CHAPTER 16

Domain Decomposition Techniques for Efficient Adaptive
Local Grid Refinement

Richard E. Ewing*

ABSTRACT

In the multidimensional numerical simulation of certain multiphase fluid flow
processes, many phenomena are sufficiently localized and transient that self-
adaptive local grid refinement techniques are necessary to resolve the local
physical behavior. For large-scale simulation problems, efficiency is the key
to the choice of specific adaptive strategies. Purely local refinement techniques
require complex data tree structures and associated specialized solution tech-
niques. Although these tree structures of changing length are amenable to par-
allel computation, they are very difficult to use efficiently in a vector mode.
Techniques which involve a relatively coarse macro-mesh with potential local
refinement in each separate mesh will be discussed. The macro-mesh will be
the basis for domain decomposition techniques and parallel solution algorithms.
Uniform meshing in the subdomains will allow efficient vectorization as well as
parallelization of the algorithms. Similarly, different solution processes can be
applied to different sub-domains. A preconditioner, based upon the domain-
decomposition techniques of Bramble, Pasciak, and Schatz is utilized to effi-
ciently solve the combination domain-decomposition and local grid refinement
problem. Techniques for applying this concept to resolve sharp, moving fluid
interfaces in large-scale simulation problems will be discussed. Extensions to
local time-stepping will also be presented.

1. INTRODUCTION

Domain decomposition and adaptive local grid refinement techniques pos-
sess enormous potential for local accuracy improvements in many large-scale
problems. In order to illustrate this potential, we will discuss grid refinement
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techniques in the context of large-scale simulation of petroleum recovery appli-
cations. We will also present ways to easily incorporate local grid refinement
capabilities in large, existing codes.

The objective of reservoir simulation is to understand the complex chemical,
physical and fluid flow processes occurring in a petroleum reservoir sufficiently
well to be able to optimize the recovery of hydrocarbon. To do this, one must
build mathematical and computational models capable of predicting the perfor-
mance of the reservoir under various exploitation schemes. Many of the chem-
ical and physical phenomena which govern enhanced recovery processes have
extremely important local character. Therefore the models used to simulate
these processes must be capable of resolving these critical local features.

Mathematical models of enhanced recovery processes involve coupled sys-
tems of nonlinear partial differential equations. In order to compare the results
of these models with physical measurements to assess their validity and to make
decisions based on these models, the partial differential equations must be dis-
cretized and solved on computers. Field scale hydrocarbon simulations normally
involve reservoirs of such great size that uniform gridding on the length scale
of the local phenomena would involve systems of discrete equations of such
enormous size as to make solution on even the largest computers prohibitive.
Therefore local grid refinement capabilities are becoming more important in
reservoir simulation as the enhanced recovery procedures being used become
more complex and involve more localized phenomena.

There are two distinct classes of local grid refinement techniques—fixed and
dynamic. For problems with fixed wells, faults, pinchouts and large fractures,
certain fixed local refinements have proven to be very effective. Dynamic and
adaptive grid refinement to follow moving fluid interfaces is much more complex.
Techniques which work well for fixed refinement can involve a data structure
which is so complex that it can be very inefficient for dynamic applications. In
this paper we present methods that can be applied to both fixed and dynamic
refinement problems in an efficient and accurate manner. We present methods
which are accurate discretizations on composite grids and are relatively easy to
implement in existing simulators for various applications.

2. MODEL EQUATIONS FOR POROUS MEDIA FLOW

The miscible displacement of one incompressible fluid by another, completely
miscible with the first, in a horizontal reservoir {1 C R? over a time period
J = [Ty, T1], is given by

—V-(EVp)EV-u=q, ze, ted, (2.1)

¢—g§-—V-(DVc——uc)=q'é, zel, teJ, (2.2)

where p and u are the pressure and Darcy velocity of the fluid mixture, ¢ and
k are the porosity and the permeability of the medium, p is the concentration-
dependent viscosity of the mixture, D is a diffusion/dispersion tensor, ¢ is the
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concentration of the invading fluid, ¢ is the external rate of flow, and ¢ is the
inlet or outlet concentration. In addition to Equations (2.1) and (2.2), initial
and flow boundary conditions are specified. The flow at injection and production
wells is modeled in Equations (2.1) and (2.2) via point sources and sinks.

