CHAPTER 27

Domain Decomposition for Nonsymmetric Systems of
Equations: Examples from Computational Fluid Dynamics

David E. Keyes*
William D. Gropp?

Abstract.

A block-preconditioned Krylov method which combines features of several previously
developed techniques in domain decomposition and iterative methods for large sparse lin-
ear systems is described and applied to a few illustrative problems. The main motivation
of the work is to examine the gracefulness of parallelization under the domain decompo-
sition paradigm of the solution of systems of equations typical of finite-differenced fluid
dynamical applications. Such systems lie outside of the realm of self-adjoint scalar elliptic
equations for which most of the theory has been developed, and the present contribution
is merely a first step in an attempt to approach them, raising several issues and settling
none. However, results of tests run on an Encore Multimax with up to 16 processors show
that even this first step has utility in the coarse-granularity parallelization of hydrocodes
of practical importance.

1. Introduction

Interest in domain decomposition techniques for partial differential equations from a
parallel computing perspective stems from their transformation of a large discrete problem
defined on a spatial domain, irreducible in the matrix theory sense, into a fairly arbitrary
and potentially large number of independent problems defined on simply-connected sub-
domains, at the cost of introducing a set of constraints at the interfaces of the subdomains.
The interface equations contain all of the global coupling of the original problem; the sub-
domain problems are completely decoupled from each other once the interfacial degrees
of freedom are assigned. The interfacial constraints, though complex in structure, involve
lower-dimensional subsets of the unknowns of the original problem. With the development
of sufficiently good approximations for the interface constraints, a preconditioned iterat.ive
scheme involving all of the unknowns of the problem can be constructed. The solution
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(or preconditioning) of the union of the subdomain problems is generally cheaper than
the solution (or preconditioning) of the full domain problem due to their reduced size
and bandwidth, in terms of which the appropriate operation counts may grow as badly
as cubicly, depending upon the algorithm. This advantage can be traded off against the
extra iterations needed due to the approximation of the interface equations. In the parallel
context, additional advantages stemming from the independence and data locality of the
subdomain problems enter into consideration.

In d-dimensional problems, the process of relegating the global coupling, inevitable at
some level, to a set of lower-dimensional problems can, in principle, be recursively imple-
mented d times. Thus, for example, a two-dimensional elliptic problem discretized with n
subintervals on a side and decomposed into box-type subdomains with p subdomains on
a side yields after two stages an irreducible system of (p — 1)? equations for the points at
the vertices of the boxes. This system is the Schur complement in the ambient (or global)
matrix of the degrees of freedom defined at all other points [9]. Were the vertex degrees
of freedom determined, 2p(p — 1) decoupled sets of (p — 1) equations could be derived to
vield the values at the points along the edges connecting them. Finally, given all of the
interfacial degrees of freedom, p? decoupled sets of (% — 1)? equations, simply sub-blocks
of the original matrix, would yield the remaining vafues in the subdomain interiors. For
general operators, the cost of deriving the exact lower-dimensional systems can greatly ex-
ceed the cost of direct banded Gaussian elimination on the original system. It follows that
the success of domain decomposition hinges on the ability to efficiently approximate the
lower-dimensional operators, by taking advantage of either known or “probed” structure.

