CHAPTER 33

Domain Decomposition Algorithms for the Stokes Equations
Alfio Quarteroni*

Abstract We show that the capacitance (or Schur complement) matrix C associated with
a multidomain finite element approximation to the Stokes equations is symmetric and
positive definite. We then propose several preconditioners which are symmetric, positive
definite, and spectrally equivalent to C. Their analysis is first carried out for decomposition
by two subdomains, then is extended to cover the case of strips (M adjoint subdomains,
see Fig.5.1) and boxes (four subdomains sharing an internal vertex, see Fig.5.2). As
stated in section 1, despite most of this paper is concerned with finite element
approximation of the Stokes equations, the arguments here developed can be applied to
different kind of approximations (e.g., those based on spectral methods), as well as to
different kind of boundary value problems,

1. Finite dimensional approximations to boundary value problems. LetV
and Q be two Hilbert spaces, with norm I} - Il and | - | respectively. We consider the
problem:

find ue V,pe Q st
.y a(u,v) + b(v,p) = £(v) VveV

b(u,q) = 8@ Vqe Q
wherea: VxV R andb: Vx Q- R are two bilinear and continuous forms, and f and

g are two linear functionals defined on V and Q respectively. We assume that there exist
two strictly positive constants o, B such that:

(12) VveV awwvzalvi?; VqeQ sup bvpliviizBiqgl
vVE

These properties ensure that problem (1.1) is well posed.
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We recall that (1.1) is the general setting for the variational formulation of the

incompressible Stokes equations in QCR”™. In such case, u denotes the velocity field, p
is the pressure,

a(u,v) =v J Vu-Vv, b(v,) = -4[ q div v,
Q Q
where ¥ > 0 is the viscosity, V=[H!y(€2)]" and Q = LX(Q)/R (see, e.g., [6]). The second
equation of (1.1) (with g =0) enforces the divergence free constraint on u. Second and
fourth order elliptics equations can also be cast into the same setting (with f = 0) by letting
either u or p be the primitive variable, and the others be Vu or Au, respectively (such
formulation is suitable in view of approximation by mixed finite elements, see [4]).

However, in order to keep our presentation plain, from now on we will specifically refer to
(1.1) as to the variational form of the Stokes equations.

Let now V, and Q be two finite dimensional subspaces of V and Q respectively.
We introduce the following approximation to (1.1):

find upe Vy , pe Q s.t.

(1.3) a(u,v) +b(v,p) =f(v) VveV,
b(u,,9) =g@ VgqeQ,
We assume that the following inf-sup condition holds:
14 Vgqe Q, sup b(v,/iviiZB, Iqli
Ve v,

where 8, > 0 might depend on h. Under this assumption, the problem (1.3) has a unique
solution, and the following error bound holds (see [3]):

(1.5) Ilu-uhll+|p-phISC(Bh){ inf Ilu-vhll+ inf Ip-q,i}
vy Vy g9, € Q,

Remark 1.1 Finite element approximations to the Stokes equations that satisfy (1.4) with
By, independent of the finite element mesh size h are numerous (see, e.g., [6] and [4]). In
such cases, the bound (1.5) yields optimal convergence estimates. Some Fourier-Legendre
spectral approximations that satisfy (1.4) with B, independent of the polynomial degree of

the spectral solutions are also known ([7] and [11]). More generally however, spectral
collocation approximation (and finite element approximation numerical integration), using
can be cast in the framework (1.3) provided two discrete bilinear forms a; and b, are used
instead of a and b. Further, for spectral Chebyshev approximation, the bilinear form
intervening in the momentum equation is actually different than that used in the continuity
equation. For these general cases, the inequality (1.5) becomes much more complicated

(see, e.g., [6], [1]), and the forthcoming discussion and relative results should be modified
accordingly.

In matrix notation, the problem (1.3) can be written as

T
(1.6) {AU"‘B p =f
Bu =g
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where: u (resp. p) is the vector of the values of u (resp p) at the grid points,
;= (9, 9) , by, =blo . q) . f;=1(¢) , g=2glq

and {q;} (resp {q;}) is the Lagrange basis of V,, (resp Q) relative to the grid points of the
finite dimensional approximation.