The equations describing two phase, immiscible, incompressible displaceément
in a horizontal porous medium are given by

as k

% _ g (e, =g, , ted, 2.3
¢ En v (kl/'w Vp ) q z €N € (2.3)

as, ko

— . —— o p=—sg 0y ’ 2-4
¢8t v (kMon> €%, TEN, teJ (2.4)

where the subscripts w and o refer to water and oil respectively, S; is the satu-
ration, p; is the pressure, k,; is the relative permeability, p; is the viscosity, and
¢ is the external flow rate, each with respect to the ** phase. The pressure
between the two phases is described by the capillary pressure

pc(S) = Po — Puw- (2.5)
Note that % < 0.

Although formally, the equations presented in (2.1) and (2.2) seem quite
different from those in (2.3) and (2.4), the latter system may be rearranged in
a form which very closely resembles the former system. In order to use the
same basic simulator in our sample computations to treat both miscible and
immiscible displacement, we define variables for total fluid pressure and Darcy
velocity (see [7]). We combine Equations (2.3) and (2.4) to obtain

=V - (kA(S)VD) = qu + ¢ = @, (2.6)
v = —kA(S)Vp, (2.7)
¢%‘§ +V- (k,\(s)x, dp

PevS) + V- () = au, (29)

where S is the water saturation. A, Ag and Aw, the mobilities of the total fluid

and the oil and gas phases, respectively, are defined by ratios of the relative
permeabilities and phase viscosities (see [13]).

The equations presented above describe both miscible and immiscible flow in
porous media. They can be used to simulate various production strategies in an
attempt to understand and hopefully optimize hydrocarbon recovery. However,
in order to use these equations effectively, parameters that describe the rock
and fluid properties for the particular reservoir application must be input. Since
these rock and fluid properties cannot be measured directly in situ, they must be
determined via history matching and reservoir characterization techniques (see
[12]). The heterogeneities in the reservoir, which can be very localized often

dominate the flow process and may require local grid refinement for adequate
resolution [16].

A typical example of a fixed localized phenomenon which requires special
treatment in simulation is fluid flow in the neighborhood of wells. If fluid flow
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rates are specified at injection or production wells, the use of Dirac delta func-
tions as point sources and sinks in the mathematical equations has been shown
to be a good model for well-flow behavior beyond some minimal distance away
from the wells. In this case, the pressure (which determines the flow) grows
like Inr where r is the distance to that well. A different well model, involving
specification of a bottom hole pressure as a boundary condition, also gives rise
to a logarithmic growth in pressure up to a finite specified pressure. Because of
the rapidly changing behavior of the pressure in the vicinity of wells, accurate
pressure approximations require local grid refinement.

We will consider a simple example problem to illustrate our local refinement
techniques. From Equation (2.1) or Equation (2.6), the pressure p of a fluid in
a horizontal reservoir 1 C IR? satisfies

k
-V. ;Vp =g in Q. (2.9)
Assuming no flow boundary conditions, we have
k dp
it . 2.
9w 0 on 99, (2.10)

where 5‘%‘- is the outward normal on 8. For the existence of p we assume that
the mean value of ¢ is zero and for uniqueness we impose that p have mean value
zero. If fluid flow rates at injection and production wells are specified via Dirac

delta functions at the N, wells z; with associated flow rates ¢;, then

Nw
g=7 6(z— =) - (2.11)

i=1

Several techniques which assume radial flow near the well have been used to
obtain local properties of p. One such technique involves subtracting out the
singular behavior of p around the wells [8,13,17,20,21]. A radial flow assumption
is probably not bad around injection wells, but may be inadequate for produc-
tion wells where different techniques, such as local grid refinement, are often
needed. It has been shown [29] that appropriate local grid refinement around
these singularities can greatly increase the accuracy throughout the reservoir.

