CHAPTER 30

A Spectral Multi-Domain Technique Applied to High-Speed
Chemically Reacting Flows

Michele G. Macaraeg*
Craig L. Streett’
M. Yousuff Hussainitt

Abstract. The first applications of a spectral multi-
domain method for viscous compressible flow are
presented. The method imposes a global flux balance
condition at the interface so that high-order continuity
of the solution is preserved. The global flux balance is
imposed in terms of a spectral integral of the discrete
equations across adjoining domains. Since the
discretized equations interior to each domain are solved
uncoupled from each other and since the interface
relation has a block structure, the solution scheme can
be adapted to the particular requirement in each sub-
domain. The multiple scales associated with chemically
reacting flows and transition important areas for
hypersonic research, are motivating applications well-
suited for the present spectral multi-domain technique.
The . following work will focus on both of these topics
which are rapidly gaining widespread attention in
computational fluid dynamics. The discretization
techniques implemented for solution of these two problems
are distinctly different: a nonstaggered multi-domain

*Computational Methods Branch, High-Speed
Aerodynamics Division, NASA Langley Research
Center, Hampton, Virginia.

TTheoretical Aerodynamics Branch, Transonic
Aerodynamics Division, NASA Langley Research
Center, Hampton, Virginia.

fInstitute for Computer Applications and
Scientific Engineering, Hampton, Virginia.

361



362  Macaraeg et al.

discretization is utilized for the calculation of the
chemically reacting flow, and the first implementation of
a staggered multi-domain mesh is presented to accurately
solve the stability equations for a viscous compressible
fluid. The successful implementation of the latter
discretization is strongly dependent on the interface
condition of a multi-domain technique. The global-flux
balance condition of the present method poses no problem
for staggered mesh calculations.

1. Introduction. A number of spectral domain
decomposition techniques have appeared in the literature
and are becoming accepted tools for fluid dynamical
calculations. For example, the spectral element method
which applies finite element methodology using Galerkin
spectral discretization in the variational formulation
within elements is a popular technique [1,2]. This
technique utilizes a split Galerkin-collocation
discretization which restricts its application to
convection-diffusion problems for incompressible flows.
The spectral element method in practice is used in a
manner similar to classical finite element techniques:
Low-order internal discretization using many elements
with no internal stretchings to improve resolution. The
technique is most easily implemented if each element
utilizes the same number of collocation points. Other
domain decomposition techniques involve explicit

enforcement of cl continuity across the interface

[3,4]. It is not clear how well these techniques perform
for strongly convection-dominated problems; the second
author 's experience with such techniques [5] has shown
them to be not entirely satisfactory.

The spectral multi-domain technique of the present paper
was developed with compressible flow applications in
mind. The multiple scales associated with chemically
reacting flows and transition, both features of
hypersonic aerodynamics, was a further consideration in
developing the multi-domain technique. The former issue
will be addressed by incorporating a nonequilibrium
chemistry model for air into the spectral multi-domain
Navier~Stokes solution method. The application will
focus on the chemical kinetics initiated as air passes
through a fully resolved shock wave.

2. Spectral Multi-Domain Technique. Spectral
collocation methods have pbroven to be an efficient
discretization scheme for many aerodynamic (see e.g.
[5-9]) and fluid mechanic (e.g. [10-13]) problems. The
higher-order accuracy and resolution shown by these
methods allows one to obtain engineering-accuracy
solution on coarse meshes, or alternatively, to obtain
solutions with very small error. There exist, however,
drawbacks to spectral techniques which prevent their
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widespread usage. One drawback to these techniques has
been the requirement that a complicated physical domain
must map onto a simple computational domain for
discretization. This mapping must be smooth if the high-
order accuracy and exponential convergence rates
associated with spectral methods are to be preserved

[6]. Additionally, even smooth stretching
transformations can decrease the accuracy of a spectral
method, if the stretching is severe [9]. Such
stretchings would be required to resolve the thin viscous
region in an external aerodynamic problem, or the widely
disparate scales which occur in chemically-reacting
flows. Furthermore, problems with discontinuities in
boundary conditions, very high-gradient regions or shocks
cause oscillations in the spectral solution. The above
situations are more the rule than the exception in
hypersonic flows.

These restrictions are overcome in the present method by
splitting the domain into regions, each of which preserve
the advantages of spectral collocation, and allow the
ratio of the mesh spacings between regions to be several
orders of magnitude higher than allowable in a single
domain [14]. Adjoining regions are interfaced by
enforcing a global flux balance which preserves high-
order continuity of the solution. This interface
technique maintains spectral accuracy, even when mappings
and/or domain sizes are radically different across the
interface, provided that the discretization in each
individual subdomain adequately resolves the solution
there.

Spectral flux balance interface technique. A simple one-
dimensional, two-region example will serve to illustrate
the present method for interfacing two collocation- i
discretized regions. Given the second order, potentially
nonlinear boundary-value problem:

[F(U)]x - W, = s{u), x ¢ [~-1, 117, .

