CHAPTER 3

A Domain Decomposition Method for a Convection Diffusion
Equation with Turning Point*

G. W. Hedstrom?®
F. A. Howes!t

Abstract. We use asymptotic analysis to determine a domain decomposifion
method for a singularly perturbed convection-diffusion equation with turning points.
The equation

—2ug = €Au ¢

is considered on a square © in the plane, with Dirichlet boundary conditions prescribed
on 9. This equation is an idealization of the Navier-Stokes equation with velocity —=z,
parallel to the z-axis. Tt is known from asymptotic analysis that for small, positive
¢ (large Reynolds number), solutions of (1) very nearly satisfy the reduced equation
1y = 0 in subdomains which are at least a distance C/€ from Q. Tn the vicinity of
0N} there may be boundary layers, depending on the boundary values. (There is no
boundary layer at an inflow boundary.) Our domain decomposition method uses this
asymptotic information to determine the partition into subdomains, and it also snggesis
the basis funciions to be used in a finite-element method.

1. Introduction. Several researchers have recently used asymptotic analysis fo
identify good domain-decomposition strategies for singularly perturbed problems and
to suggest efficient nnmerical algorithms on each subdomain. This work includes both
time-dependent problems, such as

S+ 00,u+bOyu = eAu, (1.1)

and time-independent problems, such as

@y + b Oyu = eAu. (1.2)
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Here O denotes partial differentiation, 8, = 8/dz, and A is the Taplace operator. In
both cases the singular perturbation aspect of the problem is reflected in the fact that
€ is a small, positive number. The basic idea of this approach is that in a large portion
of the domain it is almost possible to replace, say, (1.2) by the corresponding reduced
equation

a.0z1+bdyu = 0.

There exist subdomains—boundary and internal layers—in which such a reduction is
impossible. Tn many of the layer regions other reductions are possible. Qur aim is to
identify these layer regions and to use numerical methods there which are suited to the
local behavior of the solution.

In this paper we present an algorithm for a problem in which there is an interaction
between layer regions of two different types: a boundary layer and a layer generated by
a manifold of turning points. Before describing onr problem in detail, let us summarize
some of the previous work on related problems.

The seminal work using asymptotic analysis to snggest numerical methods was the
paper by Chin and Krasny [4] on an algorithm for solving two-point boundary-value
problems for equations of the form

en' = f(z,u) (1.3)

under the condition that 8f/8u > 0. These problems are difficult to solve by classical
numerical algorithms because the solution may have boundary layers at one or both
ends of the interval. The algorithm is based on an approximation of f by a function f;
which is piecewise linear in u. For a given approximate solution u,.1, the knots of a
spline u, are chosen to be the values of z for which u,_1(2) is a point of discontinuity
for 8fn/0u. As basis functions for the spline u, Chin and Krasny use either exact
solutions or asymptotic approximations to solutions of

e’ = fu(z,u).

The method is very efficient because these splines incorporate the boundary-layer be-
havior of the solutions.

As an example of a numerical algorithm based on asymptotic analysis for a 2-
dimensional boundary-value problem, let us summarize the work of Rodrigne and Reiter

[9] on the equation
dpu = eAu (1.4)

on a square D = {(z,9) | 0 < 2z < 1, 0 < y < 1}, with boundary conditions 4 = 0 on
y=0,u=10n2z=0and on y=1,and Ju/dz = 0 on z = 1. This problem is a model
for steady laminar flow of a fluid over a flat plate. We discuss this work in some detail
becanse ours is an extension of it. The asymptotic behavior of solutions to {1.4) ase | 0
is well known [5]. The reduced equation for (1.4) is

8,U =0, (1.5)

and the solution U = 1 of (1.5) fulfills the conditions on three of the four boundaries:
the inflow (z = 0), the outflow (z = 1), and the top (y = 1). As a consequence, the
solution u to (1.4) is asymptotic to I/ as € — 0 except in a boundary-layer region in the
vicinity of the bottom boundary (y = 0).

One feature of this boundary-layer behavior is that in a neighborhood of the origin
of diameter O(¢) (the birth region of the boundary layer), we must keep the full equation
(1.4). Flsewhere in the vicinity of the boundary y = 0, because the solution u of (1.4)
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Fig. 1. Domain decomposition.

must have rapid variation in the y-direction, 8%u/d22 is much smaller in magnitude
than 8%u/8y%. Consequently, near the z-axis and away from the origin, the solution u
of (1.4) is asymptotic to the solution of the boundary-layer equation

Bev = €Bv. (1.6)

Tt is known that the thickness of this boundary-layer region is O(\/¢).
On the basis of this asymptotic analysis the method used by Rodrigue and Reiter
is as follows. The domain ) is partitioned into three subdomains:

Di={(z,y)|0<z<1, go<y<1},
Dy ={(z, )08 <z <=zp, 0 <y < yo},
D3={(:z:,y)]mg<a:<1,O<y<yu}.

