CHAPTER 10

Domain Decomposition Techniques and the Solution of
Poisson’s Equation in Infinite Domains™

Christopher R. Andersont

Abstract. We discuss how domain decomposition ideas can be used to construct efficient methods for
solving Poisson’s equation in domains of infinite extent. We give the details for the construction of methods
to solve Poisson’s equation in the region external to a cylinder and for an infinite backstep. Computational
results are presented.

1. Introduction. In some recent work on the numerical solution of incompressible
fluid motion in two dimensions [1] it was necessary to construct a solver which would
compute the solution to Poisson’s equation in a domain of infinite extent. The particular
problem was that associated with flow around a circular cylinder. The problem domain
was the infinite region external to the cylinder and the computational domain, the region
in which the flow quantities were being tabulated, was an annulus about the cylinder.
The outer radius of this annulus was not sufficiently far so that setting the value of the
solution of Poisson’s equation or it s normal derivative equal to zero on this boundary
was an acceptable boundary condition for a finite difference solution in the annulus. The
purpose of these proceedings is to discuss how domain decomposition techniques can be
used to construct a solver for this particular infinite domain problem. The basic idea is to
treat the annulus and the infinite component exterior to the annulus as two domains in a
domain decomposition procedure. We shall discuss the ideas behind domain decomposition
in such a way that the method of construction of a solver is straight forward. The resulting
algorithm which we have obtained is not really “new”, for example, similar results could be
obtained employing the work of Bramble and Pasciak [3], Hariharan [5], or Kang and De-
hao [6] and presumably many others. However, the implementation we give here is rather
easy to carry out and is efficient since it is just a combination of a fast Fourier transform
routine (to solve the interface problem) and a fast Poisson solver (for the solution in the
interior of the annulus). The approach which is presented here can also be applied to
other infinite domains. In order to demonstrate this, we discuss the implementation of a
Poisson solver when the domain is an infinite backstep - a domain which is often used in
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testing of two-dimensional incompressible fluids codes. To our knowledge the method has
not been presented before. Whereas, the procedure for the region external to a cylinder
is a direct method, the procedure for the backstep uses the conjugate gradient method to
solve the equations which arise in the domain decomposition implementation. This iterative
technique is certainly well known to those who apply domain decomposition techniques to
bounded domains, but has not necessarily been used by those who are in the business of
implementing “infinite” boundary conditions - which is what we are essentially doing here.
Thus, for those who are familiar with domain decomposition techniques what follows is
a description of how those techniques can be extended to problems in which the domain
may be of infinite extent. For those who are familiar with solution procedures on infinite
domains, the following shows how domain decomposition ideas can be used to construct
efficient implementaticns of infinite domain boundary conditions.

2. Basic Strategy. In this section we discuss the ideas of domain decomposition in
such a way that the application to the problem of calculating the solution to Poisson’s
equation in an infinite domain is clearly revealed.

Consider the problem associated with finding the solution of Poisson’s equation for a
rectangle. The problem to be solved is

(1) Au = f in Q
u = g on 0Q.
The basic strategy of the domain decomposition procedure is to decompose the region
into two pieces Q1 and € and construct a solution to (1) by taking the union of solutions

to (1) on sub-domains. If the domain is split up into two rectangular pieces then the
sub-domain problems are specified by

(2) Au; = f; in
u = g on JO\T
u; = ur on O

for ¢ = 1,2 and where I' is the interface between the two regions. (See Figure 1) The
difficulty in implementing this technique is the determination of the boundary values ur.
What is done is to find equations which the ur satisfy and then solve these equations. With
the ur determined, the complete solution over the domain is then obtained by just solving
(2) for uy and us.

Figure 1



SOLUTION OF POISSON'’S EQUATION 131

The equations which determine urp are precisely the equations which ensure that if they -
are solved, and these values are used in the two boundary value problems (2), then the
resulting solutions combine to form a solution on the whole domain. Simply; the equations
you solve are those which will guarantee that the domain decomposition procedure works.