U(-1) = a, U(1) = b,

We wish to place an interface at the.poigt x =m, and
have independent collocation discretization in the

regions x(l) e [-1, m] and x(z) ¢ [m, 1]. Even though
the point x = m is an interior point to the problem
domain, simply applying a collocation §tat§ment the;e,
utilizing a combination of the discretizations on el?her
side, will not work; the resulting algebraic systeg is
singular. This is because the spectral second~de§1vat1ve
operator has two zero eigenvalues; thus the'patcylng
together of two spectrally-discretized domalns yields
potentially four zero eigenvalues.in the overall 4
algebraic system. Two of these eigenvalues are accounte
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for by imposition of boundary conditions, and one by
continuity of the solution at the interface leaving one
zero eigenvalue in the system. To alleviate this
difficulty, a global statement of flux balance is used.
Rewriting (1) as:

[6(V)1, = S(U) (2)
where the flux is

G(U) = F(U) - vU_, (3)
then integrating (2) from -1 to 1 results in

1

G(U) [, - G(U)] + [61],_ = [, s(ax. (4)

x==]

If the jump in flux at the interface, [G], is zero., then
{(4) may be written:

m 1
6(U) |,y +/ S(U) ax =G| _, -/ (U0) ax. (5)
1 m

The statement of global flux balance across the two
regions, alcong with the assumption that the solution is
continuous, provides the condition necessary to close the
equation set which results from spectral discretization
of (1) in two regions. Note that the left side of (5)

(1 e [-1, m]

- while the right side involves the region x(z) e [m, 13.
Since spectral collocation discretization strongly
couples all points in their respective regions, (5)
couples all points in both discretizations.

involves the discretization in the region x

Note also that no statement is made concerning whether or
not (1) is advection- or diffusion-dominated. Equation
{1) is considered a scalar equation here, although the
above is extendable to a system.

3. Numerical Model of Nonequilibrium Shock Flow. The
above technique will model the chemical kinetics and flow
kinematics of a nonionized air mixture (02, N2, NO, O,
and N) passing through a fully resolved shock wave, thus
alleviating the need for artificial viscosity. The
governing eguations are the quasi-one dimensional Navier-
Stokes eguations [15], and species conservation equations
[16]. The quasi one-dimensional form is used to provide
an artifice for controlling the shock location in the
physical space for this otherwise indeterminate

problem.
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The conservation equations can be written as:

U 3F EAY

S—E'+§§——B'§+W (6)
where the dependent variables are denoted by U, the
convective flux by F, the dissipative flux by V, and the
production rate by W. The equations are
nondimensionalized by dividing the state and transport
parameters by their dimensional free-stream values. Each
of the quantities U, F, V, and W, have 8 components.
These expressions are given explicitly in Appendix A.

The viscosity of each of the individual species is
calculated from a curve fit relation [17]. Similarly,
curve fits are used to obtain specific heats internal
energies, and enthalpies [18,19]. The thermal
conductivity of each specie is calculated from the Euken
semi-empirical formula using the specie's viscosity and
specific heat. Appropriate mixture rules are next used
to obtain the transport properties of the mixture [20].
Experimental values of bulk viscosities, as obtained from
acoustical interferometry and related experiments, are
taken from Truesdell [21].

In the present work, the diffusion model is limited to
binary diffusion with the binary diffusion coefficients
specified by the Lewis number. The value of the Lewis
number used is 1.4.

The temperature range under study will not exceed 8000
Kelvin, for conditions at an altitude of approximately
190,000 feet. Therefore, ionization reactions, which
occur at roughly 9000 Kelvin, are not included. The
chemical reactions utilized for the nonionized air
mixture are impact dissociation and exchange reactions.
The seventeen reactions included in the present study can
be found in ref. 16, which also lists ionization
reactions. The constants needed to evaluate reaction
rates are given in ref. [16].

Initial conditions are obtained from a spectral mulFi-
domain code for solution of the Navier-Stokes equations
with equilibrium chemistry, written for the above'
problem. These governing equations may_be found in ref
15. Transport properties are obtained in the manner
previously discussed. The routines 9f ref: }8 )
generalized for air are used to obtain equilibrium
concentrations.

Compressible multi-domain algorithm. The multi—dgmaln
discretization involves three independent subdomains,
with the shock located in the center subdeain. Shock
jump conditions are obtained by an iterative prgcedure to
solve the Rankine-Hugoniot relations for real air.

365
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A direct inversion of the coupled system is utilized to
obtain a fully implicit method. The conserved variables
are written in delta form, and a pseudo time iteration
using backwards Euler is utilized to obtain the steady
state solution as follows. Time-local linearization of
equation (6) leads to the implicit form of the equation
over the time step At:

2
3 3B 3 - 3
{T + o] (A + %) \2 B - 8]}aU = at|w + sx(-F + V)|

(7)

where I is the unit matrix, and A, B, and S are Jacobian
matrices: A = 3(F-V)/a3U, B = 3(F-V)/3U,, and S = 3W/?U.

These Jacobians are obtained analytically and are
evaluated at the previous time step. Because of the
large rank and ill-condition of the Jacobian matrix,
iterative improvement of the Gaussian elimination
solution was found to be required. Nonetheless the
scheme required less than one second per time step on the
Cray-2 at NASA Ames for typical discretizations used in
this study.

