

VvV 7o z

0 0
In the same manner we introduce the other dual space WD) = (WiD),..,,

-1/2 /2 . .
2,0(1‘1)(7) = (wz,O(I‘,)W» . In this paper we suppose that the spaces L,(D,) ,

LT, LI, L)Y) coincide with their dual spaces. Let aD(u,v) be a bilinear

w

form over WD) X WXD), for which we have
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2
an(u,v) = an (U,v), (1.1)
D Z D,
where ap (u,v) is a bilinear form over WYD)XWID,) . We suppose that the
i

bilinear form aD‘(u,v) (i-1,2) is W3 - bounded and w;,O(I‘,) - elliptic, i.e. there
exist constants C;, C,>0 such that

A2 U,,VE WXQ(D‘) N

laD1(u,v)l <C; lall vl

wiyD) " IWYD)

(1.2)

czuuu"wémi) < ap (L) . Y uEW] 4y D)

o] .
Now, we consider the following problem: Given (f, w(r))GW;l(D)XWQ/Q(BD) find

PEWLD) such that

aD(W,V) - (f,V)LQ(D) ’ Vv E&];(D) y
(1.3)

®lap™ #(r) -

It is easy to see that under the assumptions (1.2), problem (1.3) has a unigue

solution (P EWLD) which satisfies also

o hywsqpy s CUIMNg  + Hogpy) (1.4)

]
w/2(3D)

In the following we will formulate algorithms for solving problem (1.3). ‘The first

step of these algorithms consists in constructing finite-dimensional approximation of

problem (1.3).
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2.  FINITE-DIMENSIONAL APPROXIMATION OF PROBLEM (1.3).

To approximate problem (2.3) we use a finite element method. To simplify the
procedure for constructing basis functions let D, , D, be polygons of R?. Set
on D, = D, U3D, (i=1,2) a triangular mesh. We suppose that the meshes on D, ,
D, have common nodes on 7 and that the corner points of the boundary 3D,
(i=1,2) coincide with some mesh points of D, . As a result we have a triangulation
of D.

Now to each node x; = (x,;, %;,,) of the mesh on D = DU3D we associate &
function w,(x) which is a linear in x on each triangle and satisfies w,(xJ=1,
Wy (x)=0 , i) . Let N be the number of these functions. We denote by
W;’A(D) C (WAD)NC (D)) the space generated by (w,);N;l and let W;’A(D() be
the set of the restrictions to D, of the functions u”€ W;’h (D) . It is obvious
that WD, C (Wi(D) N C(D,) . Next, let’s w2 a@p,) WPy, Wi D)
be the restrictions of Wi’h(D,) to ¥, T, , 8D, respectively. Let us observe
that when we restrict W;’h (D)), W;’h(D?) to Y we have the same subspace
Wi/ wi/ A

We introduce also the following subspaces

W 3

I,h B h L L .
7,0(F1)(D‘) = {uhureW, (D)) , u lI‘f 0} ;

1/2,n 1/2,n wh h h 1,h
Woo () = wz,o(r()(v) = {wi:w ~Pyu”™ , uEW (DY)

1/2,n

) M
The basis functions in W2 0(]‘,)(7) are denoted by (w£7 (x)};=; (where
wgv)(x) - P'Yw’ if x,€Y and x,¢3D).

1,h /2, )
With the finite-dimensional spaces W, (D) ,..., W,, (Y} we construct in the

) 1L,h 1/2,n
usual manner the corresponding spaces of vector-functions W, (D) ,.., Wy, (7).

Finally, in the following we will suppose that
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(i.e. Pr., is a piecewise linear function over T,, i=1,2). (Observe that we impose
, .
the last restriction only to simplify the anlysis in this paper). Now, with all the

above assumptions we will approximate problem (2.3).

We construct the approximate solution of the problem in the form

h

o= )T

M=

) (2.1

a,wi(x) , &, = (81,4 youns ﬂN,‘

]
-

where the coefficients {a(),}.{l are determined by the following system
ap(®”, Wyy) = €y (py k=1 s Now §o12000 N (2.2)
P = i=1,2 (2.3)
I“ I‘,' ’ » ) .

where Wy ,(x)=e,w,(x), e,=(0,..., 0,}1{, O)T, N’ is the number qf internal nodes of the
mesh on D , and the index j in (2.2) takes the values corresponding to these
nodes. Conditions (1.2) guarantee the existence and the uniqueness of the solution
©" of (2.2), (2.3). The above process for constructing the solution ¢” has been
fully investigated in the scientific literature and the rate of convergence of ™ to

¢ has been estimated.

We transform now problem (2.2), (2.3) . Let us introduce the function

/
V’(W)E W; " (), for which we have

1/2,n

V’i’\,‘ = (¢(7)’ XC'Y; ‘OI‘,{ ’ xEI‘,) € w2 (aDi) .
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Consider the two auxiliary problems

aD{((’)EO)’h y Wiy = (f, wu)Lz(D‘) » k=1,..,N, j=1 ,.., N, (2.4)
(o),

Py = ‘Pr', » XE, (2.5)
(o)yn ) (o)h _ 1,n

QO, - <p(7) s XE7 » 1_1)2 ((P( th (D{)) ] (2'6)

where the index j in (2.4) takes the values corresponding to the internal nodes in
D, and let N, be the number of these nodes. Each of the problems (2.4) - (2.6)
has a unique solution.

