CHAPTER 25

Domain Decomposition and Mixed Finite Elements for the
Neutron Diffusion Equation

Francoise Coulomb*t

Abstract. Among the classical methods used for solving the neutron
diffusion equation, an iterative power method combined with a finite
element method allows an efficient numerical treatment. A domain
decomposition method seems well suited to the structure of a parallel
computer. As the domains and data are often almost symmetrical, the
mixed elements method yields well uncoupled systems. Some decomposi-
tions along the axes of symmetry are considered and numerically trea-
ted on two examples of reactors.

1. Introduction. The steady state formulation of the multi-
group diffusion equation is the following (4,5):

G
1
S DL, ()%, () + ) (0 = 2 [xm )+ KL 0]

g'=1
(1)
forg=1...G
with: QE = neutron flux in group g
Dg = diffusion coefficient in group g
ZZ = total removal cross section in group g
Z; = macroscopic fission cross section for group g
Zzg. = macroscopic scattering cross section from group g to group
g!
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= fission spectrum for prompt neutrons

= average number of neutrons produced per fission
= effective multiplication factor

= total number of energy groups

= gpacial dependence.

Bo>T R

The boundary conditions are of Neumann-Dirichlet type.
This is generally solved by an iterative power method 4,5)
combined with a finite element method ; it is reminded that the power

v
method for solving an equation of the form: M$ = K—F¢, can be written:

Wnrt) = p M Fln)

A(ne1) o (1, F yn+1))
(1, Fp(n)) (outer)iteration n+l
ln+1) - _____1 11;‘“*1)
)\(n+1)

A parallel computer with four processors on-line has already
been built for demonstration [1,2] ; it runs now with a Lagrange fini-
te elements method ; the inner iterations technique is presently a
parallel version of the block S.0.R. method (more precisely, an odd-
even block S.0.R. method) ; the domain is partitioned into lines in 2D
(planes in 3D), and each processor treats a set of contiguous lines
(or planes),

As the matrices obtained through mixed elements methods are
not positive definite, few results ensure the convergence of block
Jacobi and block S.0.R. methods. In the case of complete symmetry,
with an appropriate choice of the initial vector, the convergence of
the block Jacobi and block S.0.R. methods holds in 1 iteration ; that
is why, when the data are almost symmetrical, a domain decomposition
along the axes of symmetry is used to get a parallel preconditionner ;
by doing so and by choosing an appropriate initial vector for the
iterations, a fast convergence of the previous iterative methods is
expected. In practice, there are four axes (planes) of symmetry, so
the domain is naturally splitted into eight parts ; in a new parallel
computer project there will be eight processors ; we intend to assign
a subdomain to each processor, this explains why we concentrate on the
block Jacobi method.

The contents of the paper are as follows: in section 2, the
mixed-dual wvariational formulation of the problem and its approxima-
tions are reminded ; in section 3, some decompositions are described
and justified ; in section 4, they are tested on two examples of reac—
tors and the numerical results are interpreted.

2. The mixed-dual method (6,7).
2.1. The wvariational formulation. Each iteration of the power
method yields problems of the following form:

- Div{DVu) + Su = S in (2)

with Dirichlet-Neumann boundary conditions:
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Q being a bounded domain of R° (n = 2,3) representing the core and
=T Ul , I NI =06,
In the mixed~dual formulation, the flux u and the current

-

5 = DVu" appear as independant variables ; the variational formula-
tion is the following:

Find (p,u)€H, r (div,Q) x L?(Q) so that:

1
1 o = - .
j; B-p.q + divqu=0 VqEHo,rl(div,Q) (3)

fn - div p v + Juv IQSV WEL? ()

Hor, (div,9) = {d€H(div,Q) / <Y, (q),v> = 0 WeH] ¢ ()}

-

Wl(q) = normal derivative of a

Hé,ro(Q) = {veH' (&) / Wb(V) =0 on rb}

where

Nb(v) = trace of v

It is well known that under the assumptions:
D,3EL™(Q

0 < v € D(x) and 0 € Z(x) a.e. in Q

PEL2 ()
o "regular", meas{(I;) > O

problem (3) has a unique solution (5 = Deh,u), where u is the solution
of the classical primal problem:

Find u€H; - (Q) so that:
T o
.V = YvEH! Q
J; D Vu.W + Zuv J; Sv O-Fo( )

2.2. Approximation of the solution. Equation (3) is approxima-
ted by a finite element technique ; the approximation spaces are:

Qh

{ahEHo.Fl(diV’Q)/qheQK VKGTh}

<
i

g {thL2 ) /v, €P, VKETh}

T, being a triangulation, P, and Q, polynomial spaces.