Method verification. Validity of the multi-domain
Navier-Stokes algorithm is demonstrated by comparison
with experiment. A low-density wind tunnel study of
shock-wave structure and relaxation phenomena in gases
was conducted by Sherman [22]. The experiment measured
shock wave profiles recorded in terms of the variation in
the equilibrium temperature of a small diameter wire
oriented parallel to the plane of the shock, as the wire
is moved through the shock zone. Free stream Mach number
is 1.98. For this test case, a Navier-Stokes spectral
multi-domain calculation is performed for a perfect gas
with temperature-dependent properties and a nonzero bulk
viscosity corresponding to air [21]. A comparison with
experimental temperatures normalized by the free stream
temperature versus normalized distance is given in figure
. The experimental data points are represented by the
open symbols. The numerical results fall within a symbol
width of the data. The multi~domain technique utilized
three domains. The center domain, located between
X = -.15, and x = 0.3, contains 21 points; the outer
domains contain 11 points each. The computational domain
spans -1 to 1. The unit Reynolds number of the flow is
80. A calculation for a unit Reynolds number of 1000 is
given in figure 2, showing the ability of the method to
accurately resolve strong gradients without numerical
oscillations. The plot is of Mach number versus
normalized distance. Three domains are again used; the
center domain contains 17 points and the outer domains
contain 11 points each with the interfaces located at
-.15 and ~.1.
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Results. The method is used to calculate the chemical
kinetics initiated as air passes through a hypersonlc.
shock wave. The case to be discussed for nonequilibrium

flow is M_ = 11.0, T_ = 350K, and p, = 6 x 10~ 8g/cm>.
These conditions invoke primarily O, dissociations. with

N, dissociations just beginning. Temperatures are not
yet high enough for ionization to occur, so electronic
energy modes remain unexcited.

Typical discretizations used in this study were 15, 27
and 33 points in the upstream, middle and downstream
domains, respectively. The backward-Euler implicit time-
stepping algorithm typically required less than 2000
iterations to converge from an equilibrium starting
solution, with at least an eight order of magnitude
reduction in maximum residual.

A study of the effect of artificial visosity on the flow
physics was carried out by adding the equivalent of
second-order artificial viscosity to the momentum,
energy., and species' concentration equations. The amount
of artifical viscosity introduced was such that the shock
was spread out to a thickness about three orders of
magnitude wider than the fully-resolved no artificial
viscosity solution. This width was chosen to represent
the grid spacing of a typical shock-capturing computation
on a full-scale configuration. Figures 3a and 3b show
the Mach number and temperature profiles for the
resolved-shock and smeared-shock cases. respectively;
note that the entire physical domain is shown in Fig. 3b,
whereas only the near-shock region on a greatly expanded
scale is plotted in Fig. 3a. For the resolved-shock
case, endpoints are at -1 and 200, and interface points
are at -.3 and .l1. The interface locations for the
smeared shock case are at 65 and 100, with endpoints at
0 and 270. The most important feature to note in
comparing these profiles is the 20% reduction in the
temperature overshoot as a result of the artificial
viscosity. 1In a calcuation with ionization, such a
reduction could prevent its onset; or similarly, a
calculation with combustion chemistry may not reach
threshold temperatures necessary for ignition due to this
artificial damping. 1In addition, the high temperature
zone following the passage of air through the shock
persists for roughly two orders of magnitude downstream
further than the resolved shock case. Computationally,
this effect of artificial viscosity could cause a
chemical reaction to produce more of a given species than
what occurs in the true physics.
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Figure 3. -

For the Mach 11 case considered here, although the path
along which the chemistry relaxes is significantly
altered in the near-shock region, the chemical end states
from the computations with and without artificial

This can be

viscosity are within 3-4% of each other.
Seen in Figs. 4a,b which show the profiles for [N] and

[NO] in the relaxation zone. This is not to say,
however, that this situation will always occur especially

for higher Mach numbers where electronic excitation
(ionization) occurs. The reduction in the temperature
overshoot could result in a large enough change in the
relaxation path that the end state could be affected

significantly.
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4. Stability of Compressible Flows. The second focus is
a careful study of the stability of high-speed boundary
layers and free-shear flows. A newly developed spectral
stability code (staggered pressure mesh) is presented for
analysis of compressible viscous flow stability. An
order of magnitude less number of points is needed for
equivalent accuracy of growth rates compared to those
calculated by a finite-difference formulation.

Supersonic disturbances which are found to have highly
irregular structures have been resolved by a spectral
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multi-domain discretization, which requires a factor of
three fewer points than the single domain spectral
stability code.

At the present time, there is no prospect of a unified
theory of transition even in low speed flows (where some
of the underlying mechanisms are relatively well-known),
let alone in hypersonic flows. As a short-term goal, it
is imperative then to obtain linear stability results.
The implicit assumption is that supersonic/hypersonic
transition has its origin in linear instability and is
not overly sensitive to details of the disturbance
environment (not that Morkovin's bypasses are
inapplicable to the hypersonic regime). Clearly, as Mack
[23] points out, there is a need to develop efficient,
accurate and robust linear stability codes for use in a
large number of design calculations.