Two different types of self-adaptive grid refinement have been applied in
reservoir simulation. The first technique is a truly local grid refinement where an
arbitrary level of refinement can be applied at any region in space. Certain SPE
references [9,10,22,28-30] utilize this type of refinement. This technique requires
a special data structure for effective matrix set-up as well as special algorithms
for efficient solution. A data structure has been developed [9,10,14,15] that
will support truly local refinement and dynamic “ynrefinement” in both space
and time. The special tree structure allows truly local grid refinement and is
implemented via an efficient multi-linked list. The dynamic multi-linked list
representation efficiently allows both placement and removal of local meshes. A
local grid analysis triggers the dynamic changes in the trees for adaptivity.

The data structures have proven to be very effective for elliptic or time-
independent partial differential equations, and for fixed refinement applications.
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However, the complexity of the data structures and the associated solution pro-
cesses make many of the truly local refinement procedures inefficient for large-
scale, time-dependent problems. If different grids are used for each time-step
in a large problem, the overhead associated with the data structures and the
grid generation can easily dominate the overall computation times. For this
reason, alternate techniques which do not require complex data structures or
regeneration of the grid at each time-step are desirable.

A technique termed patch refinement [1,4,11] is an attractive alternative to
truly local refinement. This method does not require as complex a data structure
but does involve ideas of passing information from one grid to another. The idea
of a local patch refinement method is to pick a patch that includes most of the
critical behavior requiring better resolution, and use a special, possibly uniform,
refinement within this patch. If a uniform fine grid is utilized in the patch, very
fast solvers, perhaps utilizing vector-based algorithms, can be applied locally in
this region using boundary data from the original coarse grid.

The local patch refinement techniques [4,19,24,26,27] have proven to be very
effective for obtaining local resolution around fixed singular points such as wells
in a reservoir. We will discuss the patch approximation technique first in the
context of local refinement around a fixed point or region like a well and then
extend the concept to dynamic problems.

We have developed fast solution methods for the approximation of prob-
lems requiring mesh refinement. These techniques are related to various domain
decomposition methods [2-6,19,23-25]. High accuracy throughout the compu-
tational region is obtained by incorporating local refinements around wells. A
composite grid is obtained by superimposing these refinements on a quasi uni-
form grid on the original domain. Previous techniques usually had no systematic
way of dealing with such questions as interface interpolation, mass conservation,
and degree of grid overlap. They also usually involve the solution of the coarse
grid problems with the regions corresponding to the refinement removed. This
destroys the banded structure and ease of vectorization of the coarse grid regions.

In the methods to be discussed below, the problem is formulated with a com-
posite operator on the composite grid. The techniques are iterative procedures
which drive the residual of this composite grid operator to zero. Composite grid
operators for finite element discretization are common and relatively easy to de-
scribe and analyze. Examples of accurate finite difference based composite grid
operators for variable coefficient problems are presented in [18]. Complete error
analyses for these difference stars will appear elsewhere. A new domain decom-
position variant is presented to efficiently solve the resulting matrix equations.
This involves the development of a preconditioner. This preconditioner is novel
in that the task of computing its inverse applied to a vector reduces to the solv-
ing of separate matrix systems for the local refinements and the matrix system
for the quasi uniform grid on the original domain. Note that this quasi uni-
form grid overlaps the regions of local refinement and its corresponding matrix
problem remains invariant when local refinements are dynamically added or re-
moved. This local refinement technique can be incorporated in existing reservoir
codes without extensive modification. Furthermore, if the nodes on the quasi
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uniform grid are chosen in a regular pattern, highly vectorizable algorithms for
the solution of the corresponding matrix system can be developed.

In the next section, we describe our technique which allows ease of imple-
mentation in existing codes. First a composite grid, as well as a corresponding
composite grid operator, is formed from a coarse uniform grid with superimposed
refinements in subregions denoted collectively by Q;. The coarse grid remains
in the region 1y = /Q;. The discretization in this example is given via finite
element techniques. However, by considering the matrix structure of this algo-
rithm, we can see how the techniques can be extended to finite differences or
other spatial discretizations.