We now formally derive the equations which the boundary values ur satisfy. In order
for the two solutions of (2) , u; and ug, to combine to form a solution of the problem
on the whole domain they must be continuous and their normal derivatives must also be
continuous across the interface I'. Under sufficient regularity assumptions this guarantees
that the combined solution forms a weak solution of the equations. Under further regularity
assumptions this also guarantees that uy and uy combine to form a strong solution of the
equations. If we take the normal derivative along I’ to be outward, then these two conditions
can be expressed as

(3) uy = ug on I
Bul _ 6u2
(4) -5;1— = o an on TI.

We are assuming that u; = uz = ur along I so relation (3) is satisfied. It is the second
relation, the so called “transmission” or “flux” boundary conditions, which determine the
equations for ur.

To understand the manner in which the relation (4) determines ur we express it as

a g
(5) %{ubyfligl]'i'%;z[ub’f%g?] =0.

This form reveals the dependence of these normal derivatives on the data in the sub-domains.
Here g1 = g on OH\I'and g2 = ¢ on JQ\T'. Since the problem is linear, we can
separate out the contribution to the normal derivatives in (5) from ur and that from the
other data. We are lead to the following equation,

om diq _ 0 By
(6) %[UF] + _6—77[’“[1] - _( an [f11gl] + an [f2?g2])

with u; = @ +4; and uy = @p+1y. The equations which determine ur are normal derivative
{or flux) balance equations — equation (6) expresses the fact that the flux jump of i; and
i induced by the values ur must be equal to the flux jump in %; and i3 which is induced
by the other boundary values and the forcing function.

The terms in (6) which determine ur can be evaluated operationally. Specifically, given

ur to evaluate %[ur], one first solves
n
A'&l = 0 in Ql
a4 = 0 on an\F
4 = ur on OT

and then takes the normal derivative of this function. Similarly, to evaluate the first term
on the right hand side of the equation (6), we first solve a Poisson problem of the form

Aty = f in {4
iy a1 on 9U\T
i = 0 on 9T

and evaluates the normal derivative of this solution. It is worth noting that in this process
of evaluating these quantities, we have not depended on any specific discretization of the
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equations. It is this fact which allows one to have one or both of the domains of infinite
extent - all that is needed is some technique for evaluating the terms of (6).

The basic strategy, as will be exemplified in the next two sections, will be to use (6) in
the context of different discretizations and domains to define a system of equations which
determine the interfacial values of a solution of Poisson’s equation. This system will be
solved, and the resulting values will be used as boundary data for Poisson solves on sub-
domains to construct the remaining parts of the solution.

3. A Solver For The Region External to a Circular Cylinder. The domain
under consideration is composed of two pieces, 1 and Q. ©; is the annulus between the
circle of radius v, and a circle of radius r,. Q5 is the region external to the circle of radius
ry. Qur goal is to find the restriction of the solution to

(M Au=f for rp,<r<o
u=g on r=r,

on the set of grid points of a polar grid in the annular region Q;. (See Figure 2.)

Figure 2

In order for our procedure to work as it is described here we assume that the support
of the forcing function f is contained in Q; and the logarithmic behavior of the solution to
(7) at infinity is known. (In fluids problems in which the solution is a stream function, this
is equivalent to specifying the circulation of the velocity field.)

Following the basic ideas of domain decomposition, the technique here will be to first
find the values of the solution to (7) on the boundary T located at r = r,. We shall refer
to these values as up. We then employ a fast Poisson solver to calculate the remainder of
the solution in Q; by solving a problem with forcing function § and boundary values g on
r=1re and ur on r = rp.

The determination of the solution values ur is done by solving a finite dimensional ana-
log of the equations described by (6) in the previous section. Taking note of our assumptions
on the data of the problem, the equations which determine ur. are

o0u ekl i
®) Feur] + S2ur] = -5,
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In these equations 4; represents an approximate solution of Poisson’s equation in {; with
homogeneous forcing function and boundary data non-zero only along r = ry. 2 is defined
similarly. @ is the solution of Poisson’s equation in Q; with forcing function f and boundary
data @iy = g for r = r, and @%; = 0 for 7 = rp. In order to reduce the problem to a finite
dimensional one,we require that a relation of the form (8) hold at N equally spaced points
on the boundary r = r;,. We take N to be the number of panels in the 8 direction associated
with the underlying finite difference approximation.