. . . h 0 1L, A 1,h h
Let us consider an arbitrary function p €W, (D) = (P"eWwW, (D) ,¥ IBD- 0} and

represent it in the form:

AR R R 2.7

(o}
where Prew. (D) - (PP e W;’h(D) , w‘th\Dt— 0} . Here t).hy -y -9} - Pl
. ) 0 1,n O 1,h 0 1,h 0 1,n
18 a function of the subspace W," (V) = (W, (D)-W," (D;}-W," (D)) C
C \%’;’h(D). Then problem (2.2), (2.3) may be rewritten as follows:
n h n Ao hh
aI)(So » ¥ ) - (f , ¥ )LQ(D) N v ¥ sz (D) ’

(2.8)

h .
© II“ ﬂor“ s 1 1o2)

or
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2 2 IS IS
2 o™ ¥+ ape”, ¥5) = 5 (L ¥D oy + (6 YL D)

2.9)
(plr‘ = <Pr’, , i=1,2.

Now, (2.4) - (2.6) implies

0
ap, @ ¥ = (4, ¥, » VRIEWSD,

gr)Eo),nln - er,s } (2.10)

(0),n .
®y \(—7)- ‘P(»Y) , i=1,2, J

and as a consequence of (2.9) and (2.10) for the functions

Ur = b - o e

(2.11)
(p? = " on Dy

we obtain the following equations
2 h h h h
l_zl fiDt (U( s wi + v‘y) - g(t"y) ’

Ullp, = 0, (2.12)

» 2 (o),
B¥Y) = E¥1 D) - Z oDt s ¥y

-1

Ih

(w?-‘-w%) € w2;0(r1) (D‘) = (ub: uhé w;’h(Di) ’ uhlri = 0) .
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If in (2.12) we take w; =0,y =0 or w; =0, %7 = 0 then we obtain
n n n <0, 1h
ap, Uy, ¥9) =0, VvV ¥ ew,” (D),
h
U( II‘( 0 3 (2.13)
h - ~h _ i1 D
Ui |«,: 2] 90(7) ’ 1 1)" .
On the other hand if we know the function
TTh . T~h
Ul =9 - ey

then we can construct U} over D, according to (2.13) and as a result we have

the solution ©? of the problem (2.2) - (2.3) :

- U} + wf")" , i=1,2 .
Therefore the iterative methods discussed in the next sections of this paper are

intended mainly for calculating the functions {U})

The formulation of these methods will be given in terms of the Poincare-Steklov’s

operators introduced in the following section.

3. POINCARE-STEKLOV’S OPERATORS IN FINITE DIMENSION

/
Consider the following problem: Given g szlo(}h)('ﬂ find V0e

€W2 o(T, )(D )} such that

ap, (VT ¥ - J g"P"dl, vV p"c W w(r )Y 3.1)
Y

~1/2,n 1/2,n -1/2,n

Here W o)) (Y) is the dual space of W2 o) - We equip W2 (L) 9

with the norm
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lg* w R)LL ol

g™l 1/2,m Sup n ’
- ('y) 1/2,n lw™ i /
2,0(T",) W EW2 oT, P \y1 2(1’1 N
where
ltw™ - Inf o™l
w2 (v peWhoT) (DY WL/, 3Dy
2,0{T,) A
V’l'y -w

Under the assumptions (1.2) problem (3.2) has a unique solution

IS
vie wz ,o(T, )(D ) and

IS P
3.
i Vi “W;(D,) < C gl /2 - (3.2)
2,0(T}) ’
where the constant C does not depend of V' ,¢® and h . The function

V;‘ has the unique trace V;’laD PaD V"G Vb’l/2 and

< TV
1/2 YWD
w @ D) AD,

h
vy y <C WM (3.3)

20T, N2

with the two constants C , C>0 independent of V? , g" and h . We have
therefore

Ve < VPl <Cl™_ . (3.4)

/2
W (T, )( D,) 2,0(1‘1)(7)

1/2,n

2,0(T";)

where V{' = V:‘I.7 is the restriction to 7Y of the trace Vf‘laD . The mapping
1

g"—be‘ defines the Poincare-Steklov’s operator S?, ij.e.
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1/2,n

2,0(1‘1)(7) '

-1/2,n

Shg*=V2, st W@ =W
We have then:

Theorem 3.1: The following statements hold:

(i) SY is bounded and the norm |[ST| may be estimated by a constant
independent of h .

(i) If the form aDl(V“,W") is symmetric then the operator SP is also
symmetric.

(iii) S? is a compact operator in Ly(Y)

(iv) ST is a positive operator in L,(Y) .

- /2, -1/
(v) There exists an inverse operator (SP)™': W;’OZ(IT‘)—’ szo(zll:)(‘y) .

Proof :
(i) As a consequence of (3.4) we have

N < C = const. < o

-1/2,n 1/ 2,

wz.o(r‘)('y)—’ wz,o(rl)(‘y)

(ii) It follows from (3.1) that
J Ste”-g"dr = J g”- VL = ap (VP , VD) >
B Y

CIVHIZ CIVHIP C IV (> 0.
> Cll ’”W;(D,)z i 1“w;/7(8D1)2 l ‘|L2(’7)
If J Shg”.g"dT=0 then V"=0 and from (3.1) we have
)
agl(V? L WP)=0, Y phe WD),
aDl(V? ’ V?)co ’

1/2,n

Jg"v"dr-o , VvV ptc wm(rl)('y) ,
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Therefore the operator S) is positive and the inverse operator (S exists.
(iii) Let V7 , V? be two solutions of problem (3.1) corresponding to some

functions g" ,g" . Then if the form ap (V* , w") is symmetric we have
1

J (SM)t VRV - aD](V;‘, V) - aDl(\‘/"1 ,Vh)
y

= J (s™ VT z[ Vi(sHT Vhdr
Y Y

h

i.e. the operators (S?), S? are also symmetric.

