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Abstract .

We report about parallel implementation on CRAY?2 supercomputer of a parallel
algorithm based on a domain decomposition method with Lagrange multiplier, for solv-
ing an ill conditioned three dimensional composite structural analysis problem, with as
many as one million degrees of freedom .

‘We show that this method has very good features on both granularity and data depen-
dancy viewpoints. We explain the practical differences between this method and the
standard domain decomposition method with Gaussian elimination of the degrees of free-
dom inside the subdomains .

The tests performed prove that the choice of the local solver is very important to get
an efficient global method. For the studied case, it is clear that solving the local prob-
lems with a direct method is the best solution, and we give some reasons why it will be
the same for many other problems .

1. Presentation of a structural analysis problem for a composite beam .

‘We consider the linear elasticity equations for a composite beam made of a little
more than one hundred stiff fibers (carbon or iron) bound by an uncompressible elasto-
mer matrix . 4 s

yo!

Fig. 1. Geometry of the beam . Beam cross section .
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Homogeneisation methods do not work for such a device with microscopic-scale discon-
tinuity. But, due to the composite feature, the finite element mesh for solving the prob-
lem with discontinuous coefficients must be very refined to get a good representation of
each substructure. This leads to a very large scale matrix, hence the problem can be
solved only by iterative methods like the conjugate gradient method .

However, substructuring is very easy in the present case for the beam is obviously made
of similar jointed composite "pencils". Hence, using a domain decomposition method for
solving such a problem seems to be natural, because the decomposition is straightfor-
ward. Furthermore, all the subdomains are identical .

Fig. 2. A composite pencil .

It must be noticed that the problem we study is very ill conditioned for both
geometrical and material reasons.

The material reasons are at first the composite feature. The Young moduli of the fiber
have an order of magnitude 10* times the one of the elastomer. Secondly, the penalty
method for the uncompressibility condition in the elastomer makes the condition number
increase with the penalty parameter .

The geometrical reason is linked to the fact we try to solve a beam problem, with a ratio
of the length upon the width equal to 6, that makes the pure bending problem very ill
conditioned .

2. The primal hybrid variational principle .

The domain decomposition method we used for solving the problem is based on the
so-called primal hybrid variational principle, and consists in introducing a Lagrange mul-
tiplier to remove the continuity condition on the interface (see for instance [1] or [2]).

Let Q be a bounded open subset of R3 with a smooth boundary I'. The linear elasti-
city equations with homogeneous boundary conditions on I'y 2 subset of I are :

Au=f inQ I @juErn(1n))

ith (Au); = — ———idr 22 72, 1
{Fo onT, Witk (Aw; . M
The usual variational form of this problem consists in finding u in (Hi('Q.))3 and satisfy-
ing the boundary condition u = 0 on I’y wich minimizes the energy functional :

Iv) = %a(v,v) —(By)  with a@y)= jﬂaﬁkhek,,(u)eg(v) dx .

Let us consider a splitting of the domain Q into two open subsets ; and £, with
smooth boundaries T'; and T, . Let us assume that the boundary of the interface
% =TI is included in I so that the traces on X of the displgcemgnts fields u satis-
fying the boundary condition u = 0 on Iy belong to the space H*®) .
Solving the linear elasticity
equation consists in finding
two functions u; and u,
defined on £; and £,
Q satisfying the boundary con-
1 ditions on T'j and T, which
minimize the energies L,(v)
and I(v) with the continuity
constraint 1 v; =vo on L.
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The weak form of the continuity constraint is :
(vi—Vvy,p )2 =0 foranypin (A 2(x)) .

One can show that the problem of minimization with constraint above is equivalent to
finding the saddle-point of the Lagrangian :

L) =Lv) + L) + (v = v, )y - 3)
This is equivalent to find the fields (ujuy) in (HI(QI))3X(H1(QZ))3 and the Lagrange
multiplier A in (H™%(Z))* which satisfy :
L(up) <L@wA) < Lv,A),

for any field v = (v{,v;) in (HI(QI))3X(H1(QZ))3, and any p in (H™V2(%))3 .

The left inequality imposes (u; —u,, )y < (up-uy, A )5 and so (uy; —u,, )y =0

for any p in (H‘”Z(Z))3 , thus the continuity constraint is satisfied by the solution of the
saddle-point problem .

The right inequality implies I(u;) + L(uy) < Ii(vq) + Ix(vy) for any (v4,v,) in (HI(Q))3. It
means that (u;,u,) minimizes the sum of the energies on Q; and Q, among the fields
satisfying the continuity requirement. Hence u; and u, are the restrictions to Q) and Q,
of the solution of the linear elasticity equation on Q .
The classical variational interpretation of the saddle-point problem (3) leads to the equa-
tions :

.