Let us suppose that Q is a union of rectangles or parallelepi-
ped rectangles, and T, a regular family of triangulations constituted
of (parallelepiped) rectangles. Let T, be one of the triangulations.
For all given integers k, £, m, let us denote P, , and P ,  the
following spaces: '
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P, o = {PER[X,Y] / deg, P <k deg P < £}

P, ;. = {PER[X,Y,Z] / deg, P <k deg, P < £ deg, P <m}

k,

In the method of Raviart and Thomas, for each K:

= Proi ke X Prkar Py = Py in 2D

U = Prevti,w X Priker, e X Pk, k+1 B = Pk,k,k in 3D

k being a given integer ; the approximations of u and p are of order
Q = Py 0 X Py 21
k+1. A modified method gives: ; this method is of

P =P, + Po,l

K , 0O

order 1 whatever integer £ may be.
2.3. Description of a mixed-dual element of order 1 in 2D:

MXOL5 (3). The finite element basis can be represented in terms of
unknowns as shown in fig. 1.

Flux Current

T

FIG. 1: Mized element of order 1 MXOL5. There is one internal node for

the flux, and the current unknowns are the constant values of 5h. n on
each edge.

This element MXOL5 is so-called because on each rectangle the

approximation of u is constant, the approximation of 5 is linear, and
there are 5 unknowns.

3. Domain decomposition. For the sake of simplicity, we res-
trict ourselves to the 2D case ; in 3D, there are analogous results.

In practice, we are often in the presence of a domain of the
form indicated in fig. 2, which has four axes of symmetry {(in 3D the
domains have four planes of symmetry) and the data are almost symme-
trically distributed ; here, only the horizontal and vertical axes are
congidered,
Decompositions along the axes of symmetry are the purpose of this
study.



DOMAIN DECOMPOSITION AND MIXED FINITE ELEMENTS 299

FIG. 2: General form of the domain. The axes of symmetry are indicated
in dotted-lines.

In the sequel, it is supposed that:

(h1) ? has an axis of symmetry A, and, I, and I', are symmetric
with respect to A.

n
For each point y&R?, y denotes the mirror image of y with respect to

A, and for each vector ;, denotes the mirror image of Z with res-

Z
pect to the direction of A : A.

3.1. Symmetry of the solution. Let us suppose that the data D,
Z and S are symmetric with respect to A (condition (h2)). Then the
solution satisfies:

-~

p(x) = p(x)
~
u(x) = u(x)
The game regult holds for the approximate solution, provided that:

w,EV, &> W EV,
(h3)
q,6Q, « QEQ
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v e - N,
where: W, (x) = w_(x) and Q (x) = q,(x).
Under the following assumptions:

(h!t) the edges of the rectangles composing Q are parallel to the axes
of coordinates.

(h5) A is the x-axis or the y-axis.

(h6) T, is symmetric with respect to & (see fig. 3).

(h7) the finite element of reference is of the R. and T. type.

property (h3) holds.

FIG. 3: Symmetry of the triangulation T,

3.2. The block Jacobi method. The domain will be decomposed
along the axes of symmetry.

Assume that (hl4) and (h5') are verified, (h5') being the
condition: A is the y-axis.  is splitted into two parts:

9 = {z @e&/;mo}
Q, {z @a}/x>o}

X —
The interface {% = [ ]EQ/X = O} is denoted f% (TSCA). We have the

N

choice of considering Ig separately or as part of one of the
subdomains.

The mnodes are numbered in the following order: first those of
ﬁa\fé then those of ﬁg\fs, and to end those of I}.
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Fé is supposed to be composed of edges of rectangles KeT,
(condition (h8)) (see fig. 4).
A
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|

|
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I
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l
|
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l
i
i
]
yes no

FIG. 4: The domain is splitted into two parts with an interface
composed of edges of rectangles KET, on the left figure ; the figure
on the right shows a bad splitting.