2. The domain decomposition formulation and the associated capacitance
matrix. We assume now that (1.1) is a boundary value problem set in an open domain
Q whose boundary is dQ. We make the assumption that Q is partitioned into two disjoint

subdomains €, and , whose common boundary will be denoted by I'. Despite most part

of the forthcoming discussion applies to general approximations of the form (1.3), from
now on we will explicitly refer to finite element approximations only. In this framework we

require that each element of the decomposition does not cross T, i.e., it is contained in
either Q, or €2,. Then, for k = 1, 2 we denote by Vh,k (resp Qh,k) the space of the

restrictions of the elements of V, (resp Q) to €, and by @, the space of restrictions to I of
the elements of V. Finally, we denote by V*, , the subspace of V}, of those functions

that vanish on T It is proven in [9] that the single-domain finite element problem (1.3) is
equivalent to the following multi-domain problem:

find Upy € Vh,k’ Ppx € Qh,k’ k=1,2s.t

@1 a (ay,,, VI+b (v, pyy) = £ Vve V¥,
@22) by (4,9 =5,(@ VqeQ,,

23 w=w, onT

2.9 a,(w, 1,0,9) + by(p,9.py 1)+ 35(U;, 20,00+ (P, 0.1y 2 =£(p,0) +£,(0,0) Voe®,
2:5) 2yt %) + bV, ) = H¥) VveVH,,

2.6) by, 2,0) = 2@ VgeQ,,

Here p, ¢ € V, is the interpolant extension of g € @, to {, i.e.,p,9=gonT, p 9= 0
at each finite element node internal to Q,, while a,, b, f, and g,_are the restrictions of a, b,
f and g, respectively, to Q,. Actually, one has Wy =Upop, Prx = Puowe K=1,2,
provided the pressures space Qj, is made of discontinuous functions across the interelement
boundaries. In the case where Q, < C°(€2), (2.1)-(2.6) is no more equivalent to (1.3).
The matrix representation of (2.1)-(2.6) is as follows. Denote, for each k=12, by {¢5},

{ qkj} and {y,_,} the finite element Lagrange bases of V¥, Qp and @,, respectively, and
by U°,, P, and Uj the vectors of the corresponding finite element unknowns.
Then (2.1)-(2.6) is equivalent to the linear system of Fig.2.1, where, fork =1, 2:

Ag (N X N < (A = 2305 0% » BuM x N : By = by (0" ¢

@7 Au®N XNy : (A= 20, ¥, 99 » B x N : (Bg) = bylpy ¥ 49
Akg(N; x Ny : (As)y = 8,0, W) PLWD: Agy=Algs + A%
F;=5(0%). (Fa)=fp ¥): F3=F3+Fy
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[ All Bll A13 0 0 1 [ Uol [ Fl ]
BT, 0 B 0 0 P, 0
AT, BT;;  A;; ATy BTy U; |=| F
0 0 A23 A22 B 22 U°2 F2
0 0 By BTy 0 P, 0

Fig.2.1 The finite element system

If we define fori=1,2

A; By Ay T T

by block elimitation we deduce from the system in Fig.2.1the following Schur complement
system with respect to the vector of the interface unknowns U;:

2.9) CUs;=G , with C=Ay-1 K'Cy+AL-1, K} Cy
2

The right hand side of (2.9)is G = X, F,, - J; K, (F;, 0)T The matrix C is the
i=1

capacitance (or Schur complement) matrix. Note that the complement is taken with respect
to the interface values of the velocity only, and not to those of the pressure.

3. Functional interpretation of the capacitance matrix For any element ¢ of @,
and for k = 1, 2, we look for w (o) e Vh,k, m(p) e Qh,k such that

u (W (9, V) + b (v, m (PN =0  VveV;,
G.D) by (wy (0), @ =0 Vae Q.
Wy (9) =@ onT

From now on we will refer to (W(@), T (@) as to the finite element Stokes extension of @
to £, for k = 1, 2. Now set:

2
(32) 4 (9.) :=k21 [8(Wy(9): W) + b(p,¥, T (9))]
In view of (2.7)-(2.9), it is easy to show that
(33) [CXy. X1 = A(p, W) Vo, ye

where X, is a vector whose N, components are the values of ¢ at the gridpoints on T, X, is

defined similarly, and [, -] is the euclidean inner product of R,
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Remark 3.1 For a Stokes problem, from (3.2) we deduce that Voe @, the capacitance
matrix C associates to the vector X, the vector Cxq, whose N; components are the values at

the interface nodes of ¢, (¢) + o,(¢), where

B4 o, () :=dwy (¢)/dny - T, (@) ny

(n, = outward normal direction to 9Q,) is the normal stress on T associated with the Stokes
extension of ¢ to Q.. Hence, equation (2.4) amounts to require the "natural” condition that
the normal stress of the solution be continuous across I'.