(iv) Using the following relations

h_h2 h
ST VR ve S CVyyp <

(Tt 20T

A2
< Cllg™ll “1/2n < C“ghlli?('y)
2,0{T’;)

and the property of a compactness of the imbedding operator of W;/O‘(F )(7) into
L

L,(Y) we have the compactness of the operator S} , acting in L,(7Y) . Observe

that the compactness of S} is true with an arbitrary number of mesh nodes and it

does not depend on mesh parameters. 0O
Lemma 3.1: The operator (SP)' is positive definite in L,(Y), i.e.

h Th
(O RN NS N (3.5)

with the constant C>0 independent of V! and of h.

Proof: let V:‘ be a function of W;/OQ(; )(’7) . Set g" = (8" '\7? .

Then from (3.1) we have
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(SH™VE, Vi = @5 VD) _(yy= ap (VDL VD) >

Th 2 V)2 V)2
2 GV 2 VI ep, 2 G VT
’ 1 1

where the constants Cy, C>0 do not depend of V{‘ and h (they are

determined only from imbedding theorems and the relations (1.2)) . O
Lemma 3.2: Let (e", \*) be a solution of the eignvalue problem SPe™=A"e”.
Then the function V" defined by
o]
ap (V2™=0 , Vv ¥"e W7 (D) (3.6),

Vhl—y = eh (3.6)2

satisfies the equaton

li

aDl(\/’l ™) )\171 [ thhdr , Ve W;’,z(r])(Dl) . (3.7
B

Proof: Set g” = (SM)'¢” and consider (3.1) . Then we have

)\h

aDl(Vh , Y = J g"y™dl =~ J (8P le"p™dl ~ 1 J e”p"dr.
v Y v

h

But the function S?gh = V* is equal to the eigenfunction e" . Therefore the

equations (3.6), (3.7) are valid. O

Lemma 3.3: Assume that the bilinear form aD1 v, ™ is symmetric and
the eignefunctions {e) of S} are normalized as |lex ”LQ(’V)T 1.

Then the solution of the following problem
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(o}
ap (VL ¥ -0, VP E WL D),V PTEW D)

(3.8)
N A 1/2,n
v "7 -wE wz,o(rl)(y)
has the form
h hyh h h h
V? = g wiVe , we = (w , e")Lg('Y) , 3.9)

where (Y]} are the solutions of (3.6) with e” = e}, k=1,2,...

(To prove lemma 3.3 it is enough to show the expansions (3.9) satisfies (3.8).)

By analogy with the above consideration we can consider the problem

" A Ay h I 1,h
aDQ(Vz , 7)) = J gydar, v » sz,o(I‘g)(D?) (3.10)
v

and introduce the operator S» , which has properties, analogous to those of the
operator S?

Now let us use the operators {S}} to rewrite the problem (2.12) in equivalent

forms.

By definitions of SP', i=1,2, we can represent the bilinear forms

ap (UZ, 30 + ¥3) in (2.12) as
ap (UT, ¥7 + $3) - J SH*TUM - @f + ¥3) dr - I (SH™ U™ podr
Y Y

where Uf‘l.7 - p? Py = U” . Therfore the first equivalent form of the

problem (2.12) is the following one:
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~ 2
J APURPRAT = g(pY), A" = 3 (ST . (311
=1
Y

Represent o , vf‘y by the expansions

~ N M
IR SRS R WV L ¢ B L
=1 =1
(3.12)
N M
Pe 3 > Cuukd
k=1 f{=1

and substitute them into (3.11).

coefficients {C,;} we have the following system of linear algebraic equations

(3.13)

where

g = (bl, e ey bN)T 3 bk = (bkn- L2 bkM)T ’

E = (21. s e ey EN)T s Bx ~ (gkh- . ng)T s

2
Bt = g(“”g)) a, ‘*’SLY))LQ(D) -2 e @, wg)) ,

=1 3

Ah h IS A (7) (‘7)
AT = (A“’k,‘,) ’ Au,k'i’ - I A Wyryr " Wy dr .
B

Therefore if " is the solution of the problem (2.2), (2.3)

On the contrary if g

then the vector b
satisfies the equaton (3.13) .

is the solution of (3.13)

Then taking into account the arbitrariness of the

87
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then the function @ = U} + (pfo)’h , where U is the solution of (2.13) with

U‘h"‘/ - E" =3 bk,wg) (x)i-7 , coincides on D, with the function ¢, .
X,
As a consequence of the properties of operators (SP)™' , i=1,2, we have the
following
A
Lemma 3.4: The matrix A" is positive definite in RN™  and it has the
An An An ; n ; iti

form A - Ay + A; , where the matrix A (I=1,2) is also positive

definite in RNM and its elements are as follows:

AP J ((S{‘)“w%)-wfj) dar, 1=1,2, k,k’=1,...,N, i,i"=1,..,M.