3. LOCAL GRID REFINEMENT STRATEGY FOR FIXED POINTS

Multiplying (2.9) by an arbitrary (sufficiently regular) function ¢, integrating
by parts and using (2.10), we see that the solution p satisfies

A(p,¢) = (f,¢) (3.1)

where k
A(u,v) =/ —Vu - Vvdz
aQu

(’)./‘;

The Galerkin approximation to (3.1) is to find a function P in a suitable finite
dimensional subspace M, of the Sobolev space H'({?) such that

A(P,¢) = (f,¢), for all ¢ € M. (3.2)

Since the bilinear form A(:,+) corresponds to the composite operator, (3.2) is, in
general, difficult to solve for P. Instead we will use a preconditioned iterative
method to obtain P. We must then find a comparable form B(:,-) such that,
given g, the problem of finding W € M,, satisfying

B(W,¢) = (g,¢), forall ¢ € M,. (3.3)
is relatively easy.

As was described in [4], the problem of calculating the action of the inverse of
the preconditioner essentially reduces to the solution of discrete mixed problems
on the refined subgrids, and discrete Neumann problems on the original grid.
Due to the regularity of the mesh geometry, such problems are generally easier
to solve than the system resulting from the composite grid discretization.

We first split the bilinear form into parts A(u,v) = A;(u,v)+ Az(u,v), where
k
; = —Vu-Vvdz. 3.4
Ai(u,v) /n'_ u u- Vv azr (3.4)

Then we decompose any V € M(f1) as follows: V =V, + V, where V, equals V
on Oy, V, € M;(Q;) on 0 and V, € M,(Q1) satisfies
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A(V,,4) =0 forall ¢ € My(f). (3.5)
Then, as in [4], we see that for V € M,(f),

A(V,V) = 4 (V,V) + A:(V,, V) + A(V;, V2 (3.6)
The action of the inverse of (3.6) is not easy to obtain. However, by replacing
A(V,V) by

B(V’ V) = 4(V,V) + AV, V) + A'A-’(Vc’ V), (3'7)

where V, is determined by the original coarse grid M;(Q) and satisfies V, =V
in O, and

Az(V,,4) =0 for all ¢ € M;(,), (3.8)

then the action of the inverse of (3.7) is relatively easy to obtain and the form
B(-,-) is comparable to the form A(-,-) with comparability constants indepen-
dent of the grid size h [5-6]. As described in [4], the following algorithm suffices
for solving

B(W’ ¢) = (97 ¢) for all ¢ €M, ’ (3‘9)
given g.

Algorithm For Computing W [4]:
1. Find U, by solving mixed problems on the regions ;.

2. Pass the local information to the right hand side of the original problem
and compute any solution U, of the coarse grid problem

A(U.,¢) = (9,9) — A2(U,,¢) forall ¢ e M; (3.10)
where ¢ is any function in M, which equals ¢ on ;.

3. Find U, on §; by computing the discrete harmonic extension with respect
to the refinement subspaces.

4. Compute U, the mean value of U = U, + U,. Set W = U — T.

Matrix Form of the Algorithm:

First, we consider the matrix A°, generated by the finite element approxi-
mation of the equations (2.9)—(2.11) using a coarse quasi-uniform mesh. Let
the solution P of the original coarse grid problem be decomposed in the form
P = (P, B, P;)T, where Py, P;, and P, are the parts of the coarse grid solution
in {31, 8);, and the intersection of the boundary of 02; and (1,, respectively. The
corresponding decomposition of the matrix A° can be described in

Py Al 43, O ¥ 5
A° Pb = §1 Agb Aiz Pb . (3.11)
Py 0 A3 A3 Py
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We assume that a code exists or can be easily written to solve (3.11) for a quasi-
uniform grid which can take advantage of the banded structure of the matrix A°
which is equivalent to A° except utilizing a standard lexicographical ordering of
the unknowns.