The matrix of the linear system has the following form:

A, 0 A13
A = 0 Azz A23 (6)
t t
A13 A23 A33
X

1 1
and we have to solve A X, | = |B,
23 By
on r3 are current nodes.
A is the matrix of the approximate problem corresponding to
-~ div(DVu) + 2Zu = S in Q@ ;
u=20 on fbﬂaﬂl

= B, with B3 = 0, for all the nodes

11

the equation: 5
u
D 3 =0 on (F1ﬂ891 )LJF3

Meas {I,) >0 and I, is symmetrix with respect to A (hypothesis hi),
so meas (I ;N5Q,) > O ; then A, is invertible. For the same reason A,,
is invertible. As A33 is the matrix of the positive definite bilinear

- - 1.5 L ,
form: (p,q) - B-p.q on a subspace of Q,, Ay, 1s invertible. So, the

block Jacobi method can be considered.
Let (h9) be the condition:

For the element of reference ﬁ, the unknowns are symmetrically
distributed with respect to its vertical axis of symmetry.




302 Coulomb

Proposition: Under the assumptions (h2), (h6), (H7) and (h9), and if
the initial vector X!°) gatisfies:

(0) 71 07 if i and j are gradient nodes corresponding
X (1) = - X (J) to the x~component of p, , and are symmetric
(h10) with respect to A,

. . in the other case if i and j are symmetric
XX (i) = X°(3)  ith respect to A.
then the block Jacobi method converges in 1 iteration.

proof: it is not restrictive to suppose that the numbering of
the nodes is done as follows:

. in domain 1, the first nodes to be numbered are those
corresponding to the flux ; for the current nodes, we first number the
nodes corresponding tothe x-component of Dy then those corresponding
to the y-component,

the nodes of domain 2 are numbered symmetrically with res-
pect to the axis of symmetry.

Then A has the following form:

AL, AT AT 0 0 0 Al

FATXAX 0 0 o 0 A%

EATY o A 0 o o o] (a, o A,
- - - A, A
A=l 000 oan -aTr AT ealilel O A, An

t t

0 0 0 -tATX a0 AL (A TRy Ay

0 0O 0 ot A 0o A o

tAF £aX _t AF t

AT, AR, 0 A, AL 0 Ay

We have also:

F (0)
Bl ’ XlF
BX| (B X(0)
1 O 1X
Y (0) 0
By 0 (o) Xiy Xi )
B = Fl = F X0 = (0) = o
B, By Xip Xé )
X 0 _v(0o 0
BZ 0 X§X)
Y
B; 0, Xy’
B3l \ 0 7
At the first iteration, we have:
(1) - -
A, Xt B, - A, X{% =B,
(1) - - 0) -
Azz Xz = Bz A23 Xé o= B2
Ay X =B Xil) =X
but, X3 = 0 and so ; then .

A, X, = B, Xél) =X
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(1) - _t o) _
Ayy X{P) =0 - tALL X(O) - ta, o x(O)

33 13
0
o Ko
(1) = - {taF tax (0) _ AF  taX _w(0
Agy X5 0 ( Ay TATS O) Xix’' | * ( Ajg “Al O) X{Y
(0) 0
Xiy X{y
(1) - - taF (0) _ taXx (6) F o] taX 0) _
Ay X5 Ars Xip Afg Xix' + Ay X{p) + Ajg X{g) =0
So X§1> =0 =X, and X0 = x,

We notice that the Gauss-Seidel method converges in one itera-
tion with the only assumption that X§°) = 0.

If I';isconsidered as part of one of the subdomains, we have no
more this property of convergence in one iteration ; the hypothesis
should be tA23 (Xé‘” - Xz) = 0 for example -and that cannot be satisfied

if some of the components of X, are not known.

There is an analogous result if there are two axes of symmetry
and if the interface is considered as a fith domain.

The previous result explains why, if Q has axes of symmetry,
we decompose it along these axes ; when the data are almost symmetri-
cal, we hope to have a fast convergence with the decomposition of
dissection type (the interface is considered as a separate domain).