See Fig. 1. On the basis of experience the value of yg was taken to be 4 /e. Tt is known
from the theory that we should take z¢ = ce for some positive ¢, but Rodrigne and
Reiter determine zg dynamically. The following iterative method is nsed.

1. Taken =1 and set ug=1 on D.

2. Solve a discretized version of

Optty, = €Aup_y (1.7)

on Dy. (This iterative scheme provides a mechanism by which the solution on
D3z U Dg influences the solution on D,.)

3. Use invariant embedding (a form of Gaussian elimination) to solve a discrete version
of (1.4) for u, on D3. The boundary conditions are that u, =1 onz =0, u, =0
on y =0, and 1, is as determined by Step 2 on y = 5. On the boundary z =25 2
discrete approximation to (1.6) is nsed as the boundary condition, and 2 is selected
as the first vertical grid line on which € 82u,, is smaller than a prescribed tolerance.

4. The equation

Bpup = € (Odup—1 + O}nn) (1.8)
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is solved on D3 with boundary conditions u, = 0 on y = 0, #u,, as determined in
Step 2 on y = y5, and u, as determined in Step 3 on = = x;.

5. Tf the difference maxp |ty — tin1| is sufficiently small, stop. Otherwise, increment
n by 1, and return to Step 2.

1t may be noted that in this algorithm no attempt is made to fulfill the boundary
condition du/dx = 0 at & = 1. This omission is harmless because it overlooks only
a weak boundary layer in the vicinity of £ = 1. Tn the work of Brown et al. [2] the
singularly perturbed differential equation

adzu +b0yu =eAu+ f(z,y) (1.9

is considered on a convex domain Q with Dirichlet boundary conditions. Here the
coefficients a and b may depend on = and y. (We could also permit a and b to depend
on u by using an iterative scheme.) Tt is requnired, however, that a and b not vanish
simultaneously—there are no turning points. The paper [2] has two main thrusts: (1)
an implementation of coordinate transformations dictated by asymptotic analysis, and
(2) an investigation of the stability of schemes based on (1.7).

The reduced equation for (1.9) is a d,u + byu = f, which may be integrated by
quadrature of line integrals along the characteristic curves with boundary data specified
at inflow boundaries. This process provides the solution over most of , but it must be
matched to boundary layers in the vicinity of the remainder of Q. These boundary lay-
ers are obtained by introducing boundary-fitted coordinates and using a finite-element
method of Chin-Krasny type.

In an application of this circle of ideas to time-dependent problems Chin et al. [3]
developed a domain-decomposition method for a time-dependent equation modelling
transonic laminar flow in a duct,

A+ uwdpu + ru = €d2u, (1.10)

for 0 < z < I and t > 0. Here 7 is a smooth function of 2. The boundary and initial
data are such that the solution # has a shock layer internal to the domain. Outside of
this shack layer one may solve the reduced equation

O+ 1 8pn + ru = 0,

while the full equation (1.10) must be solved in the shock layer. An iterative method
based on the equation

2
Optin + Uyt Oty + Ty = €50n

is used to locate the shock layer. Scroggs has implemented this algorithm on an 8-
processor Alliant computer.

2. Asymptotic Analysis of a problem with turning points. We consider
problems in which there exists a curve of turning points, and as a model we take

—z0pu = €Au (2.1)

on the unit square Q@ = {{(z,¥} |0 <z <1, 0 <y < 1}. For (2.1) on Q only the portion
of the boundary z = 1 is an inflow boundary. The direction of flow is from right to
left, because the coefficient of 8, is negative in (). The characteristics of the reduced

equation
—~z Oyt =10 (2.2}

are parallel to the parts of the boundary y = 0 and y = 1, so we wounld expect to
find parabolic bonndary layers near the top and bottom of Q. The boundary z =0 is
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Fig. 2. Domain decomposition with turning points.

special in that it consists of turning points—the coefficient of 3,u vanishes there. Let
ns remark that for this first example we have chosen a case in which the direction of
flow is toward the turning points instead of away from them, because the solution may
be unstable with respect to perturbation of the boundary data in the other case [1].