Proposition 3.1 The following equality holds

(3.5) A(Q, V) = a,(W(9), W (¥)) + 2y(W,(@), W(¥)) Vo, yed, .
Proof Using the definition (3.2) we have:

2
AG.¥) =Z; [, (W (@), W, W)+ a (W (@), P YWy (WD+Dy (P, Y-y, () T (DLW, (y), T (@))]

By the second equation of (3.1) (with g=y), the last term of the sum is zero. Moreover, the
sum of the second and third term in the bracket is zero due to the first equation of (3.1)

(with v=p,y - w, (y) € V*h,k)'

Corollary 3.1 If the bilinear form a (-,-) is symmetric, then the capacitance matrix C is
symmetric and positive definite.

Proof. Denoting as above by {\yj} the Lagrange basis of @, from (3.2) one obtains
(3.6) C;= AW, ¥) 1<i,j<N,

C is therefore the matrix associated with the form s4(,-). Since the forms a,(-,-) are

symmetric, the symmetry of C follows from (3.5). Furthermpre, C is positive definite
since the forms a,(-,") are coercive, as stated by the first inequality of (1.4).

4. An optimal preconditioner for the capacitance matrix We introduce the
reduced bilinear form on @,

(401) $((P3\V) = az(wg(q’)a Wz(‘l’)) V(P, e d’h
whose associated matrix is (see (2.9))

1
4.2 B=A% -5, K; Cpy
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It is shown in [9], Lemma 6.1, that fork =1, 2

(4.3) I EL (@) Tl < Nl wi(@) I, < (1 + |3:k) IH@, Veoed,

where By , is the constant of the inf-sup condition (1.4) on Q, Il - ll,_is the norm induced
by the form a,(-,-), and H,(¢) is the harmonic extension of ¢ to Q, i.e.,

@4 H(p) e Vk,h : o a (H(e),v)=0 Vve V¥n » H@=¢ onT

It is shown in [8] and [2] that if the finite element decomposition of Q is quasi-uniform,
then Il H,(@)!l; is uniformely equivalent to | Hy(g) ll,, i.e.,

(4.5) C, 1 Hy(¢) I, <N H,(¢) Il, < C, 1 Hy(@) Il Voed

where C,, C, are two constants independent of h. Using (4.3) and (4.5) we get:
-1 -1
(4.6) c,a+ ﬁm)_l Hw (@) Il < wy(g) Il < Cy(1 + Bh,z) Iw, (@) 1l

It follows (as already noticed in [9]) that if the inf-sup conditions hold in Q, with
constants By, uniformely bounded from below by a constant independent of h, then

' w,(¢) ll; and Il w,(¢) ll, are uniformely equivalent. Hence, in view of (3.5) and (4.1) we
conclude that there exists two constants K, and K, independent of h s.t.

Ch)) K; B(¢, 9) < L(o, 9) <K, B(o, ) Voe @
Thus the matrix B is spectrally equivalent to C, i.e.

(4.8) the condition number of B'1 C is independent of h

Since B is symmetric, positive definite and spectrally equivalent to C, it can be used as an
optimal preconditioner for conjugate gradient (or other) iterations on the capacitance system
(2.9). If used with Richardson iterations, it gives rise to the generalization to Stokes
equations of the Dirichlet-Neumann algorithm for elliptic equations (see [12] and [5], [8]).
Clearly, the same kind of conclusion holds taking the matrix B = Al3; - J, K;-1C,,.

5. Generalization to many subdomains We extend now the previous arguments to
decompositions with several subdomains. For simplicity of exposition we will consider
cartesian decompositions of "strips" and "boxes" only. For either case we will determine
the associated capacitance matrix as well as several preconditioners.