On a parallel computer, we shall assign a domain to each pro-
cessor, and (eventually) the interface to the host processor.

4, Numerical tests. We have restricted ourselves to the 2D
case and have carried out tests on two examples of reactor, choosing
the mixed element MXOL5 ; some decompositions of the core have been
considered. The numerical results led us to a study of the block
Jacobi method on a simple example.

4.1, Description of the two reactors

4.1.1. The 2D IAEA Benchmark. It corresponds to a median plane
of a 3D problem representing an idealized model of a Pressurized Water
Reactor. This reactor contains four homogeneous regions {(see fig. 5):

(1) a region of high enrichment

(2) a region of slight enrichment

(3) a region where the control absorbants have been mixed with the
fuel

(4) a light water reflector.

4.1.2. The 2D Tihange. This problem represents a reactor at
the begining of the second cycle. The heterogeneity of the core indu-
ces a checkerboard effect on the power distribution. It is a good
representation of the different real reactor types ; its geometry is
represented in fig. 6.

4.2, Description of the tests. The tests have been carried out
with the mixed element MXOL5, on a CRAY-XMP.

In the two examples, Q is symmetric with respect to the coor-
dinates axes ; in the Benchmark case, the data are symmetric, but they
are not in the Tihange case.
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3
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Size of an assembly : 20 cm

FIG. 5: The 2D IAEA Benchmark
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Size of an assembly : 21,5313 cm
FIG.6: The 2D Tihange. Geometry: representation of the complete core.

The meshes that are used are the following:
. 1 block per assembly, except for the assemblies on the axes
of symmetry which are divided by these ones ;

i
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. 4 blocks per assembly ; we note: "2x2" (see fig. 7).

1 x1 +m 2x 2

FIG. 7: The two meshes: "1x1+m" and "2x2" for the reactor Tihange.
Q1 is split up either into two or into four subdomains ; we

have the choice of considering the interface separately or as part of
the subdomains ; that gives four decompositions named "2B", "2B+I",

"4B" and "4B+I" (see fig. 8).

BT "
= ]

FIG.8: The four decompositions of the domain.
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The stopping criteria are:
un un— 1

o 0 Ma_ I

< epsf for the flux

I, -,

lA I < epsv for the current
n

For the first test (Benchmark), we know that on the coordina-

tes axes we have: Eh.ﬁ = 0 theoretically ; it was decided that Eh.n

should be numerically considered equal to zero if IE.H] < 10°°.

L4 3, Numerical results. Some numerical results are shown in
Tables I.1, I.2, I.3 for the Benchmark, in Tables IT.1 and II.2 for
the Tihange.

TYPI indicates the solving method for the inner iterations: J
stands for Jacobi, G.S. for Gauss-Seidel (S.0.R.) and C for a direct
solving.

2 inner iterations are performed for each outer iteration, and
the process is stopped after 150 iterations if the convergence is not
yet obtained.

Table I.1
epsf = 5.107% epsv = 1074
Memory|Iter.
Mesh [TYPI|Eigenvalue place |[time 'nb. Decomp. Remarks
(words)| (c) | *ter.
1x1
SO c [1,03320059 67444 | 35 20 / + o
2 x 20 C 11,03336754] 244200 89 15 / + o
1x1 _
S 7 |1,03318790( 39266 | 146 51 | 2B falo 4 10
1x1
J t|6.s.|1,03320060| 39266 | 58 20| 2B <+ o
2 x 2| J [1,03332931| 173374 | 479 49 | 2B Fi4.105 10
1x 1 7 |1,03320060| 39154 | 57 20 2B + 1 |p1,2.105 10
Tx1 '
Jt|6.s. |1,03320060| 39154 | 61 20 |2B + I + o
2 x 2| 7 [1,03336754] 172718 | 143 15 [2B + I + o0
1+Xm1 J |1,03319254| 38500 | 210 73 | uB -107
.107

i el
o\vm o\c\

b7,
1
1 x1lGg.s.|1,03317949| 38500 | 73 2 | B f*
1

2 x 2| 7 |1,03333493| 170288 | 274 69 | uB P4 5 10~ 5
1.7,6.1074

maxi. preci.:

1> 11 7 10,53648906| 38260 | 442 | 150 4B + I (iter.18)
+m flux: 8.1074

X 1,6.1075
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In the last column ('Remarks'), we indicate especially the

order of magnitude of |p,.n| on the interface:

r» r indicates that lBh.Hl is at a maximum of r on the verti-
cal interface.

