Schwarz’s Decomposition Method for

Incompressible Flow Problems
M. FORTIN* AND R. ABOULAICH*

1. Intiroduction

Three-dimensional fluid dynamics computation imply the solution
of very large linear systems and there seems to be an agreement. that
direct methods are too expensive to handle them efficiently.

Among the possible alternative paths that can be followed, do-
main decomposition comes quite naturally to the mind: if many small
systems could be properly comnected, computing effort could be split
into pieces that could even be dealt with in parallel.

There is by no means a unique way to do so. We shall describe
in this paper a Schwarz’s type (overlapping domains) decomposition
algorithm for the numerical solution of the Navier—-Stokes equations
of incompressible flows. We shall consider its performance in li-
near Stokes problem, then in the nonlinear case. Finally we shall
discuss possible variants, some of which are presently under test.

We shall thus consider in the following a problem of type
(cf. Figure 1.1)

(1.1) ou-vAu + Aur?vu+9vp=f on 0,
(1.2) 9u=0 on 0,

(1.3) u

(1.4) p+
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Figure 1.1

Such a problem arises when a time discretization procedure has been
applied to an unsteady Navier-Stokes problem. (cf. Dinh-Glowinski-
Periaux [6]). For « = 0 , A = 1 we have a standard stcady-state
problem. Taking A = 0 we get a Stokes-like linear problem which
we shall first consider.

Somce remarks will be needed in the sequel about boundary
conditions. Whenever T, = 0, (lLhat is if we only have Dirich-
let conditions), there is a constraint on the choice of g, that
is dictated by thc divergence—free condition. By Stokes’ theorem
we must indeed have,

(1.5) I g,;n=0.
r

This is nothing but balance of mass on 2. When we shall solve pro-
blems on subdomains, such a condition will have to hold on every
subdomain. Wc also recall that pressure is then defined only up to
an additive constant. These difficulties however disappear whenever
stress is imposed on a part of the boundary.

2. Approximation of a Stokes problem

We have already described in a previous paper a relaxation
process for the numerical solution of Stokes problem. We rapidly
recall its main features. To make clear why such a procedure can
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work and understand some conditions for its use, we need first recall
a few parts about the variational formulation of the problem. De-
fining now,

(2.1) V= {ylve@ (o))", v| =0},
o

where H'(0) is the usual Sobolev space, and also denoting

(2.2) Q= L*(0) ,

we consider the variational problem.

@« I uyvdx + v J Yu:Vydx - I pvydx = I f-v dx  vveV,
(2.3) Q Q0 Q0 Q
J Vouqdx = 0 YqeQ .
Q1

These equations are the optimality conditions of a saddle-point pro-
blem,

(2.4) Infsups | Ividx+%5 [ [vvl®dx - | qvvds ~ | fyvadx.
veV qe 2 In 2 ‘[n T ‘[n J’n

However, if we restrict ourselves to the divergence-free sub-
space V, of V , our problem becomes a standard minimization pro-
blem.

(2.5) Inf S| lvl’dx + 5 | 1T vi®dx ~ | fvadx.
veV, 2 jﬂ 2 j() fﬂ

This shows that, although minimization techniques such as rela-
xation methods and conjugate--gradient methods cannot be applied to
problem (2.4), they will work if we are able to keep the iterative
process in V, or its discrete analogue. To fix ideas we present a
few examples of finite--element approximations of (2.4) and rapidly
describe their subspace of discrete divergence-free elements.

Example 2.1: Q, - P, approximation (Figure 2.1).
This is the classical (and difficult to analyze) approximation by a
bilincar element for velocity and piece-wise constant pressure.

The discrete divergence—free condition reduces to element-wise con--
servation of mass. This element has an obvious 3D extension which
is one of the most widely used 3-D element because of its (apparent?)
low cost. This element is well known not to satisfy the inf-sup con-
dition (Brezzi-Fortin [5], Girault-Raviart [10]) and exhibits the
famous checkerboard pressure mode. O
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Figure 2.1: Q,-P, - velocity mode
X pressure mode.

Exemple 2.2: The @t -~ P, elements (Figure 2.2).

