CHAPTER 19

A Domain Decomposition Method for Boundary Layer
Problems*

Garry Rodrigue’
Edna Reiter'?

Abstract: In this paper we analyze the behavior of a specific domain decompo-
sition technique for solving a boundary value problem of the type

L.Ju] = -%u +eAu=0, (z,y) e

We are concerned primarily in problems where ¢ is sufficiently small and where the
boundary conditions yield ordinary and parabolic boundary layers in the solution.
The global domain is decomposed into subdomains according to the particular layers
and the global solution is obtained by piecing together the different subdomain
solutions. An algorithm for locating the layers and consequently the subdomains
will be constructed. Numerical results will be presented.

1 Introduction

In this paper we study the application of a domain decomposition technique to the
convection-diffusion equation

Su &u %
1 ou _ _|9%u  Ou)
(1) 9z © [8&:2 + ayz] 0

where 0 < £ << 1l and (z,y) ¢ Q =[0,1] X [0, 1]. Given certain boundary conditions
on (1.1), the solution is known to possess boundary layers where, for example, there
can be regions of € such that
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(called ordinary boundary layers) or there can be regions such that
u Zf:o eV,

oY, 8%Y,

o ez 0
o, 8T, P,y o
8z 82 0z

(called parabolic boundary layers) and ¢ is a local “stretched” coordinate, [1] .

In the following sections of the paper, we will define a domain decomposition on
 based on the boundary layer behavior of the solution and then apply a variant
of the Schwarz Alternating Procedure to obtain a numerical approximation of the
solution of (1.1)

2 Parabolic Layers

In this paper, the boundary conditions we impose on (1.1) are
(a) u(z,1)=1, 0<z<1,
(6) u(z,0)=0, 0<=z<1,

@1) (¢) u(0,y)=1, O<y<l,

ou
= =0, 0<y<1.
(d) aw(l,y) , 0<y

In [2], it was established that the sequence of functions {u(™} defined by the iteration
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(2.2a) u™(z,1) = 1, 0<z<1
(2.26) u(z,0) = 0, 0<z<1

(2:2¢) v a,y) = 9(y), 0<y<1, a=fixed

satisfies
lu — u™ oo = O(e™)
when
k dk
(2.3) 372(0) = %%(1) =0, k=0,1,...,n.

Since the boundary conaitions (2.1a-c) do not satisfy (2.3), a domain decomposition
strategy would be to split 2 into the subregions 2 = Q, |J2; where

& = [0731] X [07 1]7 4 > o,
Q= [b,1} x[0,1],

£y < Zl,

(see Figure 1) and numerically solve (1.1)—(2.1a—d) on €,. This is followed by
numerically carrying out the iteration (2.2) with conditions (2.2a-c) and using

(2.9) 9(y) = u(z,y)

where u is the computed solution in ;.

To test the feasibility of this approach, we take several values of ¢; > 0 and for
each of these values we solve (1.1) with £ = .0005, the boundary conditions (2.1a-c)
and

u
(2.5) é;(fl,y) =0, 0<y<1.

We then carry out the iteration (2.2) on Q, = [6,1] x [0,1], £, = £, — Az,
and
u™(z,1) =1, L<z<1

u™(z,0) =0, <z<l1

u(")(ﬂz, y) = u(£27 y)7 0< y <Ll

On £, the equation (1.1) is approximated by 2nd-order finite differences on
a grid with Az = .0015 and Ay = .001 and the resultant linear system is solved
with a direct matrix solver. (2.2), on the other hand, requires the solution of
inhomogeneous heat equations with the z-variable interpreted as the time variable.
In this situation, the Crank-Nicholson method is used on a grid with Az = .01, Ay =
.001. Table 1 lists the results. Each entry of the table is ||U™ — U(»~)|| ., where
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U™ is the computed approximation to u{™. Note that convergence in all cases is
quite rapid.

In [2], it is established that for fixed Az and Ay, there exists ¢ > 0 so that
divergence occurs. In order to determine such values,we use the same grid structure
as before, take €5 = 0.041, vary the £ and list the errors in Table 2. As can be seen,
larger values of ¢ will result in divergence.

Ql Qg
A
Figure 1
Table 1:
n\4 .003 018 033 048 063
1 .90401 77714 71635 67007 63575
2 .01379 .00287 .00143 00100 7.8x107*
3 00601 1.15%x10~% 43x107% 2x107% 1.3x107°
4 |39x10"° 6.1x10"¢ 208x10°® 89x1077 5x1077
5 131x10-% 38x10~7 12x1077 5x10°% 2x10°8
6 |28x%x1077 3x10°® 1x 108
7 2 x 108
Table 2:
m\e| Bx10° 5x107* 55X 103 5x 1072
1 73911 63575 277827  .037807
2 .000178 .00078 010518 0.8499
3 |41x1077 1.3x107° 00195 2.6304
4 | 3x10° 5x1077 00085 21.944
5 2%x10°8 4.6x10"% 18486
6 2.9 x 104 0
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3 Ordinary Layers