Lixipn’y

To formulate the next equivalent form of (3.11) we introduce the orthogonsal

9

projection operator over the span of {w,;’} defined by

k/"l

- 2 2[5 S, wed) w0 (3.19)
k=1 =1 K= = wkj,kj ! Lz('y) x4 y .

where M, = (MU k,),) is the Cramm matriz with the elements

92N G))

gy (wWyy' wk/i’)LQ(’Y) . Now, using operator Pw we can rewrite equation

(3.11) as follows

Ppt”U™ = F* | (3.15)
where
N M N M
. - (’y)] y) 1/ 2,n
r?-;'x ;1 [kgl J'zz:l (Mw)k-’,k'/ g(wk,_,, Wy € wiyo(rf)(’y) )
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Observe that equation (3.15) 1is valid for any point xXEY . Besides we can
consider operator PwA" as an operator on L (Y) with
1/2,h

D(PwAh) - W (7) as domain of definition. Some properties of this operator

2,0(1‘1)

follows from the properties of {S?) and from

(P AT, ’V“)Lz( = (A"U*, PwV")Lz(w = (40" ,V")Lm) . (3.16)

)
In particular, using (3.16) it is easy to show that the operators Pw(Sf‘ o PwAh
are posilive definite and if the bilinear forms (aD‘(V,” , WM} are symmetric then
the operators are also symmetric.

So we have obtained some equivalent forms of the equation (3.11). In the next

sections we will use them to formulate the iterative algorithms. In conclusion of

this section observe that in the following we will frequently calculate the values

1/ 2,n

(S U, o> with UZe W, oTy) w:ew;:l:(rk)(Dk) given. To find them,

)L2(7)

it is enough to solve the problem

e - wews” (D)
aDk(Uk , Vi) 0, V ¥ eW, K’ s

(3.17)
Uily = U% Urlp,~ 0 (Urewy” (DY)
and use
s 1,h
aDk(UQ, vy = J (SHUR . ppdr, w,ﬁewm(rk)(ok) . (3.18)
Y
If the values
0 (3.19)

al,kj - QDL(UZ1 y Wiy

have been also calculated then constiructing the function Pw(Si’)_th may be done

by
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—_ N M N M
PW(SZ‘)“U" - »;1 ;’\1 [ Z ,z: (M‘_ﬂl)w,k’:’ alk’/:l wi’]) ) (3.20)
k =1 J =1

From the other hand let the function g* = (S,'Z)_lffh be known and suppose that we

have to compute the function ﬁh€W;/02(’I): )(’7) . To find it, we may solve the
) A
problem
ap, (UZ , ¥D) = l g"WRdl, ¥ pPe WiL (D) (3.21)

¥

and then set

U - Uk (3.22)

ly -

The above methods for computing (SQ)’{G" or U™ will be used frequently in

the following.

4. DOMAIN DECOMPOSITION ALGORITHM BASED ON THE MINIMAIL RESIDUALS
METHOD.

The first domein decomposition algorithm will be formulated as a solution
methods for system (3.13) . lLet us use the minimal residuals method to solve this

system:

— A
¢ ~ A" — ¢,
A A
Ty = (AP, €), /A2, (4.1)
B’j"'l

- — 7t =01,

where ¢°=~ — ¢ and EOEH,G,K)QE > agby , or

F.’ - ih’E‘J , 3
Ty = @ €N /180 12, > (4.2)
€M 1P, =012, . )

Here we have
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P A 7;2” with €0~ g, 0 =0 . 4.3)
Suppose that at a step J of the iterative procedure the vector g‘l
approximates i). within a needed accuracy. Then we set

—~ N M -

- s b, W, xey (4.4)

x+1 J=t
and solve the problems
J . 0 1,n

aDl(Ul s (l.)kj) - 0, k_l,-.., N y J"'l,..., Nl y (A)kJEWQ (Dl) ’

(4.5)
J, J 77

Uplp =0, Uply = U7,

where U‘I ew“" D), 1=1,2 . Now the approximate solution of initial
l 2,o(I‘l) l
problem on Dl is defined by

of =+ =12 4.6
Consider the steps of the realisation of the corresponding algorithm.

Step 0. We solve the auxiliary problems
(0)yn IS " Y TR Y

aDl(‘Pl , vl ) - (f , tl )LQ(DI) s v vl &W, (Dl) ’

4.7
(o) (0),n
I Vel R I T (O IR

and calculate the vector €°= (¢2,...60)7, € = (€x1p+--€xm) T With the components

(hn (M) 9)

2
Egi - > aDl (¢’l y Wiy ) — (F, Wiy (4.8)
1=

)L,(D)

(So, we know the vector ¢’ with j=0.)
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Step 1. Solve the problems

WP, ¥ -0, Uew™ (D), v plewl” (D)
D, M e 20T ! 2 v
(4.9
nyd
Ui"—y = E ) 1”1;21
A~
and compute the vector BJ—A"EJ with the components
AL —e 2 _ Vi 2 ( )
bl ~ (A7E,, - J Syt e wlar - 3 apup, Wi,
¥ [=1 I=1 l
where
N M
- S T W 0, xey.
k=1 =1
Step 2. The quantities T, ,-’j+7 , 2t are computed by (4.2), (4.3) .

After this step the calculations are repeated again back to the beginning of Step. l.

Remark 4.1: The above algorithm is valid for another decomposition of D , for
example, for the decomposition, represented on Figure 7.2. It is easy to see that in
this case Steps 0 to 2 are sets of independent subproblems. Therefore these
subproblems may be solved in parallel on several computers. It is a very important
property of our domain decomposition methods. But if we have a single computer
then the algorithm may be realized too. To do this we must solve the subproblems
sequentially. 0O

Consider the convergence of the above algorithm. Because the matrix JAQb is

positive definite then by known results of the theory of minimal residual methods
(23], [24]) we have

— — A —
by — %l -0, 148 —Fl~0, J —oo . .11
[f the functions (wg)) are normalized and, with C,E >0 ,

- N M _—
CIBl < 3 3 b il Iy yy < ClEL, (4.12)

k=1 =]
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then from (4.11) we obtain

IPA™ T~ By oy =0, T — TPy 0,0 oo, (4.13)

LI NS ')
where U” = 3 3™ by wy, (x) . Now for the solutions of (4.5) we have
k=1 71

< J J ro Y] Tih J T7h
a ] _ - . 4

- nTyd Aoyl Tye
(PyA"U"— F ’U_U)]LQ(‘)’)AO’ J —eo .