The above element can be stabilized (in the sense of the inf-sup con-
dition) by adding normal velocities as degrees of freedom on element
interfaces. This extra mode can be added either by making the final
element conforming or nonconforming, the latter seeming to yield a
slightly better approximation. Q

% e

Figure 2.2: o} - P, elements - velocity mode
< normal vclocity mode
X pressure mode.

An important point for our decomposition procedure will be to know,
at least qualitatively, a basis of Vyp the discrete-divergence free
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supspace. On a regular mesh this can ecasily be elucidated and an m-
portant difference arises between elements of Example 2.1 and Lhose
of Example 2.2.

For Q, - P, element the result is mesh dependent: on a per—
fectly regular mesh, one basis function can be associated with every
3x3 or 3x3x3 set of elements. For a distorted mesh, 4x4 or 4x4x4
sets have to be used to find a non-zero divergence-frec function.
(See for instance Fortin [9], Hecht [13] or Griffiths [12])

For the Qf - P, element of Example 2,2 a 2x2 or 2x2x2 set
is enough to yield the result. We may thus think that Q, - P, ap—
proximation are more rigid and this will need special precautions in
the following.

method

Let us suppose a finite element mesh on domain 0 and let us
part this mesh into overlapping blocks like in Figure 3.1.

++s Domain 1
... Domain 2

Figure 3.1: OVERLAPPING DOMAINS

The idea is now very simple and natural: we sweep the blocks
in some order and we solve our Stokes (or Navier-Stokes) problem on
each block using as boundary conditions, the real ones when the boun-
dary of the block meets the true boundary, or on artificial interval
boundaries, Dirichlet condition taken from the most recent update of
the solution (that is a la Gauss-Seidel)., On each block we have a
small enough problem and we can use our favorite solution method for
a Stokes problem that is an augmented lagrangian method.

For a Stokes problem this means the simple iterations where,
p°® being given, one computes ul and pht! by



338 FORTIN AND ABOULAICH

V_[nyh_':‘nyhy_ dx + rIn(ZhQE)(Yth) dx - '[(}p?l Yh Yh dx

(3.1) = [ £ ydx

nti - n " u
"Inph Apdx = Inph dx + r In“h apdx .

It must be noted that the penalty term contains a discrete divergen—
ce operator

(3.2) v - u Pq (¥-u

n

h n’

In order to have (3.1) converging, the mass balance condition must be
satisfied on the boundary of the block at least when the boundary con-
ditions of the block are purely Dirichlet. This will pose no problem
provided the solution is initialized divergence-free and kept so
throughout. In some cases this will mean that a special initializa-
tion procedure will have to be employed.

But first let us consider the convergence properties of this
method. If we think of it as a relaxation process, it is clear that
convergence will take place provided every member of some basis of
Vo is implied at least once, for every cycle, in the sweeping pro-
cess. This is where knowledge of the basis of V, becomes important:
blocks should be large enough and their overlopping wide enough to
ensure this condition. For a Q, - P, we need, for instance 4x4xk ,
k 2 4 , elements in each block and overlopping should be two element
wide. For the Q, - P, element 2x2xk , k 2 2 , will be sufficient.
Moreover care must be taken of circulation around an immerscd body:
one block must surround each of them. Periodicity conditions in cas-—
cade flows (cf. Fortin-Fortin—Tanguy [8]) also impose a special con-
dition: at least one block should be periodic.

The above conditions are enough for the convergence of velo-
city. Pressure is determined only up to an additive constant on
each block and will not converge unless some further consideration is
taken into account. We mapage during the iteration to match pressure
on one element between overlapping blocks. This can be done by adjus-
ting properly the additive constant. This adjustment should be done
starting from blocks which have a natural boundary condition (free
outlet for instance) on some part of their boundary and on which pres-
sure is fully determined.

It is now straightfoward to marry the above procedure with a
standard conjugate gradient algorithm. To simplify the notations,
we introduce the discrete operators A and B  defined by,

vvdx,

(3.3) <Auh,vh> T« Inuh-vhdx + v I vou: h

a *h
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(3.4) <th,qh> = - Inqhg~vhdx .