In this problem, Fourier analysis can be used effectively. The technique for constructing
and solving the system of equations on the left hand side of (8) is done using the Fourier
series solutions of the boundary value problems which implicitly define these operators.
Given values of ur at N = 2m + 1 equally spaced points on the circle r = r;, we first form
the trigonometric interpolant -

m m
ur(d) = ao + Z ay, cos(k) + Z by, sin(k6)
k=1 k=1

The value of %[ur], the normal derivative of the function obtained by solving a Laplace
equation with this interpolated boundary data, is given by

— m m
(9) ou = apag + Z aay cos(k6) + Z agby sin(k6).
on k=1 k=1
Here,
1 1
(10) @ =

7y log(ry) — log(ra)

1 (1+(2)%)

ST Ru-@

du
The same approach allows us to evaluate —2-, and we find

on
(11) 90 .1y i Bray cos(kB) + VZ‘J Brby, sin(k6).
6n ry =1 =1
With
k
(12) Br = ot

7 is the coefficient of the log term in the solution. (If the solution is a stream function, then

27y = the circulation of the velocity field.)
The right hand side of equation ( 8 ) can be calculated by using a second order difference

approximation to —tf-l—, where 1; is the solution of the discrete Poisson problem associated

with the equation

(13) Aﬁl = f n Ql
4y = g on =171,
4y = wur on r=ry

We denote this normal derivative by fr.
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What we have just described is the procedure for evaluating both sides of equation
(8) at the points r = m and 8; = j(%;’f—) j = 1...N. Usually in domain decomposition
procedures an iterative approach is taken to solve (8), and we have sufficient information
to begin the process of creating an iterative scheme for solving the equations. However, the
problem at hand is such that the matrix which represents our approximation to the operator
on the right hand side of (8) diagonalized by the discrete fourier transform. Specifically, if
we designate fr as the discrete transform of fr, then we have the following matrix equation
for the coefficients of the transform of up,

(‘ 3 ag fFO ] ;Y_b
! fI‘1 0
: 0
(14) A am | = +1 0
b1 .
ol - L by, L fFN J L 0 J
Where A is the matrix
- o 1
a; + A
W + B
o+ B
- am + ﬂm -

If we put all the pieces together, the algorithm is as follows:

(i) Solve (13) for @y and evaluate fr by differencing the result.

{(ii) Solve (14) for the coefficients of the transform of ur. Evaluate ur using the inverse
Fourier transform.

(iii) Find the restriction to 4 of the solution to (7) by solving

Au=f in &y
uU=¢g on r=r, u=ur on =1y

We have implemented the above algorithm, and performed some tests on the method.
We were primarily interested in demonstrating that the effect of truncating the domain gives
errors which are always on the order of the truncation error of the finite difference method
used in Q; (i.e. that the solution on the finite difference mesh is second order in ér and
60 independent of the mesh size). We expect that this should be the case since there is no
error in the boundary conditions -we are using the exact analytic boundary conditions for
the first m modes of the solution. In Table 1 we present the results of a problem for which
7, = 1 and rp = 2. The solution computed was that induced by a unit charge located inside
the cylinder and offset from the origin (so all modes of the boundary conditions would be
tested). These results show that second order accuracy is preserved.
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We were also interested in observing the change in the solution when the outer boundary
of Q) at r = r; was made larger, but the mesh size was kept fixed. Ideally there should be
no change in the solution, but in light of our implementation, it can be expected to be on
the order of the truncation error of the finite difference scheme. This behavior is reflected
by the results presented in Table 2. Here the grid size was 16 x 64 for an outer radius of
ry = 2, and was changed to 32 x 64, 64 x 64 and 128 x 64 for the radii used to construct
the table. The L? error of the 16 x 64 grid results was 1.580 x 103 while the L error was
8.437 x 10~*

Mesh Size (r,6) L¢ Err. L* Err.
32 x 64 1.580 x 10~ | 8.437 x 10~¢
64 x 128 3.646 x 107> | 1.972 x 1071
128 x 256 8.446 x 107° | 4.928 x 10~°
Table 1

Error With Change in Mesh Size

Outer Radius L® Err. L% Err.
rp=3 1.883 x 10~° | 1.686 x 1073
m=>5 2.419 x 1072 | 2.183 x 10~°
=9 2.646 x 107> | 2.389 x 10~°

