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Abstract

Adaptive implicit-explicit (AIE) and grouped element-by-element (GEBE) iteration
schemes are presented for the finite element solution of large-scale problems in
computational mechanics and physics. The AIE approach is based on the dynamic
arrangement of the elements into differently treated groups. The GEBE procedure, which
is a way of rewriting the EBE formulation to make its parallel processing potential and
implementation more clear, is based on the static arrangement of the elements into groups
with no inter-element coupling within each group. Various numerical tests performed
demonstrate the savings in the CPU time and memory.

1. Introduction

For large-scale problems in computational mechanics and physics, solution (by
direct methods) of the linear equation systems involving massive global matrices and the
storage of such matrices generate substantial demand on the computational resources in
terms of the CPU time and memory. For most problems of practical interest, especially in
three dimensions, this demand becomes too heavy to accommodate even for today's most
generous computers. Matrices of this volume usually arise from the implicit time-
integration of spatially discretized time-dependent problems or from spatial discretization
of equations with no (real or pseudo) temporal derivatives. For example, the
incompressible Navier-Stokes equations in the vorticity-stream function formulation
involve a time-dependent convection-diffusion equation for the vorticity and a Poisson's
equation for the stream function. In this paper we describe, in the context of the vorticity -
stream function formulation, alternative solution techniques which reduce or eliminate the
need for the storage and factorization of large global matrices. ) )

The implicit-explicit algorithm proposed by Hughes and Liu [6,7] ( for solid
mechanics and heat conduction problems) involves the static allocation of the implicit and
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explicit elements based on the stability limit of the explicit algorithm. The adaptive
implicit-explicit (AIE) scheme was first presented, in its preliminary stage, in Tezduyar
and Liou [13]. Itis based on the dynamic grouping of the elements into the implicit and
explicit subsets as dictated by the element level stability and accuracy considerations. For
this purpose the algorithm monitors the element level Courant number and some measure
of the dimensionless wave number. The element level Courant number is based on the
local convection and diffusion transport rates whereas the dimensionless wave number
reflects the local smoothness of the "previous” solution and the spatial discretization. The
"previous"” solution can come from the previous time step, or nonlinear iteration step, or
pseudo-time iteration step, whichever is appropriate. In this approach we can have
"implicit refinement" where it is needed. Elsewhere in the domain, computations are
performed explicitly thus resulting in substantial memory and CPU time savings. The
savings can be further increased by performing, as often as desired, an equation
renumbering at the implicit zones to obtain optimal bandwidths. Compared to the adaptive
schemes based on grid-moving or element-subdividing the AIE method involves minimal
bookkeeping and no geometric constrains.

It is important to note that the dynamic grouping of the AIE scheme does not
necessarily have to be with respect to implicit and explicit elements. The letter "I" and "E"
in "AIE" could be referring to any two procedures. In fact, there is no reason for the
number of possible choices to be limited to two. For a given element, the rationale for
favoring one procedure over another one could be based on any factor, such as the cost
efficiency, the type of spatial or temporal discretization, the differential equations used for
modelling, etc. In this paper, as an example, we implement the AIE scheme also in
conjunction with the flux corrected transport (FCT) method [9,15].

It has been more than a decade since the first CRAY-1 computer was delivered to
Los Alamos National Laboratories. The evolution of vector architecture in the past few
years is evident. With the inception of new vectorizing compiler technology, the job of the
application developers has become less architecture specific but rather more numerical and
algorithmic in nature. Since the introduction of the CRAY-XMP, a multi-processor vector
computer, in 1982, parallel processors and parallel processing have become more popular
among the computer vendors in the Engineering and Scientific market sector. The fact that
IBM introduced the Vector Facility for the 3090 multi-processors series is the ultimate
acknowledgement that vector processing is an accepted standard mode of operation and
parallel processing is eminent in the conventional camp.