This is the motivation behind the present work which
treats the linear compressible stability equations by a
spectral collocation method. Results are presented to
substantiate these claims. Furthermore, the multi-domain
version of this method presented here deals economically
with complex flows which can include such features as
multiple interior shear layers. This section first
validates the method for the case of boundary layers and
free shear layers, then goes on to present some new
results in the case of free mixing layers.

Formulation of compressible stability equations. The
basic equations governing the flow of a viscous
compressible fluid are the Navier-Stokes equations. For
this stability study, the equations in Appendix A,
modified for a perfect gas, describes the system.

In this study all velocities are scaled by U,, the x

component of velocity at the edge of the boundary layer,

*
and all lengths are scaled by §& . the displgcemeqt
thickness of the velocity profile in the g—dlrectlon.
The Reynolds number and Mach number are given by

U 6*
Re = £ (8)
v
U
M = ._._._.____e (9)
YY Re T,

where v and T, are the kinematic viscosity and mean
e

temperature in the freestream, and gamma is the ratio of
specific heats. The results in the present paper

—% .
consider ¢ = Prandtl number = .72 and u is evaluated
by Sutherland's law.
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I1f we assume that the base flow is a locally parallel
boundary layer then

i(ax+pgz~ut)

u(x,y,z,t) = U (y) + alyle (10)
v(xy,z,t) = U(y) ot (oxFEETUE) (11)
wix,y,z,t) = W_(y) + w(y)el (ox+Bz-0t) (12)
p(x,y,z,t) = ply) et (@x¥ez-ut) (13)
t(x,y.zt) = T_(y) + F(y)et (@¥tBETut) (14)

or W

boundary layer (mean flow), and quantities with tildas
denote complex disturbance amplitudes. V_.{y) is assumed
zero since the flow is parallel, and P,(y) is zero since
pressure is assumed constant across the boundary layer.
a and B8 are x and z disturbance wave numbers,
respectively, and w is the complex frequency.
Equations (10)-(14) are substituted into he
nondimensional Navier-Stokes equations, the mean flow
terms subtracted out, and the terms which are quadratic
in the disturbance neglected. The resulting system is
the linearized compressible Navier-Stokes equations for
the disturbance quantities as given in Appendix B.

where U and T, represent the steady unperturbed

Solution technique. The equations in Appendix B
constitute an eigenvalue problem for the complex fre-
quency w, once the disturbance wavenumbers o and B
are specified. Discretization of these equations in the
y-direction forms a generalized matrix eigenvalue
problem, suitable for computer solution. Equations (Bl)-
(B7) are essentially an eighth order system; thus the
eight boundary conditions (eq. (B7)) are sufficient for
solution, and no boundary condition is applied to the
disturbance pressure. Whatever discretization scheme is
used must respect this arrangement if an accurate
solution is to be expected.

The discretization scheme used here is a spectral
collocation technique, using Chebyshev polynomials as
basis functions. The nodes of the variables

v, q+ = ou + Bw, g = aw - gu, and 1 are located at
the Gauss-Lobatto points (the extrema of the last
retained Chebyshev polynomial [24]);: the energy and
momentum equations are collocated at these points. Thus
discrete boundary conditions may be imposed for these
variables at both end points of the domain. The pressure
nodes are located at the Gauss points (the zeroces of the
first neglected polynomial) of a Chebyshev series one
order less than that used for the other variables; the
continuity equation is collocated at these points. Since
no Gauss points fall on the boundary, we are free of any
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requirement of providing an artificial numerical boundary
condition for pressure, and we have the proper balance of
number of equations and unknowns.

The farfield boundary of the discretized domain is placed

at a finite distance, typically 20-100 6* from the wall
or shear-layer centerline. Extensive sensitivity studies
were performed to determine the effect of this finite
domain truncation.

Stretching is employed in the discretization to improve
resolution near the wall/centerline. In the case of the
boundary layer, either of two stretching forms are used:

C C

1 2,71
Yo = Yrax(Cp = 1) ¥ /(€ - ¥) (15)

or

C3yc/(l + C3 -y ) (16}

Y c

p Ymax

where Yp is the coordinate in the physical space
[O,ymax], Yo 1s the computational coordinate ¢ {0,1],
and C;, C,, and Cy are adjustable constants. 1In this
work, C; is either 4 or 6, and C, ranged from 1.2 to
2.0; C3 1is used between .01 and .03. For the shear

layer, equation (15) is used as the stretching, yielding
a physical space of [-y .- ymax] from y.e [-1,1].

Using standard spectral collocation discretization
formulas [24], matrix differentiation operators are
formed for both the Gauss-Lobatto (V, g+, g-, 7) and the
Gauss (P) grids, incorporating the selected stretching
function. Mean flow quantities from the spectral
boundary layer code of [25] are spectrally interpolgted
onto the new mesh, and derivatives of these guantities
obtained using the differentiation operators. The
generalized matrix eigenvalue problem which results from
this discretization is of the form:

2 GL + GL_, _ > GL
Agrlaré + Bgrlopn(d + Ig P) + Cor(s + IgP) = olDgler(é + IgP)
GL
+ Eg (3 + IgP)] (17)

for the momentum and energy equations. and
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GL »
%

G
B . L G

1
cte TeL + P (18)

> G »
o + Co(Igpé + P) = wBEL(I

for the continuity eguation, where A, B, C, D, and
E are matrix coefficients derived from equations (Bl)-
(B5), L denotes a spectral differentiation operator,

the unknown vector ¢ = (¥, q+, q ., ?)T, and the vector
P contains the disturbance pressure p. Subscripts
GL and G denote location at or operation on Gauss-
Lobatto and Gauss point grids, respectively;

8L ana IgL are spectral interpolation matrices. from
Gauss to Gauss-Lobatto points and vice-versa.