We also define the vector F by

(3.5)  <F,vp> = Iof~!hdx :

This allows us to write the discrete problem in the more com-
pact form:

Agh + Btph =F,
(3.6)

Buh =0 .

Let us denote S$!' the operator associated with one application of a
back and forth sweep over all blocks under the above described pro-
cedure. S7' is clearly an approximation of A™' . In the following
we: shall drop subscripts h , being understood that we now consider

a discrete problem. We can now describe the algorithm.

Algorithm 1: Preconditioned Conjugate gradient Algorithm.

Let uw® be given satisfving the incompressibility condition

(3.7 gn being known, (Y‘EH = 0) , compule gn = Agn - F,
(3.8)  compute 2" =8 ', (v-z" = 0)
n n

(3.9) For n=0, ¢ = z

(AZJ‘H, Qn— l)

For n 2> 1, compute B = - ———r——
o™t e

(r", o™
(3.10) Compute « = ——————
" (as”,0")
nt1 _ Bn a ol

(3.11) Test convergence and go back to (3.7) if necessary. O
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Remark _3.1. It must be noted that in the linear case (Stokes pro-
blem), formula for @, in (3.9) can be simplified in the usual way.
Extension to the non-linear case requires this form of the coeffi-
cient., O

Remark 3.2: Although rp can theoretically be computed as in
(3.7), it is better for the purpose of numerical stability to compu-
rf = AuP 4B pP-f whenever an estimate of pressure is available as it

is the case in the domain decomposition method described above. 0

The only non-standard feature of this conjugate-gradient algo-
rithm is the fact of working in a subspace. The difficultly is over-
come: by the construction of the preconditioning operator. We have
the wvsual orihogonality relalions and a direct applicalion of classi-
cal results shows thal

(3.12) u® »>a, ro& > Blp,
where u and p is the solution of the problem.

Before presenting numerical resulls, we shall see how this
algorithm can be cextended to the non linear case.

4. Exiension to the non-linear case

Having built a Stokes solver, it is a strong temptation to try
using it in the solution of the full Navier--Stokes case. Indeed the
domain decomposition method itself can casily be modified by changing
the solution method inside each subdomain. We used in practice a
variant of Newlon-Raphson's method, described in A. Fortin-M. For-
tin {7], including a modified Uzawa’s algerithm. For moderately

large values of the Reynolds number Re = gg , the sweeping process

still converges (although a proof is lacking...)

A variant has also been considered, employing a quasi-Newton
method by taking (on each subdomain) a fixed value of the tangent
operator A'(u) defined below. Convergence of this procedure re-
quire that a good enough estimate of u is used and some updates of
A'(u) must be done from time to time.

The next slep is extending to the non-linear case the conjugate—
gradient method of the previous section. Let us first define

A
(4.1 <A (gh)yh, gh> & ajnyh-ghdx + v fﬂg A2 whdx

+ J.ngl-lY yh . Ehdx + J.ny_h 4 yh . whdx .

We suppose that the domain decomposition method provides an approxi
mate solution 2z = S '(w)r? of the problem:
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where <r0l,v> is now defined by,

4.3) {r ,v> = « f gn-y dx + v I v gn: v vdx +
0 4]

+ [ ™"y dx = A@u,v
]

In fact, problem (4.2) is solved on each subdomain when a Newton-
Raphson procedure is used. When the quasi-Newton method is prefered,
A'(ul') is repaced by A'(u®) and one needs that u° be close enough
to the solution. The sweeping process then yields an approximate so-
lution of the globaul problem.

We can now describe the extended conjugate-gradient method.
Let us set,

(4.2) l_lnﬂ = - pngn

and let us approximate rD'! by a first order development, writing:

4.5) £ AT T

We can now request r?'!'  to be orthogonal to z' . Using the
divergence-free condition we have <Btnn,gn> = KM BzI> = 0, so
that we can express pp in the formula:

™,z (8z ',z )
(4.6) p = .
oz Bt w2 LB

In order to obtain a positive value of py, , one sees that a
sufficient condition is the coercivity of both A'(u) and S(u)
that is,

A4.7) <A'v,v> 2 allvil?,
(4.8) <S(w),v,v> » allvil] .