The element-by-element (EBE) factorization scheme is very well suited for
vectorization and parallel processing. It was proposed by Hughes, Levit, and Winget [5]
for problems in transient heat conduction, solid mechanics, and structural mechanics. The
EBE implementations in computational fluid dynamics were first reported, in the context
of compressible Euler equations, by Hughes, Levit, Winget, and Tezduyar [8].
Applications to convection-diffusion equations and the incompressible flow probiems can
be seen in Tezduyar and Liou [13]. The EBE scheme selects a sequential product of the
element level matrices as the preconditioning matrix to be used with the iterative solution
of large linear equations systems arising from the finite element formulation. For
symmetric and positive-definite matrices this preconditioner can be used with the
conjugate-gradient method [3]. In the EBE approach the need for the formation, storage,
and factorization of bulky global matrices is eliminated. The element level matrices can be
either recomputed or stored. In the case the element level matrices are stored, the storage
needed is still only linearly proportional to the number of elements.

The grouped element-by-element (GEBE) scheme is a variation of the regular EBE
scheme. It has some common grounds with the operator splitting and domain
decomposition methods [3,4]. The GEBE preconditioner is a sequential product of the
element group matrices with the condition that no two elements in the same group can be
“neighbors”; this is achieved by a simple element grouping algorithm which is applicable
to arbitrary meshes. In our parallel computations, before we start processing a new group
we first have to finish processing the current one. To minimize the overhead associated
with this synchronization, we try to minimize the number of groups. Within each group,
to increase the vector efficiency of the computations, elements are processed in chunks of
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64 elements (or whatever the optimum chunk size for the given vector environment is).
‘When parallel processing is invoked, each of the available CPUs work on one chunk at a
time until all chunks are finished.

2. Problem Statement and the Finite Element Formulation

We consider the problems governed by the convection-diffusion equation and the
two-dimensional incompressible Navier-Stokes equations. For the Navier-Stokes
equations, we use the vorticity - stream function formulation which consists of a time-

dependent transport equation for the vorticity ®, and a Poisson's equation relating the

stream function ¥ to the vorticity. Since the procedures for the spatial and temporal
discretizations for the convection-diffusion equation are similar to those for the transport
equation of the vorticity - stream function formulation, only the latter will be discussed in
this section.

The field equations for the vorticity - stream function formulation of the two-
dimensional incompressible Navier-Stokes equations are given as

%9+u0 Vo=vV2Ze, .1
t

V2 y=-w, (2~2)

where u is the velocity and v is the kinematic viscosity. The incompressibility condition is
automatically satisfied by the following definition of the stream function:

?T)\(Vz- = uj, (2.3a)
oy
For =02 (2.3b)

The flow domain can have several internal boundaries corresponding to possible
obstacles (holes) in the flow field. In such cases the unknowns of the problem are: the

value of the vorticity at all interior points (@), the value of the vorticity at all boundary

points where both components of the velocity are specified (0gg) (this includes. all t.hc
external and internal solid boundaries), and the value of the stream function at all interior

points and on the internal boundaries (Wug)- .

The differential equations given by (2.1) and (2.2), together with the initial
condition for the vorticity and the suitable boundary conditions for the vorticity and the
stream function, can be translated, via a proper variational formulation [11], into a set of
ordinary differential equations. Thatis

M(dsg) 2« + C(dug)ve = Fdig, vGq, 369), (2.42)
Vs (0) = (V)0 (2.4b)
Kdig =Fu(v«,¥6g)s (2.52)
Mg g = Fii(dsg, V+) (2.5b)

o0
where dug, V«, @3, VGg, and agq are the vectors of nodal values of Ysq, Oeg O6gs and

% respectively.
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Remark 2.1 Particular attention must be paid to the boundary conditions for the vorticity
on the (external and internal) solid surfaces and for the stream function on the internal
boundaries. Discussion of these boundary conditions and the derivation of the proper
variational formulations can be found in [11].

Remark 2.2 Equation systems (2.4a) and (2.5) are derived from the variational
formulations corresponding to (2.1) and (2.2), respectively. The initial condition for (2.1)
is represented by (2.4b).

Remark 2.3 The matrices K and M are symmetric and positive-definite. The matrix M
is topologically one-dimensional because it is associated with the vector VGq

corresponding to the (unknown) value of the vorticity on the boundaries. The matrices M

and C are functions of the stream function because in the variational formulation of 2.1)
we employ a Petrov-Galerkin method [10] with weighting functions dependent upon the
velocity field.