Therefore,

2 J _ 2 J .
lgx u; U[“w;(Dl) 0, 2 e — ¢ ”w;(Dl) 0,] =0, (4.14)

l=y

where the functions <le , 1=1,2, are defined by (4.6).

A
Remark 4.2: If bounds for the eigenvalues of 4" are known we may in addition

to (4.14) estimate the rate of the convergence of the above algorithm. 0O

5. DOMAIN DECOMPOSITION ALGORITHMS BASED ON A SPLITTING METHOD.

A wide class of domain decomposition methods may be formulated if to solve

(3.13) , (3.15) we apply a suitable splitting method. In this section we consider
only one of them. But it is easy to see that the following considerations may be

reformulated for other splitting methods.
Since the operator wa" in (3.15) is the sum of two positive definite operators

Puar , PwA? then to solve (3.15) we may apply the following iterative
procedure ([231, p. 206) :

(E+7B,) (E+7B,) (0Y. TY) - - 27 BU- ™, j-01,..., (5.1)

where Bl = PWAZ' , T= const >0, B=B,+B,, E is the identity operator. As long

as the operators B, , B, are positive definile then process (5.1) converges and



AGOSHKOV

IE + 7B, (UT— T™ gy~ 0 T=oo . (5.2)

Let’s consider now the steps of the implementation of the iterative procedure (5.2).

First of all let’s observe that it may be rewritten as follows as a system of

equtions in L,(Y) :

Ej+l/4 -BU! — F» ,

(E + 7B, E_;+1/2 - 27 EJ+1/4 ,

(5.3)
(E + 7B,) E,;+3/4 _ Erh/z ,
TH -T e ¢ =002,
or as the linear algebraic equations
+i/a () 2 -7y )] Y) 3
y Wiy )L2(7) - (12 (S?) 1UJ, Wiy )Lz('Y) — (F, Wy )L2(7) »
+1/2 () -
. 2» wk? )L2(7)+ 7((3)1‘) ! EJ+X/2, w£‘7))L2(7) - — QT(EJ.H/‘; w$c7))L2(7) ,
P o F (5.4
3 ~1.043/ /
4, Wy )L2(7)+ T ((Sg) 1€j ? 4, W;:ZI )Lz(‘y) - (EJ-H 2, WELY))LZ(—’) ’
~it1 vy s+3/a (V) .
(U ~ U — ¢ y Wit )Lz(7) -0, j=0,1,2 e J

Therefore taking into account (3.17) , (3.18) , we conclude that the realization of

the first equation of (5.4) consists in solving the problems

and in computing the piecewise linear function. ¢

4 By J 1.h 0 1,n
aDl(Ul V¥ =0, U € wz,o(rl)(Dl) v VY ¥EW(D),
(5.5)
Ujly= U7, 1-1,2
l ‘7 » i ]

41/ 4 by
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il D, 2 ;o o
(¢ y Wiy )LQ('Y) E aDL(Ul y W) — (F™, Wyt )Lz(”)

or by the equations

2
(EJ+1/4’ w£7))L2(7) _ lz aDl(Ul +(p§0),h,w£7)) — (F"‘, w£,7))L2(D) s
=1

(5.6)

The step corresponding to the second equation of (5.4) consists in the solution of

G T A S (GARAA M
5.7
Uity v EW 1 (D)
and in setting
ehile UJ+1/217 ' (5.8)

H+1/2 +1/2
1

Indeed if we know U and if the function £ has been determined by

(5.8) , then with v“e\oh’;’h(Dl) in (5.7) we have
N SVARNNY h o2, 1sh
ap, UL e -0, v rew)” ),

s+1/2 J+1/2 +1/2 0 1,
U3 ly = € , Ui € ww(rl)(l)l) .

)]

Now let ¥” be w,(x), where wul’y - Wy{ , and let us remember the
definition of S} . Hence we conclude that equation (5.7) coincides with the

second equation of (5.4).

Taking into account the already formulated propositions we can write down the

realisation of the third equation of (5.4) as follows
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/

map, (WUET5 00+ Iy ) - €T

(5.9)

+3/4 . n Lyh
Uit et e W?,O(rz)(Dy),
EJ+3/4 - Ué+3/4|7 . (5.10)
Then, we set

NEALEE TN EH»a/« =T+ U%+3/4l7 . (5.11)

Thus the solution of the initial problem consists in the implementation of the

following steps.

Step O: Solve the auxiliary problems (4.7).

s+1/4

Step 1: Compute the solutions of (5.5) and the function ¢ according
to (5.6).
Step 2: Solve equation (5.7) and compute Eﬁl/z = U“’h/?i.y

Step 3: From (5.9) define Uéﬂ/4 and compute £’+3/4 = UJ+3/4|

and UM -T’+ EJ+3/4

After this step the calculations are repeated again beginning from Step 1. If the
process has been finished at step J then with the computed piecewise linear
function ﬁ‘] , solve the problems (4.5) and define the approximate solution of the
problem by (4.6).