Condition (4.7) holds for small enough Reynolds numbers. (cf.
Temam [15] for instance). Condilion (4.8) will depend on how well
S(u) is built. In practice the domain decomposition method satis-
fied (4.8) in almost the same range of Reynolds numbers as that requi--

red for (4.7).
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Up to now, we have a "gradient" method. If we want to intro-
duce some conjugation we set for n 2 1 .

(4.9)  o" = 2" 4 g o™

and require that rP?'’ be orthogonal to ¢! as well as to oD .

This yields the formulas

@A'@hHz"e" (",
(4.10) ﬂn = s p T e

(A'(En)fgn-ﬂ,q_’n-ﬂ) n ' n,.n

Formally, our algorithm is therefore exactly the same as the
one we described in the previous section. In fact the same program
can be used. An important difference is thal now no recurrence rela-
tions hold. We cannot expect now the superlincar convergence of the
conjugate -gradient method as in the casce of a symmelric lincar pro-
blem. Convergence results have been obtained by R, Aboulaich [1].

It would be too long and technical to presenl them here. Basically
convergence will take place whenever (4.7) and (4.8) hold, S(u°) is
"close enough" to A'(u®) , u® closc enough tlo u and u is a re
gular solution of the equations. In fact this result needs as a pre-
requisite convergence of the Newton-Raphson algorithm to u .

5. Numcrical results

We have tested the decomposition domain technique in both 2-D
and 3-D situations. 1t is only in this last case thal we expect an
advantage with respect to a direcl factorization method. To moke
ithis advantlage apparenl lel us recall a few facls about storage re
quirements and number of operations requested by both methods. To
make things simple let us consider a NxNxN squure cavity solved
either a Cholesky’s factorizaltion or a conjugate- gradient method.

A direct counl shows that for N 1large, a factorization mcthod will
required (N7) operations with O(N®) words of storage. Figure 5.1
and 5.2 compare actual results of a Cholesky’s factorization with
those of our domain decomposition method applied with Q} - P, ele-
ments and  2x2xN blocks (tubes). Storage resulls are clear; domain
decomposition is O(N*) and permits to use N = 10 on our SUN work-
station while Cholesky fails for N27 . As to operalions the domain
decomposilion method is O(N®) while the direct method starts O(NS)
and becomes O(N7) for larger N . Extrapolation shows that for
N210 domain decomposition becomes more economical. It must be noted
that the stop test for the iterative melhod was, a variation of vclo-
city in maximum norm smaller than 10°7 , which is much smaller than
practical requirements. Figure 5.3 compares the C.P.U., time of a de-
composition into 2x2xN tubes with a decomposition into 3x3xN. There
is a clear gain although this is paid by larger storage requirements
(Figure 5.1). Even if this result is encouraging, it opens a few
questions. Following Axelsson [3] or Golum-Van Loan {11] for instan-
ce, one should expect O(N*) operations for a properly precondi—
tioned conjugate-gradient method. In the context in which we work
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Figure 5.2

that would mean a second-order problem with a condition number
K = O(N*) and a number of iterations proportional to vK .

The trouble is that what we solve is a Stokes problem which is
in reality a fourth order problem: we can see cur method as a domain
decomposition method for a biharmonic problem. The condition number
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Loa 1

SLOPE 5

Figure 5.3

should be the O(N*) . Experimentally, we have observed O(N®*) for
2--D problem. The conjugate-gradiant method effectively brings this
down to O(N!:3)

This is illustrated by Figure 5.4 and 5.5 which count the num
ber of iterations required to solve a given problem to a fixed preci-—
sion as a fonction of N . Figure 5.4 shows the 2-D result, comparing
computation with of 3 and the second one of approximately 1.3 which
is quite acceplable. Figure 5.5 compares the result of the conjugate-
gradient method based on 2x2xN  and 3x3xN tubes. In both case, the
slope is approximately 2.

Introducing an overrelaxation factor in the sweeping process has
been of no use: the optimal value is 1 or very near to 1. This is
again an in compressibility effect. When we altempted to solve a
laplacian operator by the same method using an overrelaxation factor
provided a strong improvement. Slackning the incompressibility con-—
straint would therefore be a possible source of improvement. However
it has a distasteful side effect of distroying positivity of the pro-
blem thus making conjugate-gradient much more difficult to handle.