It is to note that, as we are only testing the method, the
storage has not been optimized: the matrices have been stockpiled in a
"profil" way ; we intend to stock the diagonal blocks of the matrices
in this way, and the off-diagonal matrices by a 'Morse' storage.

For the initialization, the current was taken equal to O and
the flux equal to 1.

Table 1.2
epsf = 107° epsv = 1078
Memory [Iter
Mesh |TYPI|Eigenvalue| place |[time .nb. Decomp. Remarks
(words)| (c) |3ter
10 p1
maxi. preci.:
1x1 J 0,79205594 39154 437 150 2B + I (around 1ter.l9)
*m flux: 3,5.107%
eigenvalue: 2.10°°
10 P 2.0
after iter. 145,
the prec. is of':
1 x1
. m J 11,03325707| 39266 | 420 | 150 2B 10-% for X
1078 for the flux
(> 107%)
Table 1.3
epsf = 5.10°3 epsv = 1074

Memory |Iter

Mesh TYPI |Eigenvalue place time _nb. Decomp. Remarks
{words) (c) |iter

Ix1 1 5 |1,03202216| 39154 35 | 12 (2B + I + 0

+ m

tx 1| 7 |1,03198796| 39266 62| 22| 2 |pP9.10* 10
m

I x 15 11,03202216| 38260 35 | 12 4B + I -+ o

+ m

Lx 1| 7 11,03226591| 38500 | 86 | 30| 4B | 5.103 10
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Table II.1
epsf = 1075 epsv = 1073
Memory |Iter
Mesh |TYPI|Eigenvalue| place |time ‘nb. Decomp. Remarks
(words)| (c)|iter
2 x 2 C |1,00331257 (220469 210 36 /
if epsf=10““, conv.
2 x 2 J 11,003312631159578 631 66| 2B is reached at iter 36
maxi. preci.:
flux: 8.10°°
2 x 2| J |0,92635364[158864 |1432] 150(2B + I X: 5.10°7
between iter 47 and
60, x = 1,003315
2 2 1 if epsf=10'“, conv., is
X J ,003312741156422 {1424 150 4B reached at iter 51
max. prec.:
flux: 1,4.10°3
2 x 2| J |0,53890438]155334 |1445| 150|4B + I X: bo1070
between iter 15 and 18
1,003314 < X <€1,003320
Table ITI.2
epsf = 2.10°3 epsv = 1075
Memory| Iter
Mesh |TYPI|Eigenvalue| place time .nb. Decomp. Remarks
(words) (c) | iter
2 x 2] € {1,00332450]220469 58 10
2 x 2 J 11,00330566/159578 124 13 2B %Li = 62 = 58
2 x 2| J {1,00332981 158864 95 10 |2B + I 2—5 = 47,5 <58
27
2 x 2| J |1,00331549[156422 | 247 19 4B el 61,75 = 58
2 x 2 J |1,00332985]155334 116 12 4y + 1 —1—le§— = 29 << 58
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b .4, Commentaries and interpretations

4h.4.1. Benchmark test. The basic mesh for the interpretation
is the mesh "1xl+m".

We first stated: epsf = 5.10°% and epsv = 1074, as it is gene-
rally done in our code for the Benchmark, Firstly, we see that as
stated mathematically, in the two cases of direct solving, there are

properties of symmetry for the flux and the current, and 5.5 is nil on
the axes of symmetry. We notice that for the decomposition 4B + I,
there are some problems ; that is why, we wanted to see what happened
in the case 2B + I for a greater requested precision, and also for all
the cases for a lower precision.

For a requested precision of 5.10°3 for the flux and 10~* for
the eigenvalue, the decompositions for which the interface is separa-
ted (2B + I, 4B + 1) are by far the fastest ones, and they give a best

approximation of 5.5 on the interface. That still holds for a preci-
sion of 5.10"* and 10°* for the case 2B + I.