Most published work to date on domain decomposition algorithms has concentrated
on self-adjoint scalar elliptic equations, and several optimal algorithms are now known for
this case, in the sense that the number of iterations required to solve the discretized PDE
does not grow with the gridpoint density or the number of subdomains as these quantities
are refined in proportion (see, e.g., {5, 26]). These algorithms employ the conjugate gra-
dient method, and are distinguished from each other primarily by the selection of solvers
or preconditioners for the decoupled systems of equations for the subdomain interiors and
for the coupled interface equation system. For certain constant coeflicient problems, exact
preconditioners can be obtained by means of Fourier analysis so that the iterations con-
verge in a single step [4, 7]. Recently, Chan [6] has extended the class of problems for which
good preconditioners are known to the scalar convective-diffusive case, However, problems
involving several linearized convective-diffusive equations coupled to each other by source
terms have received little attention in this context. The solution of such problems is an
important computational kernel in implicit methods (for instance, Newton-like methods
and linearized implicit time-stepping methods) commonly used for systems of nonlinear
PDEs arising in science and engineering, and is often CPU-bound or memory-bound or
both on the fastest and largest serial computers available. Furthermore, it is often the only
computationally intensive part of such codes whose efficient parallelization is not straight-
forward, particularly when the distribution of data throughout the computer’s memory
hierarchy cannot be dictated exclusively by linear algebra considerations.

In this contribution, preconditionings of a “modified Schur complement” (MSC) type
are applied to the solution of the large sparse linear systems arising at each stage of the
application of Newton’s method to a system of elliptic boundary value problems modeling
a two-dimensional reacting fluid flow. The nomenclature derives from the fact that the
preconditioner is built from blocks which are low-bandwidth approximations to actual
Schur complements derived from various submatrices of the original global matrix. These
low-bandwidth matrices are required to produce the same matrix-vector products as ap-
proximations to the true (dense) Schur complement when acting on a given set of trial
vectors, and are obtainable by solving independent problems on subdomains. Since this
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type of requirement is sometimes imposed on incomplete factorizations, in which context
the adjective “modified” has become solidly established, we employ it here as well. As
a preconditioning technique for the interface equations, the modified Schur complement
method exploits only the sparsity structure and clustering of large magnitudes around the
diagonal of the actual operator, and no other properties like symmetry or constant coef-
ficients. As a result, it performs suboptimally on many special problems, but generalizes
with little difficulty to many other systems. In the absence of a general theory for the
performance of this technique, experimental exploration of its convergence properties is
required, and sample results are described herein (section 4), preceded by a description
of the overall computational procedure (section 2), and its parallel implementation (sec-
tion 3). We conclude in section 5 by listing some open issues in MSC-mediated domain
decomposition.

2. Algorithmic Description

As sketched above, an iterative substructuring algorithm consists of an iterative pro-
cedure together with at least a two-level hierarchical preconditioner for the subdomain and
interface systems. Our selection of a hybrid generalized minimum residual / incomplete
LU-decomposition / modified Schur complement block algorithm is now motivated and
described. The techniques woven into this hybrid are outlined in the following subsections.
Fuller details are obtainable from the cited references.

2.1. Full Matrix Domain Decomposition

Domain decomposition enters our considerations at the level of the solution of a
system of linear equations. In applications, this system is usually derived from the lin-
earization of a nonlinear process, which gives the entire domain decomposition procedure
the status of an inner iteration. To avoid any deeper nesting of iterations in applications,
we iterate simultaneously on all of the unknowns in the linear system, in the sense that
the subdomain problems are not individually iterated to convergence before their values
are used to update the right-hand sides of the equations for the interfacial unknowns.
This form of full matrix domain decomposition was advocated in [5] for problems in which
no fast solver is known for the subdomain interior problems, and has been demonstrated
therein to lead to an optimally convergent scheme for a class of self-adjoint strongly elliptic
operators, provided (among other things) that spectrally equivalent subdomain precondi-
tioners are employed.

This paradigm for domain decomposition is most easily illustrated in the decomposi-
tion into two strips of a rectangular region overlaid by a tensor-product grid. The single
cut follows a line of gridpoints, which are ordered separately. For a 9-point operatm_' on
a grid with 16 interior subintervals in each direction (with Dirichlet boundary CO.IlditIOI.ls
eliminated) the resulting sparsity pattern for the operator A is indicated graphically in
Fig. 1(a), and in matrix notation as follows:

A11 0 A13
A= 0 Aza A | . (1)
Az; Az Az

Here, As; renders the coupling between the points on the interface itself,
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Figure 1: Sparsity patterns for three different decomposi-
tions of a rectangular region, using a 9-point finite-difference
template: (a) two strips, one edge; (b) four strips, three
edges; (c) four boxes, four edges, one vertex. Within each
subdomain the gridpoints are ordered lexicographically.