A]ul + B,;}\. = f1 in £y

u = 0 on I‘Oml“l
AW -BA=f, inQ , 4
Uy = 0 on 1"0('\1‘2

Blul - Bzﬂz =0 onx

.

where A; and A, are the differential operators of the linear clasticity equations on Q§
and €2,, while B; and B, the trace operators onto X of functions belonging to (H'(2)))
and (H'(Q,))® .

The analysis of these equations shows that the Lagrange multiplier A is in fact equal
to the interaction force between the substructures along their common boundary .

On a mechanical point of view, it means that it is necessary to know the forces on the
interface to obtain local independent displacements problem .

3. An iterative algorithm based on the hybrid finite element method .

A discretisation with Lagrangian finite elements for the displacements fields and for
the interface constraints of the hybrid formulation (4) leads to the same equations where
Aj, Ay, B; and B, are the matrices associated with the discrete linear elasticity and trace

operators .
A +BiA =1
A, —BoA =1, &)
Bjuy; -Bou, =0

By substitution in the equation (5) the problem can be written with respect to A only :

{BI*AII*BII'*'Bz*AEl*Bé]*)\,'—'BI*ATl*fl"‘Bz*AEl*fz
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Hence A satisfies the following equation :
C*A=b (6)

A ¢ B{ AT ¢ fy
whereC:[Bl,—Bz]* e andb=[Bl,—Bz]* o ast s

The the discrete displacements spaces V;, and the discrete Lagrange multiplier space
M are chosen in order to satisfy the Babuska-Brezzi-Ladyzhenskaya condition :

Inf Sup (B:;*u,p)=p>0
=1 julv=1
Hence the C matrix is symmetric, positive definite, and so the equation (6) has only one
solution .

We refer to [1] or [2] for the now classical error estimates for the hybrid formulations of
elliptic differential equations .

The resolution by the conjugate gradient method of the interface problem (6) leads
to a parallel algorithm with a very good granularity .

Let 1 be a vector, computing the product & =C * p involves the following three steps .
Step one :
' v B] L
computation of the product , v, | = B pl o

that means computing two independent local vector-matrix products .

Step two :
A7 vy
%
A5l i

that means computing the solution of two independent local sets of linear equations asso-
ciated to local linear elasticity problems with Neuman boundary condition on the inter-
face T ..

Step three :
computation of the variation on the interface of the displacements fields w; and w, ,

w1
computation of the product ,

w2

S

The simplest choice for the space M, consists in having on each interface vertex as many
degrees of freedom for the multiplier as for the trace of the discrete displacements fields.
In this case, the B; and B, operators are simply the operators of restrictions of the
discrete displacements fields .

Then the condition, Bju; — B,u, = 0 on X, is equivalent to the condition : 1y = u, for any
degree of freedom located on Z. So the first and third steps of the computation of the
product by the dual mauix, are quite simple and involves only few operations .

In this case, it is straightforward to see that the dual mairix C is elliptic, and the solut@on
(uy, u, ) of the hybrid problem (5) is equal to the solution of the standard conforming
problem on the whole domain .

Obviously, the main part of the computation for the resolution of the hybrid prob-
lem (5) by the conjugate gradient method consists in the step two of the matix-vector
product, i.e. the resolution of local independent elasticity problergxs, which can be per-
formed in parallel. The granularity is good, because data transfers involve only the boun-

:.—.B]*Wl"Bz*WZ
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dary degrees of freedom, as the computations consist in the resolution of problems in the
whole subdomains and require much more operations .

4. Comparisions with the Schur complement method .

The parallel algorithm associated with the hybrid method has the same kind of
features as the Schur complement method, presented for instance in {3] or [4]. Both
methods consist in solving a condensed problem on the interface, and when solving this
problem by a gradient method, the main part of the computations consist in the resolu-
tion at each step of the outer iterative scheme of local independent problems in each sub-
domain .

The differences between the two algorithms lie in the facts that the Schur complement
method is a conforming method, and that the local independent problems have Dirichlet
boundary conditions for this method and Neuman boundary conditions for the hybrid
method .

The first consequence is that the topology of the interface can be simpler with the
hybrid method .

Two subdomains are neighbours for the hybrid method iff they have a common degree
of freedom of the Lagrange multiplier. As the multiplier is associated with the weak for-
mulation of the continuity constraint, (v, —v,, p )y = 0 for any u in (H‘”Z(Z))3, its

degrees of freedom have to be introduced only on interfaces between subdomains with a
non zero integral .

Thus, for a decomposition of a two-dimensional problem into quadrangles, subdomains
are neighbours for the hybrid method only if they have a common edge whereas a com-
mon vertex is enough for the conforming Schur complement method .

In the case of the decompo-
sition of a cylinder into
pencils, the topology is the
same as for the two-
dimensional problem for a
Cross section.