Tf for (2.1) we impose the boundary conditions

u=0 ifz=0o0rify=0,

2.3
w=1 ifz=1orify=1, (2.3)

then the natural domain decomposition is indicated in Fig. 2. This figure is based on
an asymptotic analysis of the behavior of the solution of (2.1} as € — 0 as given, for
example, in [6] and [7]. Tet us summarize the principal features of this asymptotic
behavior.

There is a parabolic boundary layer region P near the bottom boundary y = 0 in
which (2.1) may be approximated by the boundary-layer equation

—20pu = € (')Z'u.. (2.4)

Tn Fig. 2 we have drawn the region P as a sum of rectangles because that is how we
implemented the domain decomposition. On the basis of asymptotic analysis it is more

natural to select a curve of the family 4 = —Celogz as the upper boundary of P
becanse
- (25)
n= elogz B

is a similarity variable for (2.4). Note that the presence of the logarithm in (2.5) indicates
that the turning points induce a widening of the parabolic boundary layer. Tn addition,
the boundary-layer approximation (2.4) breaks down near the turning points.

Tn the vicinity of the corner (z,y) = (1,0) there is a birth region F, for this
boundary layer, in which we must keep the full equation (2.1). The diameter of the
subdomain F is of order O(¢) as e — 0.

There is no parabolic boundary layer analogous to P near the top boundary of
! because the solution # = 1 of the reduced equation (2.2) is compatible with the
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boundary condition there. The subdomain on which the reduced equation (2.2) is a
valid approximation to (2.1) is denoted by H in Fig. 2, and it is usnally called the outer
region.

The region surrounding the turning points z = 0 is divided info three parts, an or-
dinary boundary-layer region (0 on which (2.1) may be approximated by the differential
equation

—2 0pu = €D2u (2.6)

and two regions F2 and Fz in which none of the terms in (2.1) may be neglected.
Because the change of variable z = /e £ in (2.6) produces a differential equation with
coefficients independent of ¢, we expect the width of the subdomain @ to be of the
order of O(y/€) as € — 0. The special behavior in F, arises from the interaction of the
parabolic boundary layer in P with the turning points, and the subdomain F3 is needed
because of the incompatibility of the boundary data (2.3) in the vicinity of the corner

(m7y) = (07 1)'

3. Iterative Schemes in Individual Subdomains. Tn this section we describe
the different local approximations to (2.1) which are used in the various subdomains.
On many subdomains our difference scheme is an iterative method to improve a given
approximate solution u,_;. In Section 4 we present our global iterative method, which
may be regarded as a form of matched asymptotic expansions without the algebraic
manipulations normally associated with matched asymptotics.

Tet us first select difference operators, given mesh sizes hy and Ay in the z- and
y-directions, respectively. On all of the subdomains we use a central finite-difference
approximation to 3511.,

w(z,y + hy) — 2u(z, y) + ulz,y — hy)
h2 ’
]

D;u.(:r:, y)= 3.1

On most of the subdomains we use an upstream approximation to Jd,u, namely,

(e + by, y) — ulz,y)

Diu(a,y) = (3.2)
he
and a central-difference approximation to 92u,
D2u(z,y) = w{x + he,y) — 2ulz, y) + w(x — he, y) . 3.3)

The exceptional subdomains on which we use different approximations to the pariial
derivatives in the z-direction are the regions Fa, O, and F3 adjacent to the turning

points. There, in the spirit of Chin and Krasny [4], we approximate the operator
2 8y + €52 by a finite-element method based on solutions of

—20pu =€ E)iu.

Thus, for a grid {=;} with j = 0,1,...,J our fundamental basis spline is

¢j(m)= erf{v‘}?} —Prr{?:z:_{.} for i1 <z <z,

erf{vé?} -—erf{-jﬁ}

. x| _ ol 2 (3.4)
q‘)_,-(m) = ::: g%;;{ __:Tf' %52‘;% for Ty <& < Tjy1,
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We define the operator I as the finite-element approximation to —z 8, — €82 obtained
from using the basis functions ¢; in (3.4).