For the decompositions 2B + I and 4B + I, we note that for
each outer iteration (at least for the first ones), the result is the
same for the first and second iterations of the block Jacobi method ;
this confirms the mathematical result that tells that the Jacobi
method converges in one iteration with an appropriate initialization.
In these two cases, it is noticed that after having reached a certain
precision during several iterations:

5.100% and 2.10°6 for 2B + I
5.1003 and 5.10°5 for 4B + I

the results deteriorate, and become quite different from the solution.
If we look more precisely, we notice that the property of converging
in one iteration for the Jacobi method holds exactly only during
19 iterations for 2B + I .14 the error at the second iteration

14 iterations for UB + I
increases, the process being more accentuated for the case bp + 1 ;

so, if at that point the requested precision is not reached, problems
may appear. That can be partly explained by the fact that numerical
results are not exact results ; here, after a certain number of itera-
tions, we may loose slightly properties of symmetry and so, at the
beginning of the Jacobi iterations, the starting wvector has no more
the property for the convergence in one iteration.

Increasing the number of dinner iterations doesn't provide
better results for the cases 2B and 4B, and may occur difficulties for
the two others, because of the process discussed about above.

In the case of a requested precision of 5.10'“ for the flux
and 10™* for the eigenvalue, we note that the Gauss-Seidel method is

-

faster than the Jacobi method and gives a better approximation of p_ .n

on the axes of symmetry. .
h k.2, Tihange test. The previous phenomena are amplified.

With the mesh "2x2" the decompositions with a separated interface can
only reach a precision of:

10°% for the flux, 10°% for the eigenvalue in the case 2B + I

2.10°3 for the flux, 4.10°% for the eigenvalue in the case 4B + I
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L4.5. Third test. The previous results led to a study of the
block Jacobi method for a very simple case:
. Q is a square, I, = o0
. the triangulation is obtained by a splitting into four parts
the functions D, £ and S are set constant
. the mixed element is still MXOQL5.
The unknowns are numbered as indicated on fig. 9.

4 5 4 14

4 113

13 /r 12

FIG.9: Numbering of the nodes.

The decomposition that are considered are the same as before:

- 2B : domain 1 «» nodes: 1,2,3,4,5,6,7,8,9
domain 2 <« nodes: 10,11,12,13,14,15,16
- 2B + I: domain 1 < nodes: 1,2,3,4,5,6,7
domain 2 «» nodes: 10,11,12,13,14,15,16
domain 3 < nodes: 8,9
- IR : domain 1 <> nodes: 1,8,3,4,6
domain 2 <« nodes: 10,12,13,15
domain 3 < nodes: 2,9,5,7
domain 4 < nodes: 11,14,16
- 4B + I: domain 1 <« nodes: 1,3,6
domain 2 «» nodes: 10,12,15
domain 3 « nodes: 2,5,7
domain 4 <> nodes: 11,14,16
domain 5 <« nodes: 8,9,4,13
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. , . 1
The matrix of the linear system is the following, with o = —:

— __ 6D
20 -1 [+3
20 -1 [
200 o -1
o« oo o 1 -1
o 20 i
~1 -1 1 -z 1
~1 -1 1 -2 1
A = o 1 Loe o -1
o 1 1% o -1
o 20 1
o 20 i
20 -1
o o o 1 -1
o 20 1
-1 1 -1 1 -2
-1 1 -1 1 -1

The interest concerned particularly the decomposition 4B + I, because
in the previous examples, it was with this decomposition that some
problems arised.

1 1 100
D = o ’ - * -
We took: s - ?OO 6 6 ; the problem to solve is: AX = B,
h =1

The tests were run on an IBM.
L.5.1. Decomposition 4B + I. As the nodes are numbered domain
by domain, the new ordering is: 1,3,6/10,12,15/2,5,7/11,14,16/

8,9,4,13. 100

Suppose D = -g—-; the solution of AX = B, with:
B=*% o0, 0,-202, 0, 0,-202, 0, 0,-202, 0, 0,-202,0,0,0,0)
X = *{100,100, 2,100, 100, 2,100,100, 2,100,100, 2,0,0,0,0).