Next assume that due to some localized process, grid refinement is desired in
1;. Let P, be the new approximation on the refined grid in {); and A,, be the
local matrix on ;. Let A and A,; be the new connection matrices between
the interface between {1y and {2, and the refined grid on ;. Then, in order to
maintain the sparsity of the composite grid matrix and a simple data structure
obtained by concatonating P, to P, we can write the composite matrix problem
in the form

Ail Aib 0 0 Pl fl

~5n_ | A Ap O Ay P | _ fa
Ap=| ‘A A n|=10| (3.12)

0 Arb 0 Arr Pr f3

We note that the I on the diagonal of (3.12) and the zeroes in the corresponding
row, column and right hand side enforce the removal of P; from the system
without destroying the relationship of

MI%)

¢ ¢ 3.13
(ml% (8.13)
to A° and hence A°.

As an initial guess for P, denoted P°, we solve the local problem on (1,
with zero Dirichlet conditions on the interface between 1; and 1, (equivalent
to setting PP = 0):

P%= Alfs. (3.14)

This problem can be solved exactly or approximately by some iterative tech-
nique. This step could be considered as the first part of a block Gauss-Seidel
iterative procedure for the solution of (3.11). The next step would be to use
the approximation for P° and then invert the block (3.13) to obtain an approx-
imation for P; and P,. Since this block involves a complex region and may
not be well-conditioned, we use an alternate solution method which involves a
preconditioner, denoted by B, for the composite matrix A.

Using B, we define, for each iterate n, and an iteration parameter 7

prit = pr 4 rB7Y(F — AP™). (3.15)
Let Q be the residual vector given by
fi—AGPL-AGR :
Fodbro | AP AR AGET o G (3.16)
fo — AnP — A P H

Next we solve the original coarse grid problem
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wit Q1
A° W;""i = QF — Ab,-A,._,.lQ4 (3.17)
Wt 0

(or its rearranged equivalent problem using A° to take advantage of banding
of A¢) for W™ and W**'. We have in essence inverted (3.13) in an efficient
and vectorizable manner. Then using W', we complete the block Gauss-Seidel
analogy on (3.12) and obtain W**! by solving

AW = Qq — AWt (3.18)
Finally, from (3.15), we set
Pr wr
- pr wr
ntl _ b b
PP = 0 +7 0
pr wr

Since this algorithm only requires two separate solutions of mixed problems
on the subregions (each subregion problem possibly being solved via a different
parallel processor) and one solution on the original, uniform coarse grid, it is
relatively easy to perform. Similarly, no complex data structure is required and
the algorithm can be implemented in existing large-scale codes without severely
disrupting the solution process. Promising numerical results for the algorithm
appeared in [4]. These results will be extended to more general reservoir simula-
tion problems in a forthcoming paper in the Tenth SPE Symposium on Reservoir
Simulation by Ewing, Boyett, Babu, and Heinemann.

As stated, the algorithm in its most general form involves two separate so-
lutions on the subregions at each step. This comes from the desire to have a
symmetric preconditioner from the form B(:,-). As is mentioned in [23], the
FAC algorithm [19,23,24] involves only one subregion solution per iteration. See
[23] for a comparison of FAC and this algorithm [4] and their theories.

By considering the domain decomposition techniques presented in [5] which
led to this algorithm, we can see that if the subregion problems ((3.14) and
its sequels with updated guesses for P,) are solved exactly, then Q4 in (3.16)
and (3.17) is identically zero and the action of the preconditioner is symmetric
with only one subregion solution per iteration (from (3.18)). Preliminary com-
putations indicate that if the subregion problem is solved iteratively with its
own preconditioner, the full algorithm with two subregions solved will converge
faster for some problems. Iterative solution of the unrefined region causes no dif-
ficulty with either version of the algorithm. This is an important consideration
for the reservoir simulation applications when iterative solution of the unrefined
problem is essential due to their size, while direct solution of the refined region
problems is usually possible.

