CHAPTER 13

Boundary Probe Domain Decomposition Preconditioners for
Fourth Order Problems*

Tony F. Chant

Abstract. The boundary probing technique is a class of methods for the construction of efficient
interface preconditioners in domain decomposition algorithms. The main idea is to capture the strong
local coupling of the interface operator through subdomain solves with a few appropriately chosen
"probing” boundary conditions. For second order elliptic problems, this technique has proven to
be very successful and frequently performs bLetter than other preconditioners. In this paper, we
show how this technique can be extended to derive efficient domain decomposition preconditioners
for fourth order problems. The main modifications are that the interface between subdomains now
consists of two grid lines and a new set of probing boundary conditions is used. Numerical results
for the biharmonic equation are presented.
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1. Introduction. In this paper, domain decomposition refers to a class of algo-
rithms for solving boundary value problems for elliptic partial differential equations.
The main idea is to decompose the original domain into smaller subdomains, solve the
original problem on the subdomains, and somehow “patch” the subdomain solutions
to form the solution to the original problem. In general, the above process has to
be repeated through an iterative process until some convergence criteria is satisfied.
There are two main approaches, characterized by the way the subdomains are con-
structed, namely overlapping and nonoverlapping. In this paper, we shall consider
only the nonoverlapping approach.

There are several reasons why such a procedure would be useful. First, irregular
domains can be decomposed into regular subdomains on which more efficient solvers
can be used. Second, it is a natural way to design parallel algorithms for elliptic
boundary value problems. Third, it allows large problems to be solved on comput-
ers with relatively small core memory. Finally, different mathematical models and
different grid resolutions can be adaptively used in the different subdomains.

In the nonoverlapping approach of domain decomposition, the original problem

* This version was last modified August 30, 1988. The research of the author is supported in part
by The Depariment of Energy under contract DE-FG03-87ER25037, by the National Science

Foundation under contract NSF-DMS887-14612 and by the Army Research Office under contract
No. DAALO3-88-K-0085.

T Department of Mathematics, UCLA, Los Angeles, CA 90024. E-mail: chanCmath.ucla.eda or
na.tchanlra-net.stanford.edn.

160



BOUNDARY PROBE PRECONDITIONERS 161

is reduced to an equivalent one defined on the interfaces separating the subdomains.
This problem (sometimes referred to as the Schur Complement system or capacitance
system) is then solved iteratively, each iteration requiring a solve on each subdomain.
To improve the rate of convergence, preconditioners (which can be thought of as easily
invertible approximations to the interface operator) are often used. Due to its critical
impact on the overall efficiency of the domain decomposition algorithm, the design
and analysis of such preconditioners has been a main topic of research in this area.
For a survey of this activity, see [4,9,6,2].

In this paper, we shall study in particular a class of preconditioners that we shall
call boundary probe preconditioners. The main motivation behind these precondition-
ers is the observation that for many elliptic problems, the reduced interface operator
has strong spatial local coupling and weak global coupling. In the discrete case, the
corresponding interface matrix has elements whose magnitude decay rapidly away
from the main diagonal [7]. The boundary probe preconditioners are designed to cap-
ture the strong coupling (i.e. the main diagonals) via a few subdomain solves with
appropriately chosen probing boundary conditions. They were first proposed in {3]
for second order elliptic problems and have proven to be quite successful for a large
class of problems [9], including convection diffusion problems [8]. Unlike some of the
other domain decomposition preconditioners, its performance has also been shown
to be relatively insensitive to the mesh size, the shapes of the subdomains and the
variations in the coefficients of the differential equation.

The main purpose of this paper is to extend the boundary probe preconditioners
to fourth order boundary value problems discretized with standard compact finite
difference approximations. There are two main modifications needed. First, the
interface between any two subdomains must now consist of two grid lines instead of
one in order to competely decouple the subdomain problems. Second, slightly different
probing boundary conditions must be used. These will be discussed in more details
in Section 2. Results from numerical experiments for the biharmonic problem will be
presented in Section 3. They show that the boundary probing technique does produce
effective preconditioners.