Remark 2.4 Equations (2.4) and (2.5) are solved by employing a predictor/multi-

corrector algorithm which, in nature, is a block-iteration scheme [12]. In fact the way we

have written these equations reflects the way the block-iteration scheme works. In the

blocks corresponding to (2.4a),(2.5a), and (2.5b), we update Vs, dsq, and vgg,

{;slpectively. To move from time step n to time step n+1 we perform iterations as outlined
ow:

block 1:

=i i i

Mp+1 By =Ry (2.62)
where

M}, 1 = M(@agp, )+ 0 At T(dug) 4 s (2.6b)
and

R . = Frdu i i

nt+1 = Fd«g) 11, VGPpy1> @GP441)
= (M((daq)p ) @y 1+ Clagly ) Fpa » (2.6¢)

with updates

o =l raac@anl ), (2.6d)

1 . .
@y 1= @dp,1 + (Aaa)p, ¢ 2.6¢)

Here i is the iteration count, At is the time step, and o is a parameter which controls the
stability and accuracy of the time integration.

block 2:

Ky =Fu@ol L ovepl, . @7
block 3:

MG iy = Fim(@sg) o, ra)toh), ox)

The iterations continue until a predetermined convergence criterion is met.
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3. The Adaptive Implicit-Explicit (AIE) Scheme

In our block-iterative procedure, at every iteration we need to solve three equation
systems : (2.62),(2.7), and (2.8). The cost involved in (2.8) is not major (see Remark
2.3) and therefore we solve it with a direct method. We are mainly interested in

minimizing the CPU time and memory demands of equations (2.6a) and (2.7) which, after
dropping all the subscripts and superscripts, can be rewritten as follows:

MAa =R, @G.1)

Kd =F. (3.2)

We need to remember that K is symmetric and positive-definite but M, in general, is not.
We propose to employ the AIE scheme for both of these equations.

h in_th X h icity tr
Let € be the set of all elements, €=1,2...., ne. The assembly of the global matrix

M in equation (3.1) can be expressed as follows:
M= ¥ M, (33)
ee€
where MCis the element contribution matrix which is obtained by permutating the element
level matrix me. It should be noted that M® has the same dimensions as the global matrix

M but only as many number of nonzero entries as € (e.g. 4 % 4 for a two-dimensional
quadrilateral element with a scalar unknown).

Let €1 and Eg be the subsets of € corresponding to the implicit and explicit
elements, respectively, such that

€ =& uUEg, (3.423)
=€ nEE. (3.4b)

Consequently, from equation (3.3) we get

M=y M+ 3 M (3.5)
ec g eEEE
The AIE scheme is based on modifying M by replacing Me(V ee €g )with its lumped
mass matrix part; that is
M= ¥ M°®+ M. (3.6)
M eeza eezaa L

The grouping given by (3.4) is done dynamically (adaptively) based on the stability and

accuracy considerations. vich
The stability criterion is in terms of the element Courant number Cat which 18

defined as

lall At
L €X)
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where h is the "element length" [10]. Any element with its Courant number greater than

the stability limit of the explicit method should belong to the implicit group €.

For the accuracy considerations we use a quantity which is meant to be a measure
of the dimensionless wave number [10]. For this purpose, in [13] the "jump" in the
solution across an element was defined as

jo(e) = max (@) - min (@), (3.8)

where a is the element node number and Cu)':1 is the value of the dependent variable o at

node a of the element e. This definition reflects the magnitude of the variation of the
solution across an element. It was proposed in [13] that the elements with jumps

greater than a predetermined amount should belong to the group €.

In our numerical tests involving the one-dimensional propagation of various
triangular profiles we observed that the accuracy of the solution is affected not only by the
jump in the solution but also by the derivative of the flux of the dependent variable.
Therefore, as an alternative criterion we propose to employ the product of the jump and the
derivatives of the flux; that is

of = jo() (19019, | Oaw) o (3.9)
ox1q X3

A global scaling is needed for this quantity and we propose the following procedure:

=
o= Se , (3.10)
Gmax
where
e —
Onax = TAX ©°. (3.11)

e
In this case the elements with S, greater than a predetermined value belong to group €.

Implementation of the AIE scheme is quite straightforward. A global search is
performed on the entire set of elements. With this search, based on the two criteria given

by equations (3.7) and (3.10), the elements are grouped into the subsets €and €.