5.1 Strips We consider first a domain Q divided into M adjoining, non intersecting
subdomains €;. The common boundary between €; and €, is denoted by T (see

Fig.5.1). We will assume that M is even.
The finite element multidomain problem relative to the current situation can still be defined
as in (2.1)-(2.6), provided now £, denotes the set of the odd subdomains, €, that of the

even ones, ' := U(T}, i=1,...M-1} and @, = TI{®,(T), i=1,....M-1}, where @, (T)) is
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the finite element space Vy restricted to I';. The capacitance matrix C relative to the current
situation can be defined by means of some auxiliary matrices. For each i, denote by {wim}

the Lagrange basis of @, (T, at the finite element nodes {!’;im} of T;. Then we define the
four matrices S,,...,S1 as follows:

(.1) S'Drm = 3 W; (W), wiw)

(5.2) (S = a(W,W_ 1), Wiy, 1)
(5.3) Sm = (W, (W), Wi, i)
(5.4) (S = &(W,0w_i), wiy')

where, for each y € @ (Fj), ( =i-1,i), w,(p) is the velocity field of the finite element
Stokes extension of ¢ on &, with w,(¢) = ¢ on T and w,(¢) = 0 on aQi\r‘j.
If for each e @, (r‘j) we denote by X, the vector whose components are the values of ¢ at

the finite element nodes on I, we have

[S'4 X5 X1 = 2,(W;(¥), W(0)) Voed, I, ) Vye @ @) .

Thus, S is the algebraic representation of the finite element approximation of the
Steklov-Poincaré operator § : [HY2y (T ;)1> - [H'12 (r)]? that associates to a vector
function ¢ defined on I, ; the normal stress on T; of the solution to a Stokes problem in £
whose right hand side is zero, and whose velocity field is equal to ¢ on I ; and is zero on
oQ.Nr", .. The other matrices defined in (5.1)-(5.3) have a similar meaning. The capacitance

1T i1

matrix C is block-tridiagonal and reads as

SL+8% S
824 Szl + S32 S33
(5.5) C=

SM2  §M24g M1 §,M-1

S4M-1 S 1M-1 + SZM

Its associated bilinear form is:

M
(5.6) é4<¢,w)=}31 a,(w,(0), W,(y)) Vo, yed,

Then C is symmetric and positive definite, provided a () is symmetric. o
Following what is propoggd in [10] for multidomain spectfai approximations to.eihpnc
problems, we define now some preconditioners for the capacitance matrix C given in {5.5).
The first preconditioner we consider has the following block diagonal structure:
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s2, s2,
s s

st 84
57) B= 4§44

S2M S3M

sM §M
This is precisely the generalization to the case of several subdomains of the matrix (4.2)

(note that only the even subdomains are considered).The bilinear form associated with
(5.7 is:

(5.8) %((P,\If) = 2 ai(wi((P)s w;(y)) Vo, ye (I)h

ieven

(i between 2 and M in the sum) whence the matrix B is symmetric and positive definite.
The equivalence between $4 and B can be established by proving that

(5.9) 2 w(@) If is equivalentto 2, lw(@) 12 , Ve .
iodd

ieven

By (4.5) (case of two subdomains) and the argument used in [10], proof of theorem 4.1,
we can show that the equivalence claimed in (5.9) holds with two constants independent of
h but possibily depending on M2. Therefore, we conclude that

(5.10) condition number of B1C<KM2 - K independent of h .
To the same conclusion we can arrive taking in (5.8) the summation on all odd (rather than

even) integers. The matrix (5.7) modifies accordingly.

A different block diagonal preconditioner (with M-1 blocks) is:

s,
S32

S42
(5.11) B = .
Its associated bilinear form is

M
(5.12) %(tp,\v)=zlai(W§ @), W; (¥) Voyed, .

1=

where w'i(p) is the first component of a finite element Stokes extension such that w (o) = ¢

on T ; and w;(¢) = 0 on I';. By the same kind of arguments used above one can prove that
the matrix B given in (5.11) is symmetric and positive definite, and that (5.10) still holds.
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A symmetric situation occurs if we take the matrix B associated with a bilinear form like
(5.12) with w*(p) and w*;(y) instead of wi(9) and wi(y), respectively.