We note that several preconditioners designed specifically for second order elliptic
operators cannot be extended directly to fourth order problems, short of employing
them in an inner iteration of an algorithm which solves second order problems at each
step. For the biharmonic operator arising from the stream function formulation for
the Stoke’s problem in incompressible flows, some of these ideas are used in [10,11] to
derive domain decomposition preconditioners through the alternate velocity-pressure
formulation. On the other hand, the boundary probing technique makes it possible in
a direct way to construct efficient domain decomposition preconditioners for problems
with more complicated operators. For applications of the techniques developed here
to the Navier Stoke’s equations, see [1,5].

2. Formulation. In this case, we consider only the simplest case of a domain 2
split into two subdomains Q; and Qj sharing the interface I'. Consider the problem
Lu = f on Q where L is a fourth order partial differential operator with appropriate
boundary conditions on u and its derivatives on §€2. We consider the use of a compact
general 25-point discrete approximation of L on a finite difference grid, i.e. the discrete
approximation at a point (3, j) involves only values at grid points (&, 1) with |i—k < 2
and |j — | € 2. Further, we assume that the interface I' consists of two adjacent
grid lines, which we shall denote by 'y and T';. If we order the unknows for the
internal points of the subdomains (which we denote by u; and us) first and those
on the interface T' (which we denote by ug) last. then the discrete solution vector
u = (uy, ug, u;:,)T satisfies the linear system :

A Az uy f
Au= Axz Asg uy | =14 fa ) (2.1)
Az Az Ass u3 fs
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where the discrete vector f = (fi, f2, f3)T contains the contribution of the right hand
side f of the differential equation and of the boundary conditions. Note that in (2.1)
the subdomain problems (the blocks A;; and Aj;) are not coupled together.

System (2.1} can be solved by block Gaussian elimination which gives the equa-
tions for the interface variables usz :

Sus=7f5 |, (2.2)
with
S = Ags — Agt AT A1z — Ass A% Aag
and
f3=fa— As1 AT 1 - Aa2 AT} fa

The matrix S is the Schur complement of Asz in the matrix A. It corresponds to
the reduction of the operator L on Q to an operator on the internal boundary T.
Constructing the Schur complement would require the solution of nr elliptic problems
on each subdomain, where nr is the number of internal points on T'. Furthermore it
is dense, so that factoring would be expensive.

Instead of solving the system (2.2) directly, iterative methods such as precondi-
tioned conjugate gradient (PCG) can be applied in which only matrix vector product
Sy are required. This product can be computed by one solve on each subdomain with
boundary condition on I' determined by y. Since each iteration is rather expensive,
it is important to precondition this iteration with a good preconditioner in order to
keep the number of iterations small.

We now consider using the boundary probing technique to construct efficient
preconditioners for S. The main motivation for this approach is the observation that,
for many elliptic operators, the reduced interfacial operator S exhibits a strong spatial
local coupling and weak global coupling among the interfacial unknowns. To show
this effect, consider the special case of the biharmonic operator L = A2, on the unit
square {2 with u and its normal derivatives given on 8Q and the usual 13-point second
order central difference approximation on a uniform n by n grid. Let the interface T
consist of the two vertical grid lines closes to # = 0.5, which we shall denote by w,
and wy. We shall order the unknowns first on one of the grid lines starting from y = 0
to y = 1 and then similarly on the other grid line. The Schur complement system
corresponding to (2.2) can be written as a block 2 by 2 system:

w1\ _ (S Si2\ (w1 _ {fa
S(w2>= (521 S‘zz) (wz)_ (fsz)I (2:3)
The blocks S1; and Sy account for the coupling of the unknowns on I'y and T
respectively among themselves and the blocks S12 and So; account for the coupling
between the unknowns on the two interfaces. Figure 1 shows a plot of the elements of
the matrix S for the case n = 20. The decay property can be seen clearly in the figure:
the magnitude of the elements of the individual subblocks of S decays rapidly away
from their respectively main diagonals, reflecting the strong local coupling and weak
global coupling. Figure 2 shows the elements of the eighth row of S, showing that the
elements of the main diagonal blocks Sq; and S22 are negligible except for the 5 main
diagonals and that the off diagonal blocks S;; and Sa; have only 3 non-negligible
main diagonals. This shows that the interfacial unknowns are most strongly coupled
to its four nearest neighbors on its own grid line and to the three nearest neighbors
on the adjacent grid line.
A natural way to construct an interface preconditioner is therefore to capture
efficiently the effects of these main diagonals of the individual sublocks of §. However,
it would not be efficient to calculate all the elements of S in order to do this, for
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this would require 2n subdomains solves. Instead, we shall do this by probing the
individual subblocks via a few matrix vector products S;;v; with appropriately chosen
probing vectors v;’s. As proposed in [3], a 2k + 1 diagonal approximation to subblock
S;; can be constructed by computing the action of S;; on 2k + 1 “probing” vectors
vi,{ =1,...,2k + 1 which for the cases ¥ =0 and k = 1 are given by:

E=0: v =(1,1,1,1,1,1,1,...7
k=1: wun =(1,0,0,1,0,0,1,...)T
va =(0,1,0,0,1,0,0,...)T
vs = (0,0,1,0,0,1,0,..)7.

The case k = 0 corresponds to a scaling of each row of the matrix S;; by the sum of
the elements of the row. For k = 1, if S;; were indeed tridiagonal, all of its elements
would be recovered in the vectors Siju, I = 1,2,3. Generalization to cases with & > 1
is straightforward [8].

Suppose we want to compute a preconditioner My; for S consisting of k-diagonal
approximations for the diagonal blocks Si; and Saa, and l-diagonal approximations
for the off-diagonal blocks Sia and S2;. Let Vi be a n by k matrix consisting of
k probing vectors for any one of the subblocks described above. Then Mp; can be
obtained by probing S by the columns of the following matrix:

i Vi 0 0

6 0 V. Vi)°
This requires solving 2(k+I) subdomain problems with boundary conditions consisting
of probing vectors from V;, or V; on one grid line and zero on the other grid line. More
efficient probing techniques, with fewer probing vectors and hence fewer subdomain
solves for given values of k and [, can be constructed [5] but since our main concern
in this paper is on the convergence rates of the preconditioned interface system, for
simplicity we shall not present them here.

Finally, the block matrix Mpy; can be permuted into a narrowly banded matrix
by reordering the unknowns to preserve their physical proximity. For example, if
we start from y = 0 and alternatively order the unknowns on the two grid lines,
then My, is reordered into a banded matrix with bandwidth 2k — 1, assuming [ < k

for simplicity. Therefore, the product A7 k_,lw for a given interfacial vector w can be
computed efficiently by banded Gaussian elimination.

3. Numerical Results. We now present some numerical results for the per-
formance of the above boundary probing techniques on the biharmonic problem de-
scribed in the last section. Figures 3a and 3b show the eigenvalue distribution of
the unpreconditioned interface matrix S and the preconditioned matrix M k_IlS for
several values of (k,1). The figures show that tlie preconditioners produce a dramatic
improvement in the conditioning of the interface operator. As a sample measure, the
eigenvalues of S lie in the interval (.02,45) while those of the preconditioned system
M;;S lie in (0.3, 1.2}. Moreover, many eigenvalues of the preconditioned system are
clustered around unity. Figure 4 shows the condition number 3;;'S in the spectral
norm as a function of n for several values of k and I. These results show that not
only are the condition numbers of the preconditioned matrix much lower than S itself.
but also that they grow at a slower rate (approximately O(n) for the preconditioned
cases versus O(n>%) for the unpreconditioned case). The plots also show that Mss
is in some sense optimal because the more expensive M7s produces negligible im-
provement in the condition numbers. Finally, to show that the improvement in the
condition number and the eigenvalue distribution of the preconditioned matrix does
improve the performance in an iterative solution of the interfacial unknowns, we solve
the interfacial system by the preconditioned conjugate gradient algorithm. Figure 5
shows the history of an iteration, with the norm of the residual plotted against the
iteration step. It is clear that Ms3 produces a much faster convergence rate.
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We have also performed experiments with the biharmonic operator on nonrectan-

gular domains, such as the L-shaped domain resulting from cutting away a quarter of
the unit square. The results are completely similar. More recently, we have success-
fully applied the above boundary probing technique to the driven cavity problem of
incompressible flow [1,5]. However, these results are only preliminary evidence that
the boundary probing technique can be applied successfully to fourth order problems.
Much further work needs to be done, especially concerning the decay rates of the
elements of S and the properties of the preconditioners derived from if.
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