Table 2

Error With Change in Ezternal Radius

4. Solver For An Infinite Step. In this section we use the ideas of domain decom-
position to construct a solution to Poisson’s equation in a domain which is an infinite step.
Figure 3 shows the region which we are considering. The problem to be solved is
in Q

(15) Au=f

u=0 ondQ

where O = UL, Q;. Q; and Q4 are the unbounded components on the left and right ends
of the step while {23 is the region in which z, < z < =z, while (3 is the adjoining region
in which z;, < z < z.. We designate the boundaries at z = z,, z = z; and £ = z, by
Ty, Ty and T, and the values of the solution to (15) on these boundaries as u,, up and u..
The idea is to compute u,, up and u. first and then obtain the restriction of the solution in
the domains Q; and (3 by solving the appropriate Poisson problem in these domains. As
before we assume that the support of f is compact, and contained in a region z, < z < z,.

The key differences between this problem and that for the cylinder is that the outer
computational boundary (the one connecting the computational region to the infinite com-
ponents of the domain) is not connected and the interior computational domain is not
regular. This fact precludes the use of analytic procedures to evaluate the analog of equa-
tions (6) directly. However, as will be seen below, the construction of a solution procedure
for this domain is only a minor modification of that for a region consisting of bounded
rectangles. Moreover, the solution we find will be the restriction of the ezact solution {up
to roundoff) of the solution of the finite difference equations over the whole domain 2.
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a D C
e = Ql g Qz *
. E
Figure 3

In the notation of the previous two sections, the conditions which determine the values
of the solution along the interfaces are the following

(16) %%[ua] + %i[ua, up) = —%—'zf-[ ] along T,
an 00 )+ 22 = -2+ S207)) atong T
(18) %%i[ub, ue] + %[uc] = -%%[h] along T..
As before, we interpret the terms in these equations operationally, that is
%1—;2 0, us]

is the normal derivative of 73 the solution of

Auy=0 in Q

g =1u, at [, and g = up at T.

What is in brackets indicates what data is used for the Poisson problem and the subscript
indicates in which domain the solution is computed.

We construct a finite dimensional analog of (18) - (18) by using finite difference ap-
proximations. The finite difference approximations are those which are inherited by the
underlying discretization which we are attempting to solve rather than just difference ap-
proximations to the operators in (16) - (18). We assume that the underlaying finite difference
mesh is a uniform rectangular one, with mesh widths 6z and 6y in the = and y directions
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respectively. If we consider the (7, j)th node of the finite difference grid along Iy, then the
equations used to approximate (16) have the form

bz 26y by +
+(522)
bz 26y by -
_ Ua(i41,5) — (i, j) bz (i, j+ 1) = 20p(i,5) + (i, 5 — 1)
= + ()
bz Sy Sy

The equations for the other interfaces are of similar form. In these difference equations
there are differences in the direction tangent to the interface, whereas there are only normal
derivatives in the flux balance equations (16) - (18). These terms arise in the finite differ-
ence implementation because tangential differences contribute to the discrete flux balance
equations which are the analogs of (16) - (18). The evaluation of the terms in (19) and of
the equations for the other interfaces is accomplished by solving the appropriate Poisson
problem and then differencing the result. This procedure works well for the problems which
are associated with the bounded components, but for the infinite components, this poses

some difficulty. In particular, we must evaluate the difference approximations to 5“_1 and
n

duy . . . . . . o
4 in which the functions u; and u4 are solutions of a Poisson problem in half infinite

on

tubes.
Fortunately, one can solve such problems exactly using discrete Fourler analysis. Specif-
ically, if we have discrete data along the interface I', of the form

(20) ualyi) = Y besin( )
k=1

where y; = y, + (j — 1)y and L is the length of I';, then a solution of a discrete Laplace
equation in the half-tube §2; is given by

L 27y;
(21) a1{zi, ;) = Z A;ﬂ_lbk sin( QLJ)
k=1

where the values Ag are given by

MR s R R i
k= 9

The explicit form of (21) allows us to compute the differences needed in the evaluation
of (19). The evaluation of the term involving i, is accomplished in a similar fashion.