Finally, consider the lower bidiagonal preconditioner
- .

s,
$% %4
S3 4 531
(5.13) B=
sM1 SIM-l
whose associated form is:
M
(5.14) Blo.y) = 21 s W (@) Vo yed, .
1=
Its upper, bidiagonal counterpart is:
S2, 823
S3, S3,
(5.15) B=
S,M18,M1
sM
and its associated form reads as
M
(5.16) Bloy) =8 (W, (@), W, (¥) Vo yed,
i=1

Either (5.14) and (5.16) (and consequently, the matrices (5.13) and (5.15)) fail to be
symmetric. However, they are still positive, and (5.10) still holds.

Remark 5.1 Using iterative methods with block diagonal preconditioners for the
capacitance systemgyields algorithms whose parallelism degree (i.e., the number of
independent subproblems to be solved at each step) is equal to the number of diagonal
blocks of the preconditioner.

5.2 Boxes (see Fig.5.2) We consider now the case of a box, i.e. of a domain Q
decomposed into four subdomains sharing a common internal vertex. We denote by T the
common interface between £, and Q,_;, i=1,...,4 (we identify Q, with ,).

As in the previous subsection, we introduce the capacitance matrix for the current cas; by
means of auxiliary interface operators.We recall that y7;, is the Lagrange function associated
with the node &, of I',. We are not considering here neither the node corresponding to the
interior vertex, nor the one belonging to 9.



440 Quarteroni

If N, is the number of the interior nodes of T, we set for each i=1,....4:

(5.17) ' Dem = 3 W W), Wi ) k=1,..N_ , m=1,..,N

t

iis the index of the subdomain, r and t those of the interfaces, while k and m denote rows
and columns of the matrix. The matrix S', is the algebraic representation of the finite
element approximation of a Steklov-Poincaré operator $. Precisely, $ associates to a vector
function ¢ defined on I', the normal stress on I, of the solution to a Stokes problem in Q

with zero right hand side, and with a velocity field that vanishes on dQ\r,, and coincides

with ¢ on I',. We will conventionally denote the interior vertex by Iy, and the

corresponding node by 0. This allows us to extend the definition of the operators (5.17) to
cover the case in which at least one of the indices r,t is equal to zero. In this way Sl is a

columm vector of lenght N, (S')" is a vector of lenght N, while Sty is a scalar. Siy,
associates to the Lagrange finite element function the point 0 the normal pertaining to stress
tensor (taken in the usual variational sense) of the corresponding Stokes extension (in Q)
at all internal nodes of the interface T, Simmetrically, S, associates to every Lagrange

function on T, the value at the point 0 of the stress tensor associated with the corresponding
finite element Stokes extension in Q.. In terms of the above matrices and vectors the
capacitance matrix C associated to the current multidomain finite element problem is (the
interface unknowns are ordered as: Ul,UZ,UO,U3,U4, with U; e T)

| §1, + 8%, Sy S 0 S'u ‘
8§21, S’p+83% o, $33, 0
(5.18) C= O Oy %00 O3 (U
0 S35 Gy S35+ 8%, S*s
s, 0 S, Sy Sty +Sl,

where for convenience of notation we have set: Oy = S:)i + Sg;l, Op; = S‘D + Sii‘(;l, and
4
O = 2 S:)o (as usual, a super index equal to five should be identified with 1). Its associated
i=1

bilineatj form is;

4
(5.19) A ) =§1 5@, W)  Veyed ,

whence C is positive definite and symmetric, provided a (-,+) is symmetric .
A block diagonal preconditioner which is the counterpart of (5.7) can be obtained from
(5.18) by disregarding all matrices and vectors Si, with a super index i odd. Such a
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preconditioner is still symmetric and positive definite, however it is neither block diagonal
nor spectrally equivalent to C. Actually, using the results of [12] we can show that
the condition number of the corresponding preconditioned matrix grows like
K(1+lg(H/h))2, where K is a positive constant, H is the maximum size of each subdomain,
and h is, as usual, the finite element mesh size.

Fig.5.1 A strip and its associated interface operators

Fig.5.2 Abox and its associated interface operators
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