Tt might seem reasonable that in the outer region H, where (2.2) is the asymptotic
behavior, we use an analogue of (1.7)

—a:D;,"u,, =€ (Dg + DE) Up—1-

Tt turns out, however, that the stability conditions for this iterative method are quite
severe, namely that

e< Ch? m}iIn T

for some positive constant C. With the notation Tu = u and Tyu(z,y) = u(z,y + hy),
we use in H a scheme which we find to be stable under a wider range of conditions

(—mD;‘,’ + %’) Up =€ (DZ. + -};E(Ty +7‘y'1)) Up_q- (3.5)

Tn the parabolic layer region P we use
(—=zDF —eDZ)u™ = eD3u™". (3.6)
Tn the birth region of the boundary layer ¥, we simply discretize (2.1) with a fine grid,
~zDfu, = ¢ (D2 + DZ) Ty 3.7

Tn the ordinary layer region O we use
Tty = €Djun_1, (3.8)

where I, is the finite-element approximation to the operator —z 8, — € 82 obtained from
the splines (3.4). Finally, in regions F» and F3 we use the approximation

Tu, = eDzun. (3.9)

4. The Global Iterative Algorithm. Our global iterative method combines the
Tocal iterations (3.5~9) as follows.

1. Make an initial domain decomposition based on asymptotic information about the
location and size of the layer regions.

2. Set n. = 0 and provide an initial approximate solution 2. (One reasonable choice
is the outer solution 19 =1.)

3. Proceed through the subdomains in the following order. Use (3.5) to find u, on H.
Use (3.7) to find u, on Fy, using (3.6) as the bouwndary condition on the downstream
boundary. Solve (3.6) on P to determine u, there. Then solve (3.8) on O. Finally
use (3.9) to determine u,, on Fy and Fs.

4. Check for convergence. Tf we aren’t finished, check u, for consistency with (2.1)
across subdomain boundaries, modify the domain decompaosition if necessary, in-
crement n, and return to Step 3.

5. Comments. The primary concerns about any numerical method are aceuracy
and efficiency. Our scheme derives its efficiency from the fact that difficult matrix
problems are solved only on the subdomains Ui, Fj. (We use a multigrid method
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for these problems.) On the largest subdomain H we solve an uncoupled system of
ordinary differential equations (3.5). This is not only fast, but it is also highly parallel.
The two-point boundary-value problems (3.8) on O are also highly parallel. Admittedly,
the algorithm (3.6) on P is quite sequential, but that is because the inherent nature of
the asymptotic behavior there is a parabolic partial differential equation (2.4).

Efficiency also depends on the rate of convergence of the algorithm as n — co. On
the basis of computational experience and theory for problems with constant coefficients
we have found that the rate of convergence of the scheme as a whole is limited by the
behavior of (3.5) in H. Tn fact, for a constant-coefficient version of (3.5)

2¢ 1
(-ﬂ,Dg’ + -ng) iy = € (Dﬁ -+ _h—z(Ty + ’l’y“l)) Un—1 (5.1)
'y (]

with e > D we have the following theorem [2] concerning the discrete Ip-norm of u,.

Theorem 5.1. For the iterative scheme (5.1) on the halfspace ~c0 < 2 < 0,
—00 < y < oo with boundary data u,(0,y) = 0 for every positive number k there exists
a continnous function C(£) such that

Nluall < # flen1fl

€ hge
— <} —.
ahy — ¢ (a.h§ )

Furthermore, there exist functions u,_; such that for any positive § we have

whenever

ol = 1 = 8) s (5.2)

€ hge
a2 (4):

The proof is based on the Godunov-Ryabenky stability theory [8].

The significance of Theorem 5.1 for application to our problem is that the left-
hand boundary of H must be sufficiently far from the y-axis for two reasons. On the
one hand, we have a variable coefficient o = =, so that the theorem can only give
heuristic information. Stiil, we are led by (5.2) to expect instability if # is too small in
H. On the other hand, the derivative |82u] is large in the turning-point region, so that
if we are using (3.5}, then we need a small step size by to resolve the variations in u.
This also has a destabilizing effect in (5.2). Tt should be noted that if the turning-point
region Fo U O U F3 is sofficiently wide, then neither of these effects is of concern. The
solution u in H is so smooth that the mesh sizes may be taken to be large compared
with ¢/ ming z.

The criteria for determining the boundaries of P and F; (j = 1,2,3) are not
stability, but accuracy and efficiency. Tf an FE; is larger than necessary, we do more
computational work than we need to, but there is no degredation of accuracy. T, on the
other hand, an F; is too small, then we will have to do more global iterations in order to
get convergence on the adjoining subdomains. Worse than that, we will also probably
loose accuracy because fine meshes are used in the regions F; in order to resolve the
tapid variations of u there. Similar criteria govern the location of the boundary between
Pand A.

We recognize that classical numerical analysts are likely to regard our stability
condition € < Ch, ming = as quite strange, but it makes sense for singular perturbation
problems.

whenever
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