Compared to having all elements treated implicitly, this grouping results in substantial
savings in the CPU time and memory.

Remark 3.1 It is important to note that the grouping does not have to be with respect to
implicit and explicit elements. In the acronym "AIE", the letter "I" can refer to the "I-
clements” subject to some "I-procedure” whereas the letter "E" can refer to the "E-
elements” subject to some other "E-procedure”. Let us suppose that we are concerned
with the computational cost but we also believe that "you get what you pay for". Then we
might have an "I-procedure” which is sophisticated but costly and an "E-procedure” which
is less sophisticated but also less costly. We can employ the "I-procedure” where it is
needed and the "E-procedure” elsewhere. Even if the computational cost is not an issue,
in certain regions of the domain we just might have a reason to prefer the "I-procedure”
over the "E-procedure”, or vice versa. The reasons could be based on the type of
interpolation functions, spatial discretization, differential equations used for modelling,
etc. The AIE concept is based on making decisions at the element level, dynamically, and
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according to some desired and reliable criteria. Later in this section we will give an
example for an AIE scheme which is not based on the implicit-explicit grouping.

Remark 3.2 In the AIE approach one can have a high degree of refinement throughout
the mesh and raise the implicit flag only for those elements which need to be treated
implicitly.

Remark 3.3 The savings in the CPU time and memory can be maximized by
performing, as often as desired, an equation renumbering at the "implicit zones" to obtain
optimal bandwidths. Bandwidth optimizers are already available for finite element
applications, especially in the area of structural mechanics.

Remark 34  Time-dependent convection-diffusion of a passive scalar can be treated as a
special case of equation (2.1) with the velocity field u given. The only equation system
that needs to be solved is (3.1).

he AIE scheme in th ntext of the flux-corr ransport (FCT
method

It was stated in Remark 3.1 that the AIE scheme does not have to be based on
implicit-explicit grouping. It can be based on any element level, dynamic, and rational
selection between an "I-procedure” and an "E-procedure”. Here we give an example by
employing the AIE scheme in conjunction with the FCT method described in [9,15]. We
apply this method to the time-dependent convection-diffusion of a passive scalar (see
Remark 3.4).

The FCT method given in [9,15] is based on the correction of the flux obtained
with a lower-order scheme with the flux obtained with a higher-order scheme, while
limiting the maximum allowable correction. The balance law is satisfied at the element
level. In our case, as the lower-order scheme we use the one-pass explicit SUPG method
and as the higher order scheme the multi-pass explicit SUPG method. With sufficient
number of iterations (typically three) the multi-pass explicit method produces solutions
indistinguishable from those obtained by the implicit method. In the utilization of our AIE
scheme we define the "E-procedure” to be the one-pass explicit SUPG method alone and
the "I-procedure” to be the FCT method based on the lower- and higher-order schemes
described above.

Remark 3.5 It is not our intention here to make any statement about what lower- and
higher-order schemes should be used with the FCT method or about whether the FCT
method should be preferred over some other method. We just needed to pick an example.
For the AIE scheme we employ the "v-form" of the predictor/multi-corrector
algorithm described by eguation (2.6). Thatis
ML (Ava)y g =R, 1, (3.123)
where ML is the (diagonal) lumped mass matrix version of M and

1 ~ o~ ~ i
R, =At Foa - M+ aAQ) ()

+ (M~(1-0)At ©) (V). (3.12b)

Note that these expressions are quite simpler due to the fact that this is a linear problem
and that no stream function is involved.
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The nodal value increment vector (Av*);1 +1 and the residual vector ﬁ; +1 can be

written as sums of their element level contribution vectors

@vt = T @avol, ., (3.13)
. €cEE )
®R.p = I ®YL,. (3.14)
ceE

The AIE scheme employed is outlined below:

1. givén (Vi)p
i=0
2 AVDL =M Re) . Vee€ (3.15)
: Avidpyp =Mp, RO)y,y Ve :
1 : o
3. C GOn =gt I AV (3.16)
4. i=itl
ed . -1 =i
5. AVpei=M[ ®e) ., Vee & (3.17)
1 : :
6. Vsl = (Vedpy * Zo OV (3.18)
7. ifi <nj then goto 4
8. n=n+1 and goto 1

where c®is a parameter [9,15] determined by the maximum correction allowed for the
element e and nj is the number of iterations per time step for the higher-order solution.

