CHAPTER 17

Domain Decomposition Method and Parallel Algorithms
Kang Li-shan*

Abstract: This paper introduces the results on DDM and PAwhichwereob-
tained recently by the Parallel Computation Research Group at Wuhan University.

1 Introduction

In 1980, using the Domain Decomposition Method (DDM) (see [1]) we began to
design a class of asynchronous parallel algorithms, S-CR (Schwarz-chaotic relax-
ation), for solving mathematical physics problems while the multiprocessor system
WuPP-80 was designed at Wuhan University.

In 1982, the WuPP-80, an MIMD machine with 4 processors, was put into
operation at Wuhan University. By using the S-CR, a new class of asynchronous
parallel DDM, many mathematical physics problems were solved on the machine
and successful computing results were obtained (see [2]).

During the period from 1982 to 1985, a systematic theory on the DDM as
the foundation of the asynchronous parallel algorithms for solving P.D.E.’s was
developed (see [3],[4]).

In the Spring of 1986 D.J. Evans visited Wuhan University and worked with
members of our Group on DDM and a series of extremely deep results of the con-
vergence of the Schwarz alternating procedure (SAP) for the model problems were
obtained (see Evans and Kang, et al. [5]—[10]). In the autumn of 1986, G. Rodrigue
visited Wuhan University and suggested the use of mixed boundary conditions on
the pseudo-boundaries of the subdomains. In this direction, many interesting results
on the convergence of the DDM were obtained (see [13]—{17]).

In 1987, we began to study the DDM without overlapping. In this case, the
symmetric DDMs are used for solving the symmetric problems in a symmetric
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domain. In this way, special kinds of parallel algorithms can be developed by which
we can get the solution in two steps. These algorithms are constructed on the basis
of the symmetric principle of errors. We regard this as a major breakthrough in
the theory of DDM and it should influence physics, mathematics and mechanics, as
well as parallel computing (see [18]—[21]).

In addition, we have also studied the algebraic DDM and DDM with other
techniques (see [22]—[25]).

2 Convergence Rate of the SAP

(2) Consider the two point—boundary value problem

21) Ly = —%+q2u=f(x) Q={z|0<z<1}

u(0)= a, u(l)=5b

The  is decomposed into two subdomains

f={z|0<z<a} and Q= {z |2, <2 <1}

where
oy 22
P—
Tp > Ly Tp = Ty + d. 0 T Ty 1 *
[ ——
overlapping
SAP:
{ Lyt = fz) %
y®0) =a, y*(z;) = 20(zy)

{ Lz2)(z) = f(z) in9,

Atz ) = Yy (), (1) =b
where 2(9(z;) is the initial guess.
Theorem 2.1 (Evans, Kang, Shao and Chen (1986)) the convergence factor of
SAP is L (
shgzn shq(1 — z;) _
shgz, shq(l—=z,) Pal@ms Tm + d)

where shz = (e — €77)/2. Moreover,

pq(xma 331:) =

shgz,, shq(l —z,, — d)
shg(zm+d)  shq(l —z,)

p(mma Ty + d) = < 1,

and d is the size of overlapping.
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Theorem 2.1 gives the exact relationship between the convergence factor and
the geometric character of the domain decomposition. For fixed d, we have

sh —d
max by (2, 5 + ) = py((1 — )/2) = {IH}

This means that for fixed d, the worst case of SAP is the symmetric decomposition:
mes )y = mes .
For the discrete form of (2.1), we have

Theorem 2.2 (Evans, Kang, Shao and Chen, 1986)
The convergence factor of numerical SAP is

s(m) s(N —m— D)’

po(m, k) = py(m,m + D) = o (W)

where s(z) = (r§ —r%)/2, and

n=Q+y@ -1, rn=0Q-4/Q*-1

Q= (2+¢’k?)/2.

It is easy to prove that limy, o po(Tm-Zk)-

and

(b) For the two dimensional problem

(2.2) {—Au+q2u= f inﬂ:{(z',y)|0<a:<1,0<y<1}

we decompose {2 into two subdomains

Q= {(z,y)|0<z<z;, O<y <1}
sz {(way)|$m<$<1a 0<y<1}

Theorem 2.3 (Evans, Kang, Shao and Chen 1986) The convergence factor of the

SAP is
_ sh/a? ¥ @xm sh/7” + (1 — z1)
Po(@ms 3k) = i shv/m? + ¢ (1~ zm)

Theorem 2.4 The convergence factor of the numerical SAP is

S(m) S(N-m-D)
S(m+D) S(N-m)

Py(m, k) = pg(m,m +5) =

where _ o
S(z) = (11 —73)/2

= (Q+ VQz—'l, F2=Q_VQ2—11

g= 1+2sin? 24 EL
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For the n-dimensional problem, we have

Theorem 2.5 (Chen and Kang, 1987)

shy/(n — 1)7? + ¢z, shy/(n — )72 + ¢?(1 — zx)

sh\/(n - 1)n? + g%z, sh\/(7n 2 + (1 — )

pQ(mrm xk) =

(2) Neumann problems
1-dimensional problem:

—ﬂ+q2u =f(z) 0<z<1

(2.3) dz?
) _ 00 du)) _y

dr et dz
SAP-1: If we use the Dirichlet conditions on the pseudo-boundaries, we have
Theorem 2.6 (Kang and Evans, 1986): The convergence factor of SAP-1 is

chqgz,, chqg(l—xy)
chqzy chq(l —z,)’

Pq(Imal'k) =
where chz = (e” + e7%)/2.