The unknown vectors E and P are collected into a
single vector, and the matrix equations (17) and (18) are
assembled into a large generalized matrix eigenvalue
problem for input into a standard library routine for
solution. A complex modified QZ algorithm [26] is used
to obtain the eigenvalues of the system directly; this is
referred to as a global search. The most unstable
eigenvalue is then selected, and used as an input to an
inverse Rayleigh method to purify the eigenvalue of the
effects of round-off error and to obtain the solution
eigenvectors. 1In all cases, the global and local
(Rayleigh~iterated) eigenvalues agreed to better than
eight decimal places.

Verification.

Boundary layer. For verification, calculations are
performed for the stability analysis of compressible two-
dimensional similarity boundary laver profiles. A
spectral mean flow code modified for compressible flow is
used for this purpose [25].

A Mach number boundary layer profile perturbed by a three

dimensional disturbance at M, = 4.5, Te = 520°R,

Re = 10,000, o = .6, B = 1.0392 is first analyzed. A

resolution study for the eigenvalue computations are
given in Tables I and II for the single domain spectral
code and COSAL (a finite-difference compressible
stability code, [27]), respectively. Roughly 3
significant digits for values of growth rate are obtained
with the spectral code using 81 points; in Table II COSAL
is seen to require approximately 800 points for equiva-—
lent accuracy. Eigenfunctions for U are shown in Fig.
5a,b from each code. A multi-domain spectral
discretization (MDSPD) with two domains obtains
equivalent accuracy with the single domain spectral
stability code with 1/3 the number of points, as
illustrated in Table III. The savings is significant
considering that the number of operations in the spectral
stability code goes as the cube of the number of points.
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Figure 5. - ({i-velocity fluctuation amplitude function

for o = .6, g =1.0392, M, = 4.5,

Re = 10,000, T, = 520°R. Calculation by:
a. Spectral stability code

b. COSAL

The reason for the increased efficiency with the MDSPD is
that in addition to the significant structure at the wall
(Fig. 5), the farfield boundary must be far enough out so
that the exponential rate of decay associated with these
disturbances is accurately captured. For this case, the
Outer extent is 30 displacement thickness units (y
coordinate) from the wall at yv = 0 to capture this
exponential decay, otherwise the accuracy of the growth
rate is effected. These issue put a severe demand on the
stretching required for resolution with a single-domain
discretization. The multi-domain utilized two domains
with interface at 2. The inner domain has 25 points and
is unstretched; the outer domain has 17 points and a
tanh stretching.

Stability of a Viscous, Compressible Shear Layer. The
Spectral stability code is used to analize the stability
of a viscous, compressible shear flow obtained from a
spectral similarity solution obtained by modifying the
boundary-layer code of ref. 25. The shear flow consists
of two parallel gases: an injected stream into a
quiescent gas. Issues of relevance in this study is
understanding the impact of transition on fuel/air mixing
efficiency in scramjet combustors. It has been observed

375
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experimentally that the mixing efficiency is decreased
fourfold in the range of Mach 1 to 4. The cause of this
trend is unkown. However, it is well known that
turbulent mixing is many orders of magnitude faster than
laminar. Ideally one would like to be able to manipulate
the downstream evolution of shear layers to enhance
mixing -- perhaps linear stability theory holds a clue.
The initial stages of shear flow instabilities are driven
by linear mechanisms which persist for a considerable
distance downstream. Understanding the growth and
propagation of the disturbance in these early stages will
allow not only a better understanding of the onset of
transition, but will allow initiation of the transition
process in a numerical model so that the physics might be
systematically studied. This study investigates a range
of Mach numbers, gas temperatures and disturbance wave
numbers. The mean flow in all cases involves a jet being
injected into a quiescent gas.

It is observed that the disturbance eigenfunctions
significantly tighten in structure as a increases which
puts a greater demand on the resolution required for a
single domain spectral discretization (SDSPD). A
progression of eigenfunction plots for increasing a
(phase angle 0 = 60°) is given in Figs. 6 and 7
illustrating this observation.

cold into hot gas
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eigenfunctions; 6 = 60°, M_ = 3,
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Difficulties in resolution similarly occur for higher
Mach number disturbances. The spectral stability code
had difficulty resolving eigenfunctions beyond 3.75 for
the cold injection cases and as early as Mach 3 for the
hot injection case for disturbance wave angles of 60°.
Restrictions on the allowable stretching for single
domain spectral methods contributes to this difficulty.
Examples of the MDSPD for cases requiring a very severe
stretching will be given later.