Limiting the steps 5 and 6 to the group € results in substantial savings in the
computational cost involved.

solution of the discrete Poisson's equation

We use the preconditioned conjugate gradient method to solve the equation system
given by (3.2). In conjunction with the AIE scheme employed for equation (3.1) we
define our preconditioner matrix P to be

P= Ke+ 3 diag(Ke), 19
oZe e, 28 (K) (3.19)

where K¢ is the element contribution matrix of K. If £ =@ then P = K and the solution

technique becomes a direct one. If £; = & then the method becomes a Jacobi iteration 21
Other definitions for P are of course possible; the one given by (3.19) is simple to
implement and reflects our belief that there should be a correlation between the solution
procedures for (3.1) and (3.2).

Remark 3.6 The incompressible Navier-Stokes equations in the velocity-pressure
formulation, upon spatial and temporal discretizations, can also translate to a set of
equations given by (3.1) and (3.2). In this case equations (3.1) and (3.2) would
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correspond, respectively, to the momentum equation and the incompressibility constraint.
The latter one would consist of a discrete Poisson's equation for pressure.

Remark 3.7  Another example for the type of problems which can translate to equations
(3.1) and (3.2) is the electrophoresis separation process (see [1]). In the context of a
block-iteration scheme, the time-dependent transport equation for the chemical species and
the equation for the electric potential would transform to equations (3.1) and (3.2),
respectively. :

4. The Grouped Element-by-Element (GEBE) Preconditioned Iteration
Method
The linear equation systems given by (3.1) and (3.2) are both in the form

Ax=b (4.1)

In this section we describe our parallel GEBE-preconditioned iteration method for solving
4.1).

element _grouping
We group the set of elements € in such a way that

L€ =0 &k (“2)

2.0=&EnNE forJ#K, 4.3)

3. no two elements which belong to the same group can be neighbors
(we define being neighbors as having at least one common node),

where Npg is the number of such (parallelizable) groups. )
orresponding to this grouping, the matrix A can be written as

n
A=A 4.4
K=1

where the "group matrices” are given as

Ag= 3 A®,K=12,.., Npg 4.5)
CEEK

Remark 4.1 Within each group, since there is no inter-element coupling, computations
performed in an element-by-element fashion (for example such operations performed on a
group matrix) do not depend on the ordering of the elements.

Remark 4.2 . In our parallel computations, before we start with a new group we first
have to finish with the current one. To minimize the overhead associated ‘wn:h this
synchronization, we try to minimize the number of groups. For example, in a two-

dimensional problem with rectangular domain and 100 x 100 mesh, there will be 4 groups
with each group having 2500 elements and arranged in a checkerboard style. A simple
element grouping algorithm for arbitrary meshes is described below:

initialization:
e=1 (start with the first element)
Npg=1 (create the first group)

ee Enpg (put the element in that group)
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next element:
e=e+l (take the next element)
if e > ng] then return (if there is no such element return)
K=0 (otherwise get ready to search for an eligible group
among the existing groups, starting with the first
: existing group)
next existing group:
K=K+l (take the next existing group)
if e has no neighbors in £g  (check if the element can be put in that group)
then
ce €k (if so, do it)
g0 to the next element
else if K< Npg (otherwise check if there is a next existing group)
then )
g0 to next existing group  (if so, try that next group)
end if
create a new group:
Npg=Npg +1 (otherwise create a new group)
ee Enpg (and put the element in that group)
go to the next element

Remark 4.3 Within each group, to increase the vector efficiency of the computations
performed, elements are processed in chunks of 64 elements ( or whatever the optimum
chunk size is for the given vector environment). For the example of Remark 4.2 each
group would have 40 chunks (with an assumed chunk size of 64 elements).