The conformally partitioned preconditioning matrix we propose for A is

Ay o 1§13
B=| 0 Axn Ap], (2)
0 o o

where & approximates the Schur complement of Ay; and Az in A. The exact Schur
complement, C, may be obtained from block-Gaussian elimination on A as:

C = Aaz — A31A;11A13 - AsgA;.}Aga. 3)
The tilde-notation in the definition of B accommodates the replacement, if convenient,
of the exact A;; with approximations thereto. We assume throughout that the A;; are
invertible. (This is certainly a reasonable requirement for a discrete convective-diffusive
operator.) Under this assumption, C is also invertible [9].
It has not been assumed above that A is symmetric. This provides the freedom to
consider, without sacrifice of symmetry, a nonsymmetric B in (2) possessing instead the
valuable property of block triangularity. Note that the inverse of B can be applied with
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one solve in each subdomain. Were A of the symmetric form

Ap 0 Ay
A= 0 Ayp Axn|, 4)
Aly AL Ass

we would have considered a symmetric B, in order to take advantage of the two-term
recurrence relationship of the conjugate gradient iteration for the preconditioned system:

Ay 0 1‘113
B=| 0 Ayp A ) (5)
Af; AL, CH+ Y ARAG A
One application of the inverse of this symmetric B requires two solves in each subdomain
[5], twice the work of the block triangular B.

2.2. Generalized Minimum Residual Method

Any algorithm intended for use in fluid dynamical applications must be robust with
respect both to asymmetry, to allow for the presence of convective terms, and indefinite-
ness, to allow for the presence of linearized source terms whose coefficients oppose the
algebraic sign of the diagonal term of the discrete convective-diffusive operator. (The
latter can be particularly important in the modeling of chemically reacting flows in which
at any point in the flow field some species may be created while others are consumed.
The source terms in the transport equations for electrons and holes frequently employed
in semiconductor device simulation can also give rise to indefiniteness.) The generalized
minimum residual method (GMR) [21] is one such algorithm with which the authors have
experience. Chebyshev iteration [17] would be an alternative suitable for cases in which
the indefiniteness can be controlled (for instance, by the addition of a transient term to
the continuous operator, which adds a term inversely proportional to some sufficiently
small time step and of the correct sign to the diagonal of the discrete operator). All of our
results to date employ GMR; however, we intend to experiment with adaptive Chebyshev
iteration in the future because of its short recurrence relation.

Given a system of equations, Mz = f, M nonsingular, and an initial iterate, zo, with
initial residual, 7o = f — Mzo, GMR computes the solution « from finding z € Ky, such
that

{ro—Mz,v)=0,

for all v € L,,, and setting # = zg + z, where K,,, and L, are Krylov spaces based on ro:
Ko = span{rg, Mro, ..., M™ o},
L., = span{Mrq, M?rq,..., M™7ro}.

The solution z computed after m steps of GMR minimizes [|7{]2 in the affine space zg+ K.
In a practical algorithm, an orthogonal basis for Ky, is built up by means of a Gram-
Schmidt or Householder process, which obviates the necessity of working with the normal
equations. Suitable computer implementations of GMR have been given in [21] and [24],
of which we use the former. Among the desirable properties of GMR. are: (1) the only
reference to M is in form of matrix-vector products, (2) the only matrix to be “inverted”
is usually of order m < dim(M), (3) it cannot break down (in exact arithmeti.c) short of
delivering the solution even for nonsymmetric systems with indefinite syn}metnc pa:rt, {4)
it requires less storage and fewer operations per step than the mat.hemai:xcaliy ?qmval.ent
GCR and ORTHODIR algorithms, and (5) the 2-norm of the residual is non-increasing
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and can be monitored without constructing intermediate solution iterates. The main dis-
advantage of GMR is the lack of a bounded recurrence relation, which causes the operation
count and storage requirements to grow quadratically and linearly, respectively, in the iter-
ation index. In many applications, restarting GMR after a predetermined number of steps
successfully deals with this problem, but restarted GMR can also fail through stagnation.