The above studies involve three dimensional disturbances

with a wave propagation angle of 60°. Preliminary
M_=1.0, B=0
Hot into cold
o =
— R
~o ------—’_tl
p "'!{/’
0 I | 1 [} 1 1 i L1 1 1 i
— IR
~ £ 4 eeeproE | l
i [
b 1 ] ] 1 i ] 1 ] J
— IR
P < o & £ - e & & S i J tl
P i
C _1.0:1.|. [ T PO B IV TP TP TR SOV S WU N S |
-10 0 100 -10 0 10
Y Y
Figure 8. Effect of increasing o« on P and €
disturbance eigenfunctions; M, =1,
8 = 0, Re = 10,000.
a. a=1.
b. a =5.
C. a = 6.
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results indicate that two dimensional disturbances

(B = 0) exhibit similar trends; however, difficulties in
resolving eigenfunctions with a SDSPD occur at lower Mach
numbers. Again at higher o disturbance eigenfunctions
tighten radically beyond the limit at which a single
domain spectral method can resolve; the hardest tempera-
ture case to resolve is hot injection into a colder

gas. This observation is demonstrated in Fig. 8 which

plots a sequence of P and £ eigenfunction for
increasing a, B = 0. The mean flow corresponds to
M, =1, Re = 10,000 with BT = .2 (BT =
Tquiescent/Tinjected)' Note the extremely tight
structures in p and t as o increases. Note

that t is plotted on the interval [-10,10], the actual
spatial extent is [-100,100]. Oscillations in p for

a = 5 and 6 are quite pronounced.

The MDSPD resolves these cases with relative ease. To

illustrate this point, p and ¥ eigenfunctions obtained
from the MDSPD are displayed in Fig. 9 for the

Mo =1.0, =5, B =0

Hot into cold
Single domain Multi-domain
! R
) — Y
1 L 1 ) C L I3 1 I ‘Yl 1 1 i i
-10 0 10
| — PR
£ ~
—
b_‘IOE‘I.l.II TR DU TS S | d ||11V;111|
25 0 25 -25 0 25
Y Y
Figure 9. - ¥ and p eigenfunctions obtgine@ with
spectral multi-domain discretization as
opposed to single domain spec?ral )
discretization for case described in
Fig. 8, a = 5.
single domain: multi-domain:
a. V c. ?
b. B d. P



380 Macaraeg et al.

Re = 10,000, a = 5 case discussed previously. Adjacent
to the multi-domain results are the single domain solu-

tion for p and V. The multi-domain solution remains
oscillation free. The number of points in each
discretization is roughly 100, however, the multi-domain
utilizes three domains, with 41 points in the center
domain between -.5 and .5, 25 points in the left domain
between -100. and -~.5, and 37 points in the right domain
between .5 and 100. The plot of the pressure disturbance
for the entire spatial extent obtained from the multi-
domain solution is given in Fig. 10, to illustrate the
fineness of the structure which is resolved.

The preceding case (a = 5) is found to be resolvable by a
SDSPD but only after quite a bit of trial and error
stretching of the mesh for a variety of resolutions. The
important point is that the MDSPD is quite robust and
gives accurate eigenvalues over a wide range of
stretching parameters. This observation is illustrated
in Table IV which lists a range of stretching parameters
and corresponding phase speeds and growth rates for the
preceding case. Both the SDSPD and MDSPD for this
illustration utilized 99 points with the same outer
extent. Wote that for the SPSPD cases changing the

M.=10,0=5B=0

Hot into cold
1.0 ~
- PR
2 Py
P E —+
_1_0 - ' N | 1 | P 1 " i I BT N i |
-100 0 100
Y
Figure 10. P disturbance eigenfunctions obtained by

multi-domain stability code displayved on
entire computational domain for case of
Fig. 9. Discretization: center domain on
[-.5,5], 41 pts.; left domain on [-100,~.5],
21 pts.; right domain on [.5,100], 35 pts.
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stretching parameter by approximately 25% causes about a
10% change in phase speed and over a 50% change of value
in growth rate. Contrast this sensitivity with the MDSPD
cases. The stretching parameter is allowed to vary 100%
in the center domain (three domains are utilized with
interfaces at %1). The phase speed has changed by less
than 1% and the growth rate by only 6%. This robustness
is extremely important since one usually has no idea of
the value of the phase speed or growth rate. 1In
addition, one needs to determine whether the disturbance
mode is spurious--which is measured by its persistance
over a wide range of resolutions.

As mentioned earlier, the disturbance eigenfunctions
become increasingly complex as Mach number is

increased. These higher Mach number cases are .
unresolvable by a SDSPD. To illustrate,a series of p and
v eigenfunctions calculated by the SDSPD stability code
are displayed in Fig. 11 and 12, respectively, for a
disturbance wave angle of 60°. Note that at M_ = 3.5 the
injected gas side of the disturbance begins to take on an
oscillatory nature; at M_ = 3.75 these oscillations are
more pronounced. It is well known that for supersonic
disturbances the eigenfunction structure will be
oscillatory [29]. (A supersonic disturbance occurs when
the wave velocity of the disturbance relative to the
local flow, in the direction of wave propagation, has a
magnitude greater than the speed of sound.) The MDSPD is
able to capture the structure of these supersonic modes
with relative ease. Fig. 13 displays two unstable

EFFECT OF MACH NUMBER
Hot into cold

10 FMp=20 —— PR [ Mp=35
-
4.0 E
1.0 ¢
PE
1.0 £
-10

Figure 11.- p disturbance eigenfunctions for increasing

Mach number and a SDSPD (6 = 60°).
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EFFECT OF MACH NUMBER
Cold gas

1.0

VR E Mg =3.5

SE—

<?