EBE-preconditioned iterativ luti
Equation (4.1) is solved iteratively as follows:

P Aym =T'm, 4.6)
where the residual vector is defined as
I'm=b—Axn, “.7)

and the two-pass GEBE-preconditioning matrix is given as

1
P=D"1¢( 1‘1’1% Ex II Ex)D, (4.8)
K=1 K=Npg
with the scaling matrix
(A8)1/2
Lo 49)

Here AO is a free parameter and for W, depending on the properties of A, we can pick
one of the following two choices:

W=diagA, (K1) (4.10)
W=M . (8D @11

and
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Note that equation (4.9) needs W to be positive-definite. While the choice of (4.10) does
not guarantee this when M is not positive-definite, the alternative choice of (4.11) does.
For problems in fluid mechanics M is not in general positive-definite. A certain type of
streamline-upwind/Petrov-Galerkin method, however, in some cases result in M being

symmetric and positive-definite.
The matrix Ex is defined as

Ex = (I1+5DBkD) , K=1,2,....Npg, @.12)

where 1 is the identity matrix. Considering that there is no inter-element coupling within
each group, Ex can also be written as follows:

Ex= I (I+3DBD), K=12,....Npg. 4.13)

ecex

For the element matrix B¢ we consider the following two choices:

B¢ = A€, (4.14)
and
we . .
Be=A°c- Za- (Winget regularization [2]). (4.15)

Remark 44 The grouped EBE approach is just a way of rewriting the regular EBE
formulation. The rewriting is based on arranging the elements into parallelizable groups.
We can say that the GEBE formulation is "parallel-ready”.

Remark 4.5 The expression given by (4.8) depends on the ordering of the groups.
This is the only expression that depends on any ordering. The expression given by (4.13)
does not depend on the element ordering. We can therefore conclude that the EBE
schemes depend on the ordering of the groups but not on the ordering of the elements in a
strict sense. The corollary is that the number of possible ordenng‘combmatmn,s is (Npg)!
but not (nep)!. There may be some degree of non-uniqueness in the grouping of the
elements but we assume this non-uniqueness to be a minor one ( nonexistent for structured
meshes).

The updated value of x is computed according to the following formula:

Xm+1 =Xm + 8 A¥m, {4.16)
where s is the search parameter determined, depending on the properties of A, as follows:
= BA¥mTm (if A is symmetric positive-definite), (4.172)
Ayme® AAym
or

g={AA¥mleln (if A is not symmetric positive-definite). (4.17b)
I AAymii2

The latter expression for s is obtained by minimizing Hrme 1112 with respect to s.
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Remark 4.6 If A is symmetric positive-definite, the preconditioned conjugate-gradient
algorithm can be used with the preconditioner given by equation (4.8). This is what we
do to solve equation (3.2).

5. Remarks on the Vectorization and Parallel Processing

In a multi-processor vector machine each processor is an individual vector
processor. The single vector processor can gain high performance through overlapping
multiple operations using segmented functional units. When a program is restructured or
vectorized to facilitate this overlapping, the speed can be improved by an order of
magnitude. Performance improvements from vectorization can be augmented through the
use of parallel processing in a multi-processor machine. Parallel processing allows a single
program to use more than one CPU to do the required work. This results in a reduction of
the elapsed time needed to do the job. The amount of reduction is proportional to the
percentage of the program that can be executed independently. In our implementation we
have, so far, focus on the vectorization and parallel processing of element level
matrix/vector calculations, factorization and back substitution, and global residual
calculations.

All the above calculations have been vectorized in this work. The structure of the
vectorized code contains an inner loop over elements that belong to particular chunks of
elements with identical calculations. An important implementation point is the restructuring
of the code to enable compiler optimization. A specific example is the partitioning of the
element level matrix/vector calculations into multiple loops. Of course this introduces
additional storage requirements as we need temporary arrays to hold the intermediate
computational results across loops. Another example is the deployment of CVMxx, CRAY
compiler extension for vectorizing IF construct.

Additionally, all calculations are parallel processed using Microtasking, a compiler
directive driven preprocessor for parallel processing on the CRAY. Microtasking is
implemented with comment card directives. Before compiling the code, a preprocessor
expands the directives into Fortran code which includes calls to the Microtasking library.
It is important to note that if the preprocessor is not used, the code is portable to other
machines since the Microtasking directives appear as Fortran comment cards. The code is
currently being used for benchmarking on additional architectures (e.g., IBM 3090/VF).
This is the subject of a future report.