In light of the specific form of the solutions which define %; and 44, we see that the
evaluation of the appropriate differences can be accomplished with fast sin transforms. It
is also the case that the other operators in the difference approximations to (16) - (18)
can be evaluated using discrete sine transforms. This follows because all of the boundary
value problems which define these operators can be solved explicitly using discrete Fourier
analysis. (See [2] for more details.) Thus, the forward application of the operators which
determine the boundary values u,, up, and u, can be carried out using fast sine transforms.

There is a natural block structure to the equations when one groups the unknowns to-
gether according to which interface they occur on. With this blocking the discrete equations
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for the values u,, u; and u. take the form,

A%l + A%l B12 0 Uqg j}
(22) By A%z + A%z Bas up | = f:{;
0 Baz Al + A% Ue fe

Here % is approximated by A%l, %’:ﬁ is approximated by A%, etc. The right hand side
n

of the equations, designated by ( fa, fb, fc)t are determined by differencing solutions of the
appropriate finite difference Poisson problem.

This equation is not completely diagonalized by the discrete sin transform, for the
number of points which define the transform used to evaluate the equations for T are
different for the terms involving u; and usz. However, the matrices in the first and third
rows are simultaneously diagonalized by the fast sine transform.

Unlike the cylinder case, the equations are not solved directly but iteratively. As is
typical with domain decomposition techniques we used pre-conditioned conjugate gradients.
The preconditioner used was the inverse of the matrix

AL +AZ 0 0
0 Al 0
0 0 Al+AZ

Each of these matrices is diagonalized by the discrete sin transform, so the application
of the preconditioner can be accomplished using fast sin transforms. This preconditioner
worked well and converged rapidly. (This is to be expected by analogy with results for the
bounded domain case [4])

In sum the algorithm is as follows:

(I) Solve appropriate Dirichlet problems in ©3 and Q5 and evaluate (fa> for f2)t by differ-
encing the result.

(ii) Solve (22) using the method of pre-conditioned conjugate gradients. (Use the fact
that the the foward action of the operator in (22) can be computed using fast sin
transforms.) ’

(ii1) Find the restriction to Qs and Q3 of the solution to (15) by solving Dirichlet problems
in each of these domains.

In the first test of this method, a fixed uniform mesh (with 6z = 6y = 0.1) was used
and the upstream and downstream boundaries were changed. The domain was taken to be
an infinite tube with width 0.8 on the left and 1.0 on the right. A unit source was placed
at a fixed location in Q2 and the values in Q; were monitored when the computational
domains Q5 and (3 were extended from a length of 1.0 to 2.0 and from 2.0 to 4.0. The
maximum change which occurred was 9.357 x 107 and 9.359 x 105 - a quantity on the
order of the accuracy with which the fast Poisson solver can calculate the solution to the
discrete Laplacian. This degree of accuracy is to be expected since we are constructing an
exact solution to the finite difference equations in the whole infinite region. In the second
test we measured the number of conjugate-gradient iterations which were needed to reach a
given residual size. In each case the domain was fixed to be of width 0.8 on the left and 1.0
on the right. The length of Qs and Q3 was fixed at 1.0. In Table 3 we present the L2 norm
of the residual for different size grids. As can be seen from the table the solution converges
rapidly demonstrating the efficiency of the conjugate-gradient method with our choice of
pre-conditioner,
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Iterations | 6z = dy = 0.1 | éz = by = 0.05 | 6z = 6y = 0.025
1 3.813 x 107% | 8.693 x 102 1.923 x 10T
2 6.494 x 10~% | 1.747 x 10—3 6.317 x 1073
3 1332 x107° | 1.343x10~° 8.397 x 10~°
Table 3

Residual Error

5. Conclusion. We have discussed the manner in which domain decomposition tech-
niques can be used to construct solvers for infinite domains. The central idea is to observe
that the conditions which determine the interface values (values which are necessary to im-
plement the domain decomposition technique) are derived from a condition of an equality
of normal derivative’s or a flux balance condition. With this observation, such conditions
can be used to derive equations for the interfacial values even if one or more of the domains
is of infinite extent. The two applications, one for a domain external to a cylinder and one
for an infinite step exhibit the potential of the approach.
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