Back to the question of convergence, it follows from (5.2)
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) Tinge S R (A W 2 I 1
fiu U HLQ('Y)+ TS UT—Uh, U Uh)Lz('Y) )

z p Sh-lﬁj_’“h 2 - -
+ 77 P (S U )HLQ('Y) 0,] w00,

1ol — g 0oy + 27 jud — UQHQW,Q(DQ) (5.12)

2 T T 2
+ 7 HP(‘)(S2) (U7~ UM “LQ(‘Y) -0, ),

ol — it w0, @ T 0, J~oo,
W2 (8D) W (T, (7)

To prove the convergence of U,J to U, on D, let us formulate the following

Lemma 5.1: If U, is the solution of problem
an (U, , $") = 0, U U, U, ew'” (D), v"ew D), (513
Dl l,w)‘ y l|')’_ » Uy € z,o(rl)l,w 2 vV .
then

Ay-ITT /2
I (Sl) Ui < Cablz (Ul , Ul) , : (5.14)

-1/2,n
wz,o(l‘l)w)

with the constant C independent of Ul

Proof: Let the components of the vector-function

problems

inf |Vv HQLQ(DI) ,

~ /2,
VEWLID), vip=0, vy =vEW, D)
24 r, Y l

97

YV be the solutions of the
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Denote by vhew” the piecewise linear approximation of v by those
z,o(rl)

functions {w,,;} such that v —v"ll, - 0, h=0 (h is the maximal edge of
W, (Dl)

the mesh tringles). Then

v —v™ii 0,h-0.

w3/%aD))

Let h be small enough; then for the solution of (5.13) we have

;J (SHT.v™aT| - lop, (U - v <

~
/2 n /
C al%u,, U Call?2(u,, U
< ﬂDl l l v ”W;(Dl)g aDl ( l l) ”V“w;(Dl) <
< CalfU, UY IV, < CalU L, U IV,
l W3 *(3D)) l W'(3Dy)
Therefore (5.14) is valid. O
Due to (5.14) we conclude that:
jop (U — Uy, U — Uy 1= I SO - T - @ T ary <

¥

< Cagiul— Uy, Ul —up gui- ugy

w/%3D)’

However the norm I]Ulj— uryl

i8 equivalent to the norms
wi/%(3D,)

Hﬁj—- Uhllwl/z(_y) ) HUg- U;”W’/Q(BD) {(cf. [19]) therefore
4 2 2
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J h J n
Uy— U CHiuy —
W= YTy < SIUT = U,
J I3
< Cjiuz — U7l /2 - 0, Jooo .
W, “(daD,)

So we have the following result:

3 U - u,l ~0, Y el e 20, oo (5.15)

= 0T Py T 0 & T Pl T P T '

Remark 5.1: From the proof of Lemma 5.1 it follows that

10N < clu|l -1,2) . (5.16)

W3(D)) w3/%aD))

This inequality is the finite dimensional analogue of the corresponding inequality

for the solution of the Dirichlet problem for elliptic equations of the second order.

6. DOMAIN DECOMPOSITION ALGORITHM BASED ON OPTIMAI. LINEAR

ITERATIVE PROCEDURE.

In previous sections we constructed iterative processes by applying gradient
methods and aplitting methods. Here we will use to this aim a method of another
class of iterative procedures: the optimal linear procedure. In this section we will
assume that the bilinear forms aDl (u,v) , 1=1,2 , are symmetric.

Consider again equation (3.25) , which is equivalent to an equation of the form

CrPVr=G , 6.1)

where
Ch = (P2 (RSN,

Vo (P2 T, G = (P S)2 F™ .
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Suppose that the eigenvalues of C” belong to the interval (W, ﬁ] s
with 0 < <M <oo , m, M=const. If we set

B= —2_ 6.2)

then the linear optimal iterative procedure to solve (6.1) has the form
VAT gV -GNy, 01,2, ..., (6.3)
and the rate of convergence is estimated by the formula:

74 N TAM (n-2 nyyo A
V7 = Py € M e VO GM

where 6 = (M+®)/(M ) > 1 .
For the equation (3.15) the process (6.3) is formulated as
U= TP SPY Y (P, AT — F™), j=0,1,2, ..., (6.4)
with the following rate of convergence
(sH'w-um , U’—U")ﬁw < %’%ﬁ 1) C*VO— Gl (yy - (6:5)
The reslization of (6.3) may be carried out by solving the equations:
EJ - prh’D’h_ Fh ,
PuSH et (6.6)
DA 8 Eﬁ;/z

y J=0,1,2, ... .

Teking into account the results of the previous sections we conclude that the

realization of (6.6) consists in the following steps:
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Step 0: Solve the auxiliary problems (4.7).

Step 1: Solve the problems (5.5) and define the piecewise linear function

¢ by
2 ©@n N Q)
€Wy ) T apupre" wed) - € oy s
(6.7
k=1, ..., N, i=1, ..., M.
Step 2: From the equation
ap (U, 9™ - J ¢phar, v "hew;::(r,)ml) (6.8)
v
we define the function UXEW;';‘(rl)(DI) and set
EJ+1/2 - Ul”y (6.9)
Step 3: Compute
NEatEtA ;32”1/25 - 5U117 . (6.10)

After Steps 1 to 3 are carried out again with  j—j+1 As a result we have for

the domain decomposition algorithm the following rate of convergence

2
J J_.n cle -J :
T 00 - Uyt 10 - #lyipy) < O

) J J
where the constant C is independent of J , and the functions Ul » ] are

determined by (4.5) , (4.6) .