If T, — 0, then Pq(l'mazm + d) - ((:::Zdic_hlq ?é 0.

So we must change the pseudo-boundary conditions.
SAP-2: We use the Neumann conditions on the pseudo-boundaries, we have

Theorem 2.7 (1986), The convergence factor of SAP-2 is
shgz,, shq(l—z;)
shgzy shq(l—=z,)

pq(‘rm’ xk) =

Similar results hold for the Dirichlet problem.
For the two-dimensional problem
—Au+¢u =f inQ={(z,y)|0<z <1, 0<y<1}
4
(2.4) o

— =y onTl

on

A we have

Theorem 2.8 The convergence factor of SAP-1 is

ch 77+ ¢z ch /72 + ¢%(1 - z4)

chv/7? + g%z ch /7T + g% (1 — z,)

Theorem 2.9 The convergence factor of SAP-2 is

shv/7? + ¢®zm sh/72 + ¢2(1 — z3)

shv/7% 4+ ¢*zi shv/n?+ ¢%(1 — z,)°

The above results have been extended to the cases of more than two subdo-

mains and to moving pseudo-boundaries for the purpose of balancing the load of
multiprocessors.

pq(zm, xk) =

Pp(l'ms xk) =



DDM AND PARALLEL ALGORITHMS 211

3 Acceleration

For accelerating the convergence of SAP there are several ways.
(a) SAP with Pseudo-boundary Relaxation Factor

Consider the problem (2.1). We introduce the factor w in the pseudo-boundary
conditions as follows:

ut) = o) 4 (e — oY) onT) C R,
) = () 4 w(u(“'l) —_ u(i)) on I‘; cy
i= 1,2,3,...

where v(® and v on I'j are given.
Denote the convergence factor of SAP (w = 1) by py, then we have

Theorem 3.1 (Evans, Kang, Chen and Shao, 1986)
The optimal overrelazation factor is given by

wops = (3//7) con((s + 47)/3),

where
s = arccos(—+/Pg)

and the corresponding convergence factor is
Popt = 3(wopt — 1)/wopt.-

(b) SAP with Mixed Pseudo-boundary Conditions
For one-dimensional problem (2.1) with g = 0, we use the mixed pseudo- bound-

ary conditions

where 2(9(z;) and d—z—%)éﬂ‘l are the initial guesses.

Theorem 3.2 (Lin, Wu, Rodrigue and Kang,(1987 )
The convergence factor of the SAP with parameters is

_ (ei(zr — 1)+ ez )(ea®m + €4)
Po= | (erzn + c2)(ca(@m — 1) + Ca)

We can easily choose the parameters ¢; (1 =1,2,3, 4) such that

po=0.
In these cases, the SAP in two steps gives the exact solution. If ¢ # 0 we have
Theorem 3.3 The convergence factor of the SAP with parameters is

_ (c1shq(zr — 1)+ caq chg(zr — 1)) (cashgry +c4 chgzy,)
Pa = \{cashq(zm — 1) + cagchg(zm — 1))(cr shgay + c2q chgey)
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If we choose the parameters ¢; (¢ = 1,2,3,4) such that p, = 0, then the SAP in
two steps gives the exact solution.
For two dimensional problem (2), we use the mixed pseudo-boundary conditions.

We have

Theorem 3.4 (Lin, Wu, Kang, and Rodrigue)
The convergence factor of SAP with parameters is

max (cl shQ; (mk — 1) + C2Qt(mk — 1))(03 shQ;zm + ¢4 Cthwm)
zeN+ |(c3sh Qi(zm — 1) + c4Qi(2m — 1)) (e sh @iz + ¢ ch Q;zy)

p =
where .
Qi = (7% + ¢*)=.

For solving Neumann problem (4), we have

Theorem 3.5 The convergence factor of SAP with parameters is

7 = max (c15hQi(zr — 1) + 2Qi(wx — 1))(c3ch Qizy, + cash Qizr)
oeN* |(cach Qi(zm — 1) + €4Qi(@m — 1))(c1 ch Qizy + c3sh Quz)

For n-dimensional problems the conclusmn is almost the same if we replace Q;
in the formulae by Q; = ((n — 1)i% + ¢)5 (see Chen and Kang(1987)).