If there are ncpy CPUs available for parallel processing, we would like to
distribute the work among all CPUs in such a way that large task granularity, good load
balance and synchronization are satisfactorily achieved. The parallel performance gain
must be considered against the deterioration of the vectorization performance.

In the implementation of the parallel GEBE procedure, within each group,
elements are sub-grouped into ncHUNK chunks with each chunk containing nvr (e.g. 64)
elements. The last chunk in each group may contain less than nygr elements. We choose
NcHUNK and NyR in such a way that NeHUNK is a multiple of ncpy. When parallel
processing is invoked (with a compiler directive in the outer loop over ncgyUNK), each of
the available ncpy CPUs will work on one chunk at a time until all chunks are finished.
Because each chunk contains the same amount of work (except for the last chunk) and the
overaleldnumber of chunks can evenly be distributed to ncpy CPUs, load balancing is
ensured.

6. Numerical Tests
We have tested the AIE and GEBE methods on problems governed by the
convection-diffusion and the two-dimensional incompressible Navier-Stokes equations.

ne-dimension r i in v
The purpose of this simple test is to provide a conceptual illustration of the way the
AIE scheme works. A cosine wave of unit amplitude is being advected from the left to the
right with an advection velocity of 1.0. A uniform mesh is being used and the element
Courant number is 0.8.
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The AIE scheme is based on the selection between the implicit and the one-pass
explicit versions of the streamline-upwind/Petrov-Galerkin (SUPG) procedure. The
threshold value for the criterion given by equation (3.8) is set to 1%. Figure 1 shows the
solution and the corresponding distribution of the implicit elements at time steps 0, 50, and
100. Compared to the implicit method, the AIE scheme results in a 79% reduction in the
CPU time and 81% in the memory needed for the global matrix; the solutions obtained by
the implicit and the AIE schemes are indistinguishable.

-dimensional pur i iscontinui

The conditions in this case are nearly identical to those in the previous case. This
time the profile which is being advected is a discontinuity which initially spans four
elements. The AIE scheme is based on the selection between the one-pass explicit SUPG
method and the FCT method implemented as described in Section 3. The threshold value
given by (3.8) is set to 0.01%. Figure 2 shows the solution and the corresponding
distribution of the FCT elements, at time steps 0, 50, and 100. Compared to the "full"
FCT approach the savings in the CPU time is 42%.

-dimensi r vection 1

This test is for evaluating the performance of the AIE scheme for two-dimensional
problems with moving sharp fronts. A 40 x 40 mesh is chosen in a 1.0 x 1.0
computational domain. All the boundary conditions are the Dirichlet type. The advection
velocity is in the diagonal direction and has unit magnitude. The time step is 0.01.

The AIE scheme is based on the selection between the implicit and the one-pass
explicit versions of the discontinuity-capturing SUPG procedure [14]. The threshold
value for the criterion given by (3.8) is 1%. Figure 3 shows the solution and the
distribution of the implicit elements at time steps 0, 20, and 40. Compared to the implicit
method, the AIE scheme results in a 48% reduction in the CPU time and 79% in the
memory needed for the global matrix.

ircular cylinder at Reynolds number

In this problem both the AIE and the GEBE schemes were tested. We used a mesh
with 1940 elements and 2037 nodal points. The dimensions of the computational domain,
normalized by the cylinder diameter, are 16 and 8 in the flow and the cross flow
directions, respectively. Figure 4 shows the finite element mesh and its element-grouped
version ("GEBE mesh") for the parallel computations. The free-stream velocity is 0.125
and the initial condition for the vorticity is zero everywhere in the domain. The time step
is 1.0.

The AIE scheme employed to solve the vorticity transport equation and the
Poisson's equation is exactly as described in Section 3. For the vorticity transport
equation, both the implicit and the explicit methods are SUPG based and involve several
iterations due to the nonlinearity of the equation. In this problem the Courant number for
some elements is above the stability limit of the one-pass explicit algorithm (we estimate
the maximum Courant number to be somewhere around 1.5-1.6). Therefore the stability
criterion given by equation (3.7) also becomes active in t}}e implicit-explicit grouping. In
fact our numerical experiments show that the computations do not converge when the
entire set of elements belong to the explicit group. For the accuracy considerations, the
threshold value of the criterion given by (3.10) is set to 1%. For solution of the discrete
Poisson's equation, the iterations continue until the residual norm goes below 10-8 (we
realize that this is rather an overkill). ) .