~ v h h
In conclusion let us estimate the values of @™ , M from (6.2) . Let (", \") be a

. - /2 n
solution of the equation C"w"=A"w” . Then with v"= (P(ST)7) *w” we have
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2
hy= h h
LB ST

Ayl . h _h
R N ((SQ) VL,V )L2(7)~
((S?)_lvh.vh)[‘z('ﬁ ((S?)_lvh,vh)Lz(.y)

If (U?) are the solutions of the problems

n n Lh Bt
aDl(U" , ) =0, UTEW (rl)(Dl) , WEW (DY,

2,0
(6.11)
U:’l‘y - Vh ) 1—1,2.
then BD (U;‘ , Ug)
ANV -1 (6.12)
aDl(U1 , UD)
Introduce (Ul} as the solutions of the problems
1 0.,
aDl(Ul . wl) -0, ULEWQ(DZ) , Y leWQ (Dl) s
(6.13)

h
Ulll‘l" o, Ull’Y -v' , 1=12.

It has been proved in {19} that there exist constants % , M , independent of v
and of parameters of the mesh on Dl , I=1,2 , such that

_ vaDz(U2 , Up) ~

0<m _— . 6.14
<m s aD1(Ul , Uy <M <o ( )

Taking into account the well known results concerning the convergence of Ui’ to

Ul when h—0, we conclude from (6.14), (6.12) that

1+ - le ()] < MV'< 1+ M+ leyh)], (6.15)
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where {¢,(h)} are some functions of h dependent of the rate of the convergence
of Uz’ to Ul and for which we have le;h)|—=0 when h—0 . The expressions for
{e,(h)} are well known in finite element theory. In any case when the value of h

is small enough we may set

WEl+m, M1+ M. (6.16)

Remark 6.1: The equation (6.1) has been derived using (Pw(S;‘)'l)ﬂh . But we
can also use the operators (Pw(Sg‘)")"/‘o, (Pw(Sf’)”*—Pw(S;’)"l)"/? and analogous
operators by replacing Si’ by S?,A - the Pincare-Steklov's operator corresponding
to aDl,A(Uh , VM) = (VU Vvh)Lz(DZ) , (=1,2 . As a result we will obtain domain

decomposition algorithms which are similar to the iterative methods derived in {19].

Remark 6.2: Using equation (6.1) we can construct many algorithms based on
conjugate gradient methods, methods with Chebyshev’s parameters and others which

will converge as geometric sequences. [I

7. DOMAIN DECOMPOSITION METHODS FOR SOME ELLIPTIC PROBLEMS

In this section we apply some of the algorithms of the previous sections to two

concrete boundary value problems.

7.1. DIFFUSION OF PARTICLES IN A FLUID.

Consider the problem of a diffusion of some particles in a flow of fluid with

velocity s = (uv) : Given [(0€ LD) , py()EWLX@D) , find p(x)E WD)

such that

o
ap(e®) = () () s VPEW; (D),
(7.1)

®lap = P(r) »
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where

B B Wy 3
aple¥) = (4 g Y g Vo) T Py 3, LoD)

)

+ (Dx? 5‘(_2 ) 8X2>142(D) + (Q<P,2¥>)L‘(D) y

3u , 3V _ g in D (equation of continuity) ,
Ix,  Ox%y
~

0 < Qg Q%) € Qe , 0<Dg < Dy, Dy, < D, <o,

‘S{ = (UQ+V2)I/2 < lsmax|<°° H Qo ’ Ql ’ DO ’ Dl ’ \Smax = const , r (72)

(s,n)\aDE u-n1+v-n2|8D= 0 )
and n = (n, , ny,) is the outward unit vector normal at 9D . It is easy to prove
that under the conditions (7.2) , then problem (7.1) has a unique solution
PcEWLD) and the estimate (1.4) holds.
Introduce two subsets D, , D, , adjacent along Y . Introduce the meshes, and
functional spaces described in Section 1,2 with N=1 . Here the piecewise linear
basis functions {w,{x)} are denoted by {w,} . Besides we introduce the following

assumption: let the give data and the decompostion D, , D, , be such that

\
I = sup (L J lts,n ) jwdT /[1 J e wrdT+

wew! 10 2 (en)<0) * e >0

3w v Ow 3w
* Oxgx 0 o LDy + Pxe a5, 0 oy LDy * (QW’W)LQ(D,):\ } (73
< qq =const. <1, i=1,2,
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(1) () Gy

where n" = (n;’, ny is the outward unit vector normal at 3D, . We
consider now a situation in which assumption (7.3) is valid:

Namely let 7Y coincide with some stream line (i.e. with some particle trajectories
in the fluid). Then we will have on 7, (s,n(i)) = 0 . Therefore in (7.3) we can set
q; = 0 . In Section 2 the set Y consists of segments of straight lines.

Therefore the condition (s,n(i)) =0 on 7Y may be not valid. But the following

lemma holds:

Lemma 7.1: Let ? coincides with some stream line and 7Y be a broken line
with vertices on 7 . Then the condition (7.1) holds when h is small

enough (h:- maximal edge length of triangles in (Dl} ).

Proof: Let x be a pointon Y and X be a point on 7 in which the vector
n(l)(x) intersects 'm)" for the first time. If h is small enough then

x-¥| < Ch*® and i(s,n(t)(x))l < Cl+|smaxDh® . Therefore

(.2 2 dw  dw
| J‘ }(s,n Mwdl< C h [(Dxl 8*)(1 y a.xl )LZ(D‘)-"

.\/m(s,n(’))<0

dw 3w
+ (DX? ZE ] gg(—z)Lz(D‘) + (QW,W)Lz(Di)]
and there exists the constant g,< 1 such that (7.3) holds. O
Now let <Y satisfy the conditions of Lemma 7.1. Then the assumptions (1.2) and
all statements of the previous sections are valid. In particular to solve problem
(7.1) we can apply the algorithm from Section 4 and the results of that section still

hold.
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7.2 A LINEAR ELASTICITY PROBLEM.