For more than two subdomains(DDM)]

Consider the one-dimensional problem (1). The Q is decomposed into m sub-
domains

Qj={$l$§1) <:1:<a:§-2)} i=12...,m

:vg-l) §1_21<:c(2)<1:+1 i=12,...,m; a:@-—()and:vﬁf):l.
Algorithm:
( dzu(’) ;
T+ = €Q;
: du® du®?
cgl)ug-) + dg-l) _—da]: (1) 3(21 + d(l) dJa:wl at ¢ = $(1)
P,
2 G du i du'®,
() () +d(2) d:z: — c§2) _7+11 +d(2) Cgl at z = mgﬁ)
=1 j=1,2,...,m,
| 1=2 j=m-1m-2,...,1, uﬁ?:us}),
where ¢, dg.k) (k = 1,2 7 = 1,1,... ,m) are parameters, ugﬂ) and d—';(fl

on wgz) (i =1,2,...,m —1) are initial guesses.
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Theorem 3.6 (Wu, Lin, Rodrigue and Kang (1987))
If the parameters are chosen such that

cg-},) sh qwgl) + dgl)q ch qazg-l) =0 j=23,...,m

cﬁ) shqa:gl) + dg-l)qchqwgl) =0 i=23,....,m
then the exact solution can be obiained in two steps.
For the discrete form (DDDM) we denote wgl) = Jih, :1:5-2) = Jyh.

Theorem 3.7 If the parametiers are chosen such that
B — a4 DI — o~ ) =0

hei? — &P +dD (i — e [(rf o) £,

where 1
ri= 1+4¢*h*/2+((2¢h)* + (gh)*)?/2

ri= 1+¢%h?/2 - ((2¢h)? + (qh)H)%,
then the ezact solution can be obtained in two steps.

The similar technique can be used for accelerating the convergence of DDM used
for solving the multi-dimensional problems.
(c) Extrapolation Techniques

Assume the function-sequence {u{?} is obtained by SAP.

Denote the exact solution by u*, and the errors by

e = 4= — o

Theorem 3.8 (Lin, Liu and Kang (1987))
If there ezists a constant P # 1, such that

i) = peld)

then

e 1 (1) P (3)
u 1_Pu( —pu.

For one-dimensional problems with constant coefficients, we usually can get the
exact solution in two steps no matter whether the original sequence of the SAP

converges.
For solving two—dimensional problem (2), if z; = z,,, we use the SAP with
parameters ¢; = 1.c; = 0,¢c3 = 0 and ¢, = 1. We have

() — _ ()
It means that the original sequence of functions does not converge. But we can
get the exact solution as follows:
u* = (ul) + u®)/2.
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4 Symmetric DDM without Overlapping

(a) Symmetric Principle of Errors
Consider the linear problem

Lu=f mQ
(*){ u=¢ onl =09Q,

the domain Q is symmetric w.r.t. I and the operator L is symmetric w.r.t. the
domain decomposition, means that Lu(z) = Lii(z),V zey, where z'eSY, is the
symmetric point of ¢ w.r.t. I'. We have the following theorem.

Theorem 4.1 (Rao, 1987), If problem (*) has unique solution u* then

{ (D +u?)/2 on
u* =

(v + v(z))/z on ,
where v and u®) satisfy the following problems:

Lud=f in@ LvW=Ff inQ,
uW=¢ onTl vW=¢ onT
uW=¢q onI' W=g onl

and

Lu =f inQ LoD =f inQ,
uPD=¢ onT v@=¢ onT

a;‘s) = _a_g(_:l onT" % = % on T’

where n 13 the outer normal direction of T".

In 1987, the symmetric principle of errors was first discovered by Rao Chuan-xia
and widely extended to many applications, especially to the parallel computing (see
[17] and [18]).

The discrete form of the Symmetric Principle of Errors has been established by
Shao, Wu, ete. [19].

(b) Symmetrization Principle

Denote

FH(=) = (f2) + f(z')/2, (=) = (f(z) - f(z"))/2.
Theorem 4.2 (Lu, 1987), The solution of (%) is

u*(z) = ut(z) —u(z' on &y, u (z) =ut(z) +u (z) in Q,

where ut and u~ are the solutions of problems
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(Lu® = f+  inQ

{ uP=4¢+ onl

| 2P =0 onl
Lu(_) =7 in Qz

u=¢- onT

u)=0 onT

respectively.

For the discrete form of (*)

&
q

{ Lhu,- = f,', Vi e Qh . s

u; = ¢J’7 VJ € Ph)

He
o

If Lyuy = Lpu;, Vie i, ¢ is the symmetric point of i w.r.t. I, then we have

u;=ul +ul and uy = uf —u;

where
Luf = ff =(fi+ fo)/2 Luy = fi =(fi—fe)/2Vie
uf +¢7 VieTDy uj =97 VjieT,
uf =uf, VEeQ up =0 VkeI'
VieQ, UT".

5 DDM with Other Techniques

(2) Schwarz-Projection Method for Non-linear Problems (see [25].
(b) Schwarz-Multigrid Method(see [22]).

(c) DDM-Operator Splitting Method (see [24])

(d) Numerical SAP (see [21] and [23]).



216 Kang

6 Numerical Experiments

The S-CR algorithms, a class of asynchronous parallel algorithms based upon the
theory of DDM, were implemented and tested on the multicomputer system UwPP-
80 installed at Wuhan University in 1982.
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