Both the AIE and the GEBE methods give the expected solution for this problem:
initially a symmetric flow pattern with two attached eddies growing in the wake of the
cylinder, then the symmetry breaks, and as time goes by the vortices are formed alternately
at the upper and lower downstream vicinity of the cylinder and carried along the Karman
vortex street. Figures 5,6, and 7 show the solution obgamed by the AIE scheme and the
corresponding distributions of the implicit elements at time 680, 1500, and 2000.



456  Tezduyar et al.

Figure 1 One-dimensional pure advection of a cosine wave: the solution obtained by the
AIE scheme and the corresponding distribution of the implicit elements at
t=0.0, 0.2, and 0.4. -
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Figure 2 One-dimensional pure advection of a discontinuity: the solution obtained by the
AIE scheme -and the corresponding distribution of the FCT elements at
t=0.0, 0.2, and 0.4.
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Figure 4 Flow past a circular cylinder at Reynolds number 100: the finite element mesh
and its element grouped version ("GEBE mesh") for the parallel computations.
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Figure 6
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Flow past a circular cylinder at Reynolds number 100: the solution obtained by
the AIE scheme at t = 1500; from top to bottom: vorticity, streamlines, relative
streamlines, and distribution of the implicit elements.
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The AIE method reduces the memory needed for the global matrices by 85%. The
CPU time however is more than that of the implicit scheme. This is because, for the
solution of the vorticity transport equation, the nonlinear iterations continue until a certain
convergence criterion is met; this convergence criterion is the same whether it is the
implicit or the AIE scheme. That is, for the solution of the vorticity transport equation,
compared to the implicit method, the AIE scheme is not giving up any accuracy even in the
explicit zones.

In the case of the GEBE computations, one has to note that for the first layer of
elements around the cylinder computations can not be fully parallel. This is because of the
way the problem is formulated to determine the unknown stream function value
corresponding to this internal boundary. The tests for the GEBE computations were
performed on a CRAY-XMP/416 : 4 CPUs, 8.5 ns clock, 128 Megabytes of memory,
COS 1.16 operating system and products (Cray Research Mendota Heights data center).

The benchmark test lasted for 10 time steps with several non-linear iterations per
time step. The vector performance reached 100 Mflops for the element level matrix/vector
computations, 70 Mflops for the factorization and back substitution, and 25 Mflops for the
global residual calculation. The overall program performance was at 48 Mflops. We
expect to obtain higher performance rates as we vectorize the program further and filter out
the initial setup/overhead cost. Paralle]l processing on the element level matrix/vector
computations rendered speed ups of 3.5-3.8. The speed up on the factorization/back
substitution and global residual calculation is around 2-3. This is due to the fact that the
task granularity is small because of the relatively small size of the test problem.

7. Concluding Remarks

In this paper we have presented some efficient solution techniques for large
equation systems emanating from the finite element formulation of fluid mechanics
problems.

In the adaptive implicit-explicit (AIE) method the elements are dynamically
grouped into implicit and explicit subsets based on the element level stability and accuracy
criteria. This dynamic grouping idea can be applied in any context where there are some
reasons for preferring a given procedure over another one. As an example we
implemented the AIE concept in conjunction with the flux-corrected transport method.

The grouped element-by-element (GEBE) iteration scheme, which is a variation of
the regular EBE scheme, is based on defining the preconditioner to be a sequential product
of the element group matrices. To facilitate efficient parallel processing, the number of
groups is minimized with the condition that there can be no inter-element coupling within
each group.

We applied these methods to various test problems and demonstrated that
substantial savings in the CPU time and memory can be achieved.

In our future studies we plan to experiment with the combinations of the AIE and
GEBE schemes. For example we can use the GEBE scheme to solve the discrete
Poisson's equation for the stream function (or the pressure), employ the AIE scheme to
solve the time-dependent transport equation for the vorticity (or the momentum), but use,
again, the GEBE scheme at the implicit zones of the implicit-explicit distribution.
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