Let D = D,U D, be the domain represented on Figure 7.1 (i.e. for

simplicity let {D,} be rectangles) and )\('), u.(l) (i=1,2) be positive constants.

Introduce the spaces of vector-functions with N=2 , described earlier in Sections
1,2 and set
oy = 0>
l .
j)1 r D f={f, in D,, i=1,2},f, € L, (D),

! Q

|

1

2
ap(u,v) = > aDi(u,v) )

1™

Figure 7.1

where

*p, V) = J [2“(0 QU OViy QU Vg (0 @Buy, Buyy OV,

9%, dx, ax, 0%, ax, 9%, 3x,
Dy
v, (1) Ou, . du, OV ov
+ )+ — 2y (=1 2 -
S0 uY Gl 5D e ax,)] dx ,  x=(x; , %) , (7.4)

u=(u, u), v{v,, vy,) € WiD) .

Consider the following plane boundary value problem of elasticity: Glven
0
f(X)ELLD) find p(x)EWLD) such that the relation (1.3) holds V v € \Ov;(D) .

Due to the well known inequalities:

2
“u“i?(D() S CD! J _;:1 |'88‘::;]2dx 3 u E w;,o(rg) (D{) y (7.5)
D,
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2, OUy | QU
— + —)°dx C
J j,kzl (Bxk Bx_,) 2

(1)

1
Tl L UEW, (D) s (7.6)

WD)

2, Ou; Oy (0) : 8u
JD j,k2=1 (axk + B'XJ) > Ch JD Z | dx , uEW o, )(D) (7.7
1 1

the bilinear forms (aD (u,v)} satisfy the relations (1.2) with the constants
t

(v
C, = 2 max ()\(') u(') ) C, = mm (C(O) £y, (7.8)

1=1,2 ’ =1,2 2
Therefore to solve the above problem we can use the domain decomposition method
based on the linear optimal iterative procedure and the statement on its rate of

convergence is valid. [t has been proved in {19] that the constants ™m , M from

(6.14) may be obtained by

(2) (0) A
~ m =~ a0®s M 1.9)

4()\(1) (1)) ’ ()C(o)
AN ) (2) (1) .
Here the constants m , M are the bounds of the ratio (U, DY /IUDY)
o<h < 10, D/, by < M <o,

where

k=1 Xy

)
1w, py - 3 J @U" yx
D,

and where the function U(’) is the solution of the problem

avW -0 in Dy UOly = w e WA G=1D)

U(l)'ri‘

A ) . .
Obtaining practical values of M, M has been described in {81 . For example, if
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AA .
D, , D, are symmetric with respect to 7Y we have M~-m = 1 . It is easy to

A
determine m , M for the domain represented in Figure 7.2 (see [18]) .

Figure 7.2

IFor this domain all the results of Secction 6 are also valid. But here each problem

in Steps 0 to 3 is divided into independent problems, which may be solved in

parallel.

7.3. CONCLUSION.

To conclude let us give the estimates for the norms of ((S{‘)_l) and investigate

the convergence rate of some domain decomposition algorithms. Suppose that the

basis functions (OJSJ)) are normalized and that relation (4.12) holds. Let {hy}

be the mesh sizes on Y and h = max h; . Suppose that Engtin hy,
C-const. Let h be the maximal length of the edges of the triangles in (D} .

(o)

J.emma 7.1. There exists a value h such that if h<h(°) then
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IespH™ i <C<oo (7.10)

-1/2,n

2,0(]‘1)(7)

1/2,n

Q,O(I‘l)(’y) —~W

with the constant C independent of h .
Proof: From (5.14), (1.2), (5.16) we have

-1/2,h gCl]ﬁl[ 1/2
W oo Y W2 oDy

SH- Ul

(o) )

where the constant C does not depend on h if hgh From this inequality we

oblain (7.10).

Corollary:  Let (S})”"  be a symmetric operator. Then the eigenvalues of this
operator (S?)—] acting on  L,(y) belong to the closed interval [po,pl/ﬂl with

the constants py, p;>0 independent of h.

~ 1/2,n
Proof: The existence of pg is obvious. Now, since we have, for U,V ewz,o(,l‘l)(7) ,

(ST, Vi< CIT v
@2 1/2,n i1/2,n
‘ Woamp  Woor)?

( C is the constant in (7.10)) and also that the {ollowing inequality holds

N M . N M,
D S < Loz T
=1 4= =

1/2,n

z,o(rl)(’y)

(with the constant C independent of h ) we conclude that the value p,/h with

~ . ny-1
p, = CC? can be chosen as lhe upper bound for the eignecvalues of (SL) o

Suppose that to solve the plane problem of elasticity in Section 7.2 we apply the
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algorithm from Section 4. Let (,oiI (1=1,2) be an approximate solution in Dy .
Then taking into account the properties of (S?) , the statements of Lemma 7.1 and
its corallary, and well known results on the convergence of minimal residual methods

we conclude that

2 J n 1-Ch}J
lp; - @7l < C = s 7.11)
Z e - ey © L)

where C is a constant independent of J and C - Po/Py -

Final Remark: It is easy to see that the results of Lemma 7.1 and its corollary
may be applied to estimate the rates of convergence of other domain decomposition

algorithms in finite dimenional spaces. 0
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