2.3. Incomplete LU Subdomain Preconditioning

GMR is often uneconomical when left to act by itself on a general reaction-convection-
diffusion operator. In an effort to control the work and storage required by GMR when A
has a widely spread spectrum, we precondition the iterations by taking M in the formulae
above to be AB™1, for the A and B given in §2.1. This is “right” preconditioning, which
first solves MZ = f for &, then Bz = & for z. We adopt right over left preconditioning
because in the latter the matrix B enters into the GMR residual convergence criterion in a
direct way, making convergence comparisons between different preconditioning techniques
difficult.

Approximate factorizations of the original matrix into triangular matrices, such as
incomplete LU-decomposition (ILU) [18], are useful general purpose preconditioners for
GMR. and other Krylov methods. However, such factorizations can be bottlenecks in
parallel implementations, because of the sequential nature of triangular factorizations
and solves. Though wavefront-based or red-black reorderings of the standard sequential
operations can alleviate this problem [20] in the context of sparse banded madtrices, domain-
decomposition approaches side-step it altogether by applying ILU within subdomains only.

In the present examples we employ the simplest of techniques appropriate to nonsym-
metric systems, a Crout-Doolittle ILU(0), where the zero indicates that no fill-in outside
the original sparsity pattern of A is allowed (see [25]). Thus, by its definition, the remain-
der matrix R = LU — A has (in the nine-point case) four nonzero diagonals, one on either
side of the tridiagonal cluster about the main diagonal and one just inside each of the
exterior tridiagonal clusters.

In a procedural language aided by compass-point subscript notation we have the
following algorithm for a 9-point stencil in two dimensions:

i t H i~n—1 1, t-n H t—n+1 N i—1
Ug — ag — lswugp™ — lsuly — lsgunw — lyug
i ‘ i i i i—ndl
up — ag— lsugp — lspuy™

i
UNWw

— ayw — lyuy!
u}v — a}'v—lfvu};é‘
uhp — dyg (6)
B el — e —
lis?_l — [aiS{Et—l _ I.I's-i-n—luiETl][u:')]—-l
167 lag™ — g ]
A Al |

Here a; is the diagonal term in the i*® row, ai; is the term in the first superdiagonal of the
i*h row, which corresponds in the natural ordering to the point due east of the diagonal
entry, etc. There are n interior gridpoints in the most rapidly ordered direction. The
entries ub and lz) of the sparse upper and lower triangular factors overwrite partial rows
and columns, respectively, of the original matrix as the factorization proceeds down the
main diagonal. (I{ need not be computed because it is simply the identity.) Higher order
factorizations, denoted ILU(k), k > 0, are possible in which more nonzero diagonals are
permitted to accommodate the fill-in in U and L, relative to A. For k = 5 — 2 with the
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9-point stencil (or k = n — 1 with the 5-point stencil), the band fills in completely and the
factorization becomes exact.

2.4. Modified Schur Complement Interface Preconditioning

For the interface equations, we use the modified Schur complement (MSC) technique.
This was proposed in [7] and implemented and compared with several other precondition-
ers on symmetric problems in [14]. Like the ILU technique, MSC allows for a variable
number of nonzero diagonals. In the two-dimensional two-subdomain example (1), we
define MSC(k) by using for the matrix C in (2) the following banded matrix:

ék = /133 - Ek ’
where E} is banded of semi-bandwidth k& which satisfies as accurately as possible

Epv = Z(/iaifiﬁlfiia,)vl (M

for a set