<?

-1.0

-100 0
Y Y
Figure 12.- Vv disturbance eigenfunctions for increasing

Mach number and a SDSPD (6 = 60°).

Mg =4, Re = 10 000, o = 0.30416, B = 0.2017
Cold gas

o = (0.217586, 0.0079833)

Figure 13.- p disturbance eigenfunctions for two
unstable supersonic modes corresponding to a
M = 4; ;Re = 10,000; 9 = 60°. MDSPD with
thiree domains: 41/105/41, interface at +1.
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supersonic modes which are associated with the
instability of a Mach 4, BT = 1, free shear flow. The
disturbance wave numbers are o = .30416, and 8., = .2017.
The MDSPD involves three domains: 105 points On the
oscillatory side, 41 points in the inner domain, and 41
points in the outer domain where the profile is smooth.
Interface locations are located at tl. Note further the
level of complexity of the +t eigenfunctions of this
case. Fig. 14 is a plot of t for both modes on a full
scale +100 and greatly expanded scale *l1. The center
structure is an added complexity to the structure which
also requires adequate resolution, and further
illustrated the necessity of a flexible discretization
scheme like a MDSPD.

Conclusions. The present global flux balance spectral
multi-domain method has demonstrated maintenance of
exponential-order accuracy on a variety of advection- and
diffusion-dominated test problems [14] . Extremely
large differences in discretization across an interface
through domain size, number of points and stretchings,
have been shown to not disrupt this property of the
present method. Additionally, this technique can be used
to isolate certain types of coefficient, mapping, or
boundary condition discontinuities.

Mg = 4, Re = 10 000, o = 0.30416, B = 0.2017
Cold gas

o = {0.0891513, 0.0102926) o = (0.217586, 0.0079833)

100

L

é
0 10
Y

Figure 14.- +t disturbance eigenfunctions for two
unstable supersonic modes corresponding to a
M = 4; Re = 10,000; 6 = 60Y, on a full
scale (+100) and greatly eypanded scale
(#1). MDSPD: 41/105/41, interface at #1.
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These advantages have made possible the first
compressible Navier-Stokes calculation by a spectral
multi-domain technigue. In addition, a Mach 11 shock
calculation with nonequilibrium chemistry was performed
to study the chemical kinetics initiated as air passes
through a fully-resolved shock wave.

In addition, the first spectral collocation linear
stability code for compressible flow is presented. The
accurate discretization (staggered pressure grid) may be
carried over to nonlinear simulations. Verification
cases for high-speed boundary layers indicate an order of
magnitude reduction in the number of points required for
a single domain spectral discretization (SDSPD) to obtain
equivalent accuracy in growth rates with a finite-
difference formulation. In addition, a multi-domain
spectral discretization {(MDSPD) is found to require a
factor of three less points man the (SDSPD), which is
significant since the operation count of the spectral
formulation goes as the cube of the number of points.

The first viscous stability analysis of a compressible
shear flow is presented. The study indicates that for
subsonic disturbances stability ofmixing layers is
enhanced by viscosity, increasing Mach number and higher

temperatures of the injected gas. Disturbances become
supersonic at lower Mach numbers for 2-D disturbances
(M < 2). 3-D disturbances become supersonic in the Mach

number range of 3.5 to 4. The exact value of this Mach
number depends upon the value of B,, the lower the value
of B,, (cooling) the lower the Macg number at which the
disturbance eigenfunctions become supersonic. The highly
irregular structure of the supersonic modes are easily
resolved by MDSPD stability code which is shown to be
highly robust over a wide range of stretching parameters
-and resolutions.

Appendix A. Non-equilibrium one-dimensional Navier-
Stokes equations

3U aF 3V

it Tax T ax T W (A1)

Conservation variables

U; = pyy, 1 < 1 < NS, number of species (a2)
Uns+1 = » (a3)
Uyg+2 = U (a4)

Uns+3 = ¢E (a5)
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Convective fluxes
FNs+1 = pu (a7)
Fygep = pUZ + P (28)
Fys+3 = (E + Plu ©(a9)
Viscous fluxes
3Y.
= e 1 :
V. =$rRe M35 1 <1ic<KNs (A10)
Vns+1 = O (All)
_ (x + 2y) 3pu
VNs+2 = T Re X (A12)
VNs+3
(A + 2y) dpu 8 k 3 u?
= B [Y B .9 _ v
Re Y oax + (B ~ 1) Pr Re 8x L(s 1) {E 2 H/=
Le m NS
1 B hd - o Al3
+ z JPr Re LE 2 I .E hi ax'i ( )
i=1
where
m, = freestream molecular weight
Le = Lewis number
z = compressibility: P =2z p T
h; = enthalpy of species "i"
B = h/e
Source production terms
NR
f b
= ¥ - - R (al4)
Wio= ) 8y Loy ) IR .l
r=1
NS . NS 6',r
RE = xf 1 (oy 7T R =kD 1 (evy) 7T (a15)
* T g=1 J i=1
£ B2 b ? (a16)
Kl = A, T exp(~A3/T) k. =B T exp(—B3/T)
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NR = number of reactions
aj rr By r = stoichiometric coef. for forward and
r I’

backward reactions, resp.