We consider the problem (1.1) with boundary conditions (2.1a-d). In [3] it was
established that the sequence of functions u({® defined by the iteration

(@) uO(z,y) =1

au(n) aZu(n—l) a2u(n—1) 0
(3.1) () oz | o oy '
(¢) u™(z,0) =f(z),0<z<1
dk
(3.2) EE{-(O) —1, k=0,1,...,n,
satisfies

lu — w0 = O(™™)

(u is the solution to (1.1)).
As before, since the boundary conditions (2.1c) does not satisfy (3.2), a domain
decomposition strategy would be to split Q into the subregions Q = Q, |2, where

Ql = [O, 1] X [0, El], El >0
(3.3)
Qz = [0, 1] X [Eg, 1], ez < E],

(see Figure 2) and numerically solve (1.1) on £, followed by numerically carrying
out the iteration (3.1a-c) with

(3.4) f(2) = u(z, &2)

where u is computed solution in Q,

{2,

A

0

Figure 2
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To test the feasibility of this approach, we take several values of £, > 0 and solve
(3.1a-c)—(3.4). As a test case, we takee = 2x107%, use the exact solution of (1.1) on
€ (cf. [2]) and then carry out (3.1a—) -(3.4) on £; using a Backward Euler method
on a grid with Az = Ay = 10~2. Convergence to an error of || U™ U1, < 107°
occurred at 30 iterations for each value of £, = 1072,107%,4 x 10!, Also, for
£, = 1072, convergence occurred for £ = 10~* whereas divergence occurred for
e=5x 107"

4 Schwarz Method

In this section we develop a Schwarz Alternating Procedure for solving (1.1) based
on the results of the previous two sections. That is, we split £ = Q; UQ, U3 where

Q= [0,1] x [b,1]
Q= [0,r] x[0,8] ,b<t,
Q3= [4,1]x[0,¢] ,€<r,
(see Figure 3). Let ugo) = ugo) = ugo) =1, on 9y, 3, 3 respectively. We then define

the sequences {ug'.).}, {1}, {u§} as follows: fori=1,2,...,
1) uf? solves (1.1) on Q with

ugi) = ugi) on [0,r] x {t}

W) =1 on {0} x[0,4]

o) =0 on [0,r]x {0}

—ul) =0 on {r}x[0,1]
2) uf? solves (2.2) on Q5 with

uf) = ) on {£} x[0,4]

o =uf™ on [4,1]x {t}

u) =0 on [£,1]x {0}

3) ugi) solves (3.1b) on &, with

ugi) = ugi) on [0,7]x {b}

o) = uf) on [r,1] x {b}
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We carried out the above iterations under different scenarios to examine its conver-
gence behavior to the solution of (1.1). In all cases, the following mesh sizes were
used:

Q : Az =Ay=10""2
Qy 1 Az =Ay=10"3
Qs : Az =102, Ay =103
The numerical method of solution was the same as that in sections 2 and 3.

In the first experiment, the lower boundary of ; is fixed and the boundary
between 2, and 3 is varied. In this case

e =107*
b =.03

t =.031
r =041

L =r—kx10"3
Table 3 records the results.

In the second experiment, the boundary between Q, and 5 is fixed and the
lower boundary of ©; is varied. In this case,

e =2x10™*

t =0.31

b =t—kx107?
r =0.41

£ = .04
Table 4 records the results.

In the final experiment, the boundaries of Qy, Q, Q5 are held fixed and the value
of ¢ is varied. In this case,

b =03

t =031
r =0.41
£ =0.30

Table 5 records the results.
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0
t
b
2, Q3
£ r
Figure 3
Table 3: Table 4:
n\k 1 .20 40 n\k |1 10 20
1 .64325 .72092 .891205 11.2580 .3363 .5799
2 .0022 .00213 .002195 3 |.6844 .2859 .0682
3 5.26 x 10~ 5.05 x 10~* 4.53 x 10~* 51.9212 .,4923 .0846
4 1.68 x 10~* 1.59 x 10™* 1.39 x 107 71.7625 .4753 .0623
5 55%x10~% 52x10°% 43x107° 9 |.4705 .3134 .0325
6 1.8x107% 1.6x107% 1.3x107° 11 |.2133 .1572 .0132
7 5x 1078 5x 10~¢ 4 %1078 13 | .0734
8 2% 1076 1x 1076 1x 108 151 .02
Table 5:

m\e |5x10° 2x107 25x107* 3.x 10-% 3.5x10°*

1 .6684 6718 .6659 .6561 6432

2 104 .0184 .0304 .0502 0802

3 7x107° .0146 .0428 .0978 .1907

4 8 x 1077 .0148 0571 .1634 .3838

5 1077 L0129 .0658 2344 L6615

6 10-8 0101 0676 .2986 1.0091

7 .0072 .0629 .3437 fos)

8 0047 0536 .3621

9 .003 0438 3647

10 0018 .0337 .3459

11 .001 0241 .3044
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