We take X(°) = X and perform 50 iterations. We should have
X{") = X (numerically) at each iteration : but after a certain number
of iterations, X‘"’ becomes different from X, and the error increases
(see fig. 10).

This phenomenon doesn't appear in the two other cases.

In the case D = E' we wanted to see the influence of a slight

modification of the initial vector. We took:
B = *(0,0,-4,0,0,-4,0,0,-4,0,0,-4,0,0,0,0) so that:
X=1%1,1, 2,~1,1,2,1,~1,2,-1,-1,2,0,0,0,0) ; we choose:
X(® = %9, 0,8,0,0,8,0,0,8,0,0,8,0,0,0,0) to have a convergence in one
iteration, and X{°’ = (0,0,8,0,0,8,0,0,8,0,0,8,¢,¢,6,6) with ¢ = 0,1.
During the first iterations, the results are different ; the error
reduces, but at least during the ten first iterations,
X (1) = X{m0 | > 1074 i

4.5.2. Decomposition IB. The phenomenon described above
doesn't appear. We note that the performance deteriorate as D increa-

ses. In the case D = 1%93 the best approximation of 0 on the interface
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ITERATION
I=
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I=
I=
1=
I=
1=
I=
I=
I=
I=
I=
I=
1=
1=
I=

ITERATION
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
1=
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ITERATION
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=

ITERATION
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
I=
iz
I=
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1 error

X{I)= 99.9999390
X(I)= 99.9999390
X{I)= 2.00000000
X(13= -99.999939¢
X(I)= 99.9999390
X(Iy= 2.00000000
XUI)= 99.99993%0
X(I)= -99.9999390
X{I)= 2.00000000
X(I)= -99.9999390
X(I)= -99.9999390
X(X)}= 2.00000000
X{I)= 0.000000000E+00
X(I)= 0.000000000E+00
X{I)= 0.000000000E+00
X(I)= 0.000000000E+00

3
X(I)= 99.9999695
X(I)= 99.9999695
X(I}= 2.00000095
RUIIZ -99.9999390
X(I)= 99.9999237
X(I)= 2.00000000
X(I)= 99.9999237
X(I)= ~99.9999390
X(I)= 2.000060000
X(I)= ~99.9999390
X(I)= -99.9999390
X{I)= 2.00000000
X€I)= 0.238418434E-04
X(I)= 0.238418434E-04
X(I)= 0.238418434E-064
X(I)= 0.238418434E~04

20
XI)=  100.001541
X(I)= 100.001541
X(I)= 2.00004864
X(I)= -99.9983063
X(I)= 99.9983063
X{(I)= 1.99995136
X(I)= 99.9983063
X(I)= -99.9983063
X(I)= 1.99995136
X{I})= -100.001541
X{I)= -100.00154]
X{I)= 2.00004864
X(I)=-0.321864872E~02
X{I)= 0.324249058€-02
X(I)=-0.321864672E-02
X(I)= 0.324249058E-02

40
X(I)= 101.46%9406
X(I)= 101.469406
X(I)= 2.04430580
X(I)= -98.5304413
X(I)= 98.5304413
X(I)= 1.9556%9420
X(I1= 98.5304413
X(I)= -98.5304413
X(I¥= 1.9556%420
X(I)= -101.46%406
X(I)= -101.469406
XiI)= 2.044%30580
X(I)= -2.94999886
XtI)= 2.95002270
X(I)= -2.94999886
X{I)= 2.95002270

0nMm
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FI1G.10: Decomposition 4B + I. D =

ITERATION
1= 1
I= 2
I= 3
I= 4
I= 5
1= 6
I= 7
I= 8
I= 9
I= 10
I= 11
I= 12
1= 13
I= 14
3= 15
I= 16
ITERATION
I= 1
I= 2
1= 3
I= 4
1= 5
I= 6
I= 7
I= 8
1= 9
I= 10
I= 11
1= 12
I= 13
I= 14
I= 15
I= le6
ITERATION
1= 1
I= 2
I= 3
1= 4
I= 5
1= 6
1= 7
I= 8
1= 9
I= 10
1= 11
I= 12
1= 13
1= 16
I= 15
I= 16
ITERATION
1= 1
I= 2
1= 3
I= L
I= 5
I= 6
I= 7
I= 8
I= 9
1= 10
I= 11
I= 12
I= 13
I= 14
1= 15
i= 16
100 X(0)
6 ’