4. FINITE DIFFERENCE METHODS

In practical reservoir simulation applications, the finite difference system of
equations for the unknown values of the fluid pressure at the grid points will be
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nonlinear and will be coupled to other nonlinear partial differential equations
like (2.2) and (2.8). Using a Newton method, we need to solve, for each iteration,
a system with the associated Jacobian or linearization matrix. If the problem
is linear, then the Jacobian matrix is the matrix of the finite difference scheme
itself. Here we would like to explain how the local refinement technique can
be naturally incorporated with the philosophy of the already existing codes
for reservoir simulation and easily implemented without destroying their data
structure.

We first consider the case for fixed local spatial refinement and a single partial
differential equation. We write the approximation to the given equation and
boundary conditions for each time step on the whole grid (coarse and fine) as a
system of equations for the unknown values of the pressure ® at the grid points
at that time step with ®"(z) = ®(z,"). Consider the system

Le" = f, (4.1)

where L is a positive definite Jacobian matrix, possibly different for each time
step, resulting from the finite difference approximation described above, and f
represents nonhomogeneous, initial, and boundary terms. The non-zero struc-
ture of the matrix L for most of the local grid refinement structures appearing
in the SPE literature has been presented explicitly [9,22,29]. For these orderings
of the unknowns, the band structure and corresponding efficiency of solution is
lost. The solution algorithms presented in these papers have, in general, lost
the potential for vectorization which can be so beneficial for the enormous prob-
lems encountered. We shall present solution ideas which maintain vectorization
benefits and add important parallel capabilities which will be important for the
emerging parallel computer architectures.

The local refinement approximations in all cases considered here and in [18]
actually replace a coarse grid cell by a group of refined cells. Then the con-
struction of the finite difference scheme may be considered to be created in the
following manner: (a) construct within a global strategy of the existing code the
finite difference approximation on the coarse grid; (b) treat all cells where the
local refinement is introduced as dead cells by enforcing zero pressure values in
these cells—the resulting matrix will be L¢g; (¢) add to the system new equa-
tions approximating the problem on the fine grid. Let the matrix Lypp describe
the regular difference stencil on the interior of the refined regions and the matrix
Lpc describe the non-standard connections between coarse and refined grid cells
described in [18].

This procedure can then be described in a matrix form as

(bee 2} (&)~ (%) o

where ®; are the unknowns in the coarse grid cells and ®7 in the refined cells.

Of course, this ordering of the nodes will destroy the banded structure of
L but will maintain the banded structure of Lge and Lpp. Thus, any direct
method for (4.2) will lead to a large amount of fill-in during the elimination
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process and will greatly reduce the efficiency of the model. However, we can
define an iterative procedure which takes advantage of the banded structure of
Lge and Lyy to allow full vectorization of the inversion of each in the algorithms.

We note that Equation (4.2) is not to be stored and used directly, but is
intended to motivate our solution technique. The residual produced by (4.2) in
an iterative procedure will be the same as the residual produced by the composite
grid matrices presented in other papers [9,22,29] depending, of course, on the
composite grid stencils. It is this residual that we want to drive to zero. However,
there are efficient ways [4] to evaluate this residual without forming the matrix
form (4.2). We next define an efficient and vectorizable preconditioner for use
in an iterative solution for (4.2). The matrix solution for this preconditioned
iterative procedure is very similar to the matrix solution for the finite element
based algorithm presented in Section 3.

This procedure is the following: (a) for a given inital guess, solve the problem
Lrp®r = fr; (b) with the computed ®p solve Loc®c = fo — Ler®r; (c)
update the guess for the coarse grid and repeat by solving the problem Lyr®r =
fr — Lpc®r using the new iterate for ®;. This block Gauss-Seidel iterative
technique is clearly very similar to the local refinement algorithm by Bramble,
Ewing, Pasciak, and Schatz [4].