On the figure, we show the
mesh on the bottom section
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: TN of a nine pencils domain.
R "g‘;"&'ﬁ{'é% With the hybrid method,
“"{Aé!‘ﬁ\’.‘)‘.{isy\(‘» the pencil number 0 in the

F“!"i;(“.&i middle has only four neigh-

‘%;’;ﬁ’} 4’%,';“\ bours, one for each edge,

’la’;‘! 4‘&\'#“%’(’, the subdomains 2,4,6 and 8,
h@’h‘\' whereas all the eight sur-
‘v‘v’ rounding pencils are neigh-

G 7 bouring for the conforming

domain decomposition
method .

Fig. 3. Mesh of the bottom section for 9 pencils .

This feature makes the domain decomposition method with Lagrange multiplier more
suitable for parallel machines with distributed memory. Furthermore, it would allow sub-

stru[ﬁnging with real three-dimensional topology more easily than the Schur complement
method .

The second consequence is linked with the boundary conditions of the local prob-
lems to be solved at each step of the outer gradient scheme .

With the Schur complement method, we get Dirichlet boundary conditions. So, the dis-
placements degrees of freedom located on the interface are fixed. At the opposite, with
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the hybrid method, we have prescribed stresses on the interface, that means Neuman
boundary conditions .

Except for the clamped bottom section, the boundary conditions we had to assume, for
the beam problem we tackled, were prescribed stresses for the top section, and free
boundary conditions for the beam sides .

So, when substructuring the domain into geometrically identical subdomains, each one
made of one or more pencils, we get identical local matrices for the local problems with
the hybrid methods. With the Schur complement method, when substructuring in a few
subdomains, for instance nine subdomains like in the figure above, the matrices of the
local problems can be all different, because the fixed degrees of freedom associated with
the Dirichlet boundary conditions are not the same in each subdomain .

S. Results of the tests performed with the CRAY2 .

We performed tests for domains with the same features as the composite beam
presented in the first section, with less fibers but with the same kind of geometry, in
order to get condition numbers of the same order of magnitude but not too many degrees
of freedom .

The first lesson with these tests concerns the choice of the solver for the local
independent problems .

When trying to solve them with an iterative method, the conjugate gradient method, the
algorithm we got was sometimes as many as three times more expensive than the stan-
dard global diagonal scaled conjugate gradient method for the complete domain .

The explanation lies in the fact that the ratio of the length upon the width of the sub-
domains, here they were pencils, was greater than for the complete domain, and so was
the condition number, in such a way that the conjugate gradient method was not an
efficient algorithm to solve the local problems .

This problem could appear in many other cases, because when substructuring a
domain to use any domain decomposition method, one try to locate the interfaces in
regions in which the solution is expected to be smooth, in order to keep the number of
iterations needed for the outer iterative scheme as low as possible. This can lead to sub-
structures with such an aspect that the local matrices are ill conditioned for geometrical
reasons, particularly for structural analysis problems .

Finally, for ill conditioned problems it seems safer to use a direct local solver. More-
over, as each local problem has to be solved many times, the cost of the L*U decompo-
sition of the matrices do not justify the use of iterative solvers .

The second lesson concerns the number of subdomains .

In all tests we performed we noticed that the number of outer iterations needed to solve
the global problem grew much faster than the number of subdomains .
For instance, when trying to solve the same problem for 36 pencils with 9 subdomains
made of 4 pencils, the number of outer iterations can be 10 times greater than for a
decomposition in 4 subdomains, each made of 9 pencils, in such a way that the global
time is 5 times longer, though each iteration of the hybrid method is less expensive with
more numerous and smaller subdomains .

Hence, for solving the complete problem presented in the first section we took sub-

domains as large as possible, according to geometric constraints and memory require-
ments, that meant in practice subdomains made of nine fibers, with more than one mil-

lion degrees of freedom .

6. Conclusions .

The tests we performed prove the ability of the domain decomposition method with



Decomposition in 9 subdomains .

Destuynder and Roux
Fig. 4. Decomposition in 4 subdomains .
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A remaining question is the problem of finding preconditioners for the dual interface

problem, like the ones studied in [4] or [5] for the Schur complement method, to make

Lagrange multiplier to solve some large scale ill conditioned problems of structural
this algorithm a really robust one .

analysis on parallel supercomputers .
cated machine, was over 3.85 . And when using a vectorised direct local solver, each
processor ran at more than one hundred megaflops, that leads to a global computation

256 megawords of memory, measured by the comparision of ellapsed times on a dedi-
speed over 400 megaflops .

With four subdomains, the speed-up we got on the CRAY2, with four processors and

31,number 138,pp. 391-413 .

-

Primal hybrid finite element methods for 2nd order

Thomas ,

elliptic equations , Math. of Comp. ,Vol

Thesis , Univ. P & M Curie , Paris , 1977 (In French) .
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