Wns+1 = Wns+2 = Wys+3 = O

Appendix B. Linearized compressible Navier-Stokes
stability equations.

2, ~ ~ 1 duo ' ~ ~
D(ol + BW) + — —— T D(qu + BwW)+
u_ ar o
(o) o
. 2 2 ~ ~
i(a ~1) (o™ + 87)(au + BW) - ]_—————(aU + BW ) -
p T
oo
. du .
i 2, ¢~ iRe 2 2.~
?‘ ‘dT T (a + B )JV - u_"“‘ (G, + B )p = 0 (Bl)
(o) o)
2~ i(a-1) ~ ~ iRe
D + A=) g + S p— -
v X (a u B w) | WoT_X (aUO +OBW - w) +
2 2 . du
a "+ B 0~ 1 '
R v + 7170 dT (O,U + BW )(aw - Bu) 0 (B2)
. .~ A TS i
DV+1(GU+BW)— -T—; v+iyM ((!UO'FBWO'—U.))p— _T;(aUO+BWO-m)T=O (B3)
2~ (av| + BW') ~ ~ 3 du ~
D"t + 2(y - l)Mzo g————-zp D(au + Bw) + —2%,— —T—9— Dt
o + B Us'o d o
(aW'-8U')
2 A~ ~
+2{y~-1)M 0———%——2&D(aw—3u)-[ R; Té—2i(y—l)M20(aU'+BW')]v
{(a"+87) oo °© o°
iReo 2 ~ | iReg
+—E——(G~I)M (an+BWO-w)P == (aU oFBW, —M)+(a +8 )
o BT
oo
o Bo o5 g Al du
=(y=1)— G (U 7+, %)= = o) % L g °]“ =
T T = 0 (B4)
u, d o © e} “o dTo Mo le) dTO
du a
2 oy e oy _]_;_ O ' ' ' 1 pO ~ ~
D (aw gu) + u ET (aWO—BUO)DT + -II -a?- T' D(aw - pu)
o) o o
Re ( W’ 3U % [T’ d2u o 1 du
- -BUL)V + oW -BU') + = W - U"]
4T ¥ dT © “o (u Y
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Where primed quantities indicate differentiation with
The equation of state is
is the mean flow density and ¢ the complex
The boundary conditions are

respect to y.
where éo
density disturbance.
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(V, o + BW, aw - BU, 1) =

II. Calculation of temporal eigenvalues for

X X X X X X %X X X X

KX X X X

- (aU + BW, - ) + (a2 + 52) (aw ~ gu) = 0

Calculation of temporal eigenvalues for
different grids using spectral stability

520°R, Re = 10,000, o = .6,

10'5)
1072)

10,000, a = .5,

({;l aa + B&, (x\; - 8Gl :E) hd
Table I.
code.
(M, = 4.5, T, =
# pts w
45 (.531703936, 1.835681668
51 (.495671735, 3.892834157
63 (.495719127, 3.903565212
65 (.495936719, 3.890656057
73 (.495844598, 3.977529728
81 (.495811969, 3.933484970
95 (.495825367, 3.933674615
120 (.495824177, 3.935165423
151 (.495824195, 3.935192776
200 (.495824195, 3.935192907
Table
different grids using COSAL
(M, = 4.5, T, = 520°R, R, =
# pts o
211 (.485935455, 3.720663427
513 {.495990048, 3.688194736
1025 (.495983122, 3.683247436
1500 (.495981891, 3.682367822
1500 (.495980770, 3.681512173
(with Richardson extrapolation)

(B5)

(B7)

1.0392)

1.0392)

387
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Table III. Calculation of temporal eigenvalues for
different grids using multi-domain spectral
stability code.

(M = 4.5, Te = 520UR, Re = 10,000, o = .6, B8 = 1.0392)

o0

2 Domains o

(total # of points)

25/17 (42) .495824525 3.935144920 x 10_3
31/21 (52) .495824188 3 935209430 x 1073
37/21 (58) .495824191 3.935210299 x 1073

Table IV. Effect of stretching parameter: single vs.
multi-domain spectral discretization

(M_ = 1.0, Re = 10,000, .2, a =5, g =0)

BT =
Single-domain, 99 pts. on [-100, 100]

Stretching Parameter @
1.1 1.47179 .272236
1.2 1.49883 .159461
1.3 1.49806 .158226
1.4 1.57814 .266635

Multi-Domain, 17/65/17 (99 pts) on [-100/-1/1/100]"

Stretching Parameter 0
1.6 1.497268 .167511
2.0 1.496913 .159498
2.2 1.497146 .158781
4.0 1.496359 .156986
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