Of course, as in the algorithm described in Section 3, the solutions of L.
may not be very well-conditioned. Therefore, instead of a straightforward block
Gauss-Seidel iterative procedure for the solution of (4.2), we suggest following
the algorithm given in Section 2 by replacing finite element matrices by corre-
sponding finite difference matrices. The extension of the finite element theory
to the corresponding finite difference theory will be presented elsewhere.

In determining the data structure for this algorithm, the additional unknowns
representing the local grid refinement are simply concatonated on the end of the
existing vector of coarse grid unknowns with a pointer set to the beginning lo-
cation and a length given for the vector of refined cell unknowns. If the coarse
grid and refined grid are ordered with a lexicographical ordering, we maintain
the banded structure of Loe and Lyr which allows efficient vectorization. It is
essential to point out that both systems involving Log and Lpr can be solved
within the strategy of the existing codes with their data structure and the ef-
fective methods that have been developed.

In many current simulations, when wells are brought on line or shut in, strong
local transients are generated which adversely affect the convergence of the New-
ton iterations for the nonlinear systems. The common remedy for this problem,
to cut the time-step size across the entire reservoir, is wasteful since the tran-
sients are very local in both time and space. This motivates the use of local
time-stepping techniques around the wells in combination with the local spatial
refinement. In order to get more accurate initial guesses for the Newton method
around the wells to enable convergence with the original large time-steps, local
time-stepping problems can be defined using the same preconditioning tech-
niques as for local spatial grid refinement. A full discussion with error analysis

of this local time-stepping technique will be presented by Ewing, Lazarov, Pas-
ciak, and Jacobs in another paper.
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5. ADAPTIVE REFINEMENT FOR DYNAMIC PHENOMENA

Since the local reservoir processes are often dynamic, efficient numerical simu-
lation requires the ability to perform dynamic self-adaptive local grid refinement.
The need for adaptive techniques has provided the impetus for the development
of local grid refinement software tools, some of which are used in day to day
applications for small to mid size problems. Software and engineering tools ca-
pable of dynamic local-grid refinement need to be developed for large-scale, fluid
flow applications. The adaptive grid refinement algorithms must also be closely
matched with the architectural features of the new advanced computers to take
advantage of possible vector and parallel capabilities.

For time-dependent problems, often there is much information which can be
used from preceding time-steps to help drive our adaptivity process. In parabolic
problems, where the solution changes smoothly in time, the “optimal” grid used
at the previous time-step should be a very good approximation to the desired
grid at the next time step. Thus beginning with a new coarse grid at each
time step and using the elliptic techniques of error estimators to drive the local
refinement would be wasteful. For small parabolic problems, when the grid is
changing very slowly in time, a much better technique would be to take the
grid from the last time-step, apply a grid analysis to determine where new grid
is needed and where grid is no longer needed, and then change only the grid
that indicates need for change. For large time-dependent problems, iterative
solution processes are much more efficient than direct solution techniques. For
problems with fairly smoothly changing solutions, the same preconditioner can
generally be used for several time steps, because the matrices change smoothly,
greatly saving in computational effort. If the size of the grid and hence the
number of unknowns is constantly changing, clearly the preconditioner must
be changed. Similarly, as mentioned earlier, changing the number of unknowns
greatly hinders vectorization techniques. Therefore, a considerably more efficient
alternative to constantly changing the grid is to use a larger refined area within
which the action is maintained for several time steps and to move the patch less
frequently, after several steps.

For hyperbolic or transport-dominated parabolic partial differential equations
arising in fluid flow problems, sharp fluid interfaces move along characteristic or
near-characteristic directions. The computed fluid velocities determine both the
local speed and direction of the regions where local refinement will be needed
at the upcoming time steps. This information can be utilized in the adaptive
method to move the local refinement with the front. We are currently exper-
imenting with using the computed fluid velocities to move the patch grids in
quantum jumps. The analysis description and analyses for these methods are
given in [11]. The techniques described in the last section are applied at the
macro-cell level and the relationship with more general domain decomposition
techniques are most apparent. In these techniques, great care must be taken
to preserve mass balance when grid is removed and the flow properties must be
averaged and described on the new coarser grid.
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