Let us now consider some other points. As expected size of
subdomains and their degree of overlapping are important for conver-
gence. Using NxNx2 slices inslead of tubes improves convergence
but increases storagce requirement (but leaving them O(N® )) . As
expected larger blocks converge faster. Overlapping increases the
rapidity of convergence but also the number of operations by itera-
tions.



Using a symmetric preconditioner by sweeping back and forth is
A simple sweep destroys the superlincar behavior of the

important..
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NB. D'ITERATIONS
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T Ll
1’ "' 1w’
Figurc 5.4
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] 3-D
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2X2XN
) IIXN
1 SLOPE 5
w' ml' "
Figure 5.5

conjugate-gradiant. method for orthogonality is lost.

345
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Finally, Figure 5.6 presents a non-linear case illusirating the
importance of using a good preconditioner. A direct approach to Rey—
nolds=500 could not converge, while building S(u)° from the result
for Re=200 converged pretty well.

o' [ ez ]
: MESIOU O°UNE CAVITE 10 X 10
]
10° 1
1
TR
10~ 3
PURME " D.
2 (1) Re = 200
] (2) Re = 500
10" M.D.: Direct Method
] " 1. M.I.: Incremental
] m Method
4 " 3.
e L - IS,
° 10 20 ) e %0
Figure 5.6

6. Possible extensions

As the previous numerical results show, the method is still not
as efficient as one would like. To treat large problem we would like
to bring down the number of operations to O(N*) . Let us see some
possibilities of getting a more efficient procedure.

Non overlapping blocks: An iterative method alternating between Di-
richlet and Neumann conditions at the boundary of subdomains has been
introduced by A. Quarteroni [14]. An analogue method has been des-
cribed in Bramble-Pasciak--Schalz {4] and as a precondilioner.

It is not clear how this procedure must be used to a obtain
symmetric preconditioning operator. The idea is however appealing
for it solves implicitly the problem of initialization in the case
of a divergence-free iteration.

Another difficulty lies here in the bad convergence properties
of the preconditioner alone. We are considering the possibility of
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using it with some degree of overlapping. More classical methods
with a multiplies at interfaces can also be worth looking at.

Multilevel methods

One very simple method to build overlapping blocks is to start
from a crude mesh then subdividing it into a finer mesh. At the re-
fined level a sub-domain can be defined as the reunion of all elements
surrounding a vertex in the coarse qid. (Figure 6.1). The procedure
could eventually repeated many times. One could then think of a pre-
conditioning operator by solving the coarse problem then sweeping the
subdomains to correct the solution at the level of the refined mesh.
Such a preconditioner would be likely to be much more efficient for
it would take care of long waves as well as of short waves which are

Figure 6.1: Subdivided mesh

advantages by the standard sweeping procedure. The method is under
development and results should be available soon.

Finally a last possibility would be to iterate without imposing
the divergence-free condition by preconditioning only the "laplacian
part" of the Stokes operator. We suggest for this purpose a variant
of the Arrow-Hurwicz algorithm.

Algorithm 2: Let u° and p° be arbitrarily chosen,

(6.1) !n and pn being known, compute

nt%

=" - an-'(Agn+Btp~£>
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(6.2) nn+% being known, compute
L, un+% _ anS_iBtBun+x
pn-‘.1 = pn + canunH4

Test convergence and go back to (6.1) if needed. O

Pn can be computed by minimizing the lagrangien of (2.4) with
respect to v while «, can be computed by minimizing BuP*! . Con-
vergence of this algorithm will be analyzed in a forthcoming paper.
(R. Aboulaich-M. Fortin (21). It is possible to introduce a conjuga—
tion process with respect to the non-positive symmetrie matrix

t
_{A B
oo asfp 1]

Conclusion:

Domain decomposition methods provide an interesting approach
for the solution of 3-D flow problems. Work remains to be done to
obtain a more efficient preconditioner when the divergence-free con—
dition is present. However, even in the present state of the art,
we have obtained a method that is competitive with standard methods
and that enable 3--D computations even on relatively small machines.
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