2
X(I)= 99.9999390
X(XI)= 99.9999390
X{y)= 2.00000000
X(I1= -99.9999390
X(I}= 99.9999390
X(I)= 2.00000000
X(I)=  99.99993%0
X(I)= -99.9999350
X(I)= 2.00000000
X(I}= ~99.9999390
X(I)= -99.9999390
X(I)= 2.00000000
X(I)= 0.238418434E-04
X{I)= 0.238418434E-04
X{I)= 0.238618639E-04
X(I}= 0.238418434E-04

10
ALI)=  99.9998627
X(X)=  99.9998627
X(I)= 1.9999%9809
X(I)= -99.9999847
X(I)= 99.999%847
X(I)= 2.00000191
X(I)= 99.9999847
X(I)= -99.9999847
X(I)= 2.00000191
X(I)= -99.9998627
X(I)= -99.9998627
X€I)= 1.99999809
X(I)= 0.119209217E-03
X(I)=-0.953673734E-04
X(I)= 0.119209217E-03
X(X)=-0.953673734E-04

30
XEI)= 99.9513550
X{I)= 99.9513550
X(I)= 1.99853516
X(I)= -100.048492
X(I)= 100.048592
X(I)= 2.00146484
X(I)= 100.048492
X(X)= -100.048492
X(I)¥= 2.00146484
X(I)= -99.9513550
X(I}= -99.9513550
X(I)= 1.99853516
X(I)= 0.975369811E-01
X(1)1=-0.975131392E-01
X(I)= 0.975369811E-01
X(X)=-0.975131392E-01

50

XtI)= 55.5384216
X(I)= 55.5386216
X(1)= 0.659451008
X(I)= -144.461411
X{I)=  1644.461395
X(I)= 3.34054852
X(Id= 144.6461395
X(I)= -144.461411
Xt(I3= 3.34054852
X{1)= -55.5383911
X{I)= -55.5383911
XtI)= 0.659450054
X(I)= 89.2581329
¥{I)= -89.2581329
X{I)= §9.2581329
X(I)}= -89.258132%
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seems to be of the order of 2.1075.
4.5.3. Decomposition 2B + I. The new ordering of t?gonodes
is: 1,2,3,4,5,6,7/10,11,12,13,14,15,16/8,9. We choose D = < - For
B = *(0,0,0,0,0,-202,-202,0,0,0,0,0,-202,-202,0,0),
X = t(100,100,100,0,—100,2,2,—100,—100,100,0,-100,2,2,0,0). If we take
X0 = *(0,0,0,0,0,100,100,0,0,0,0,0,100,100,0,0), the block Jacobi
method converges theoretically in one iteration. Then take
X{® = *(0,0,0,¢,0,100,100,0,0,0,¢,0,100,100,0,0) and & = 0,1. Even

with X(°), the approximation is not better than 10°% ; with X(%) we
have (almost) the same results.

The phenomenon described for decomposition 4B + I doesn't seem
to occur.

4.5.4. Some observations. A modification of X(°) (i), i corres-
ponding to a node representing the gradient on an axis of symmetry,
has more influence if the node is on the axis of decomposition. The
results indicates that decomposition 4B + I is less stable than decom-
position 4B, and also than 2B + I.

5. Conclusion. When everything is symmetrical, the Jacobi
method can converge in one iteration with a decomposition of dissec-
tion type, if an appropriate initial vector is choosen.

The decompositions in which the interface is separated give
faster results when a not too high precision is requested ; but they
cannot reach a very high precision, and in this case the results may
deteriorate. This can be partly explained by the fact that after some
outer iterations, the initialization vector of the Jacobi iterations
has no more exactly the properties for a convergence in one iteration.

Decompositions for which the interface is separated seem to be
less stable than the ones in which the interface is integrated to the
domains.

The choice of the decomposition depends on what we need: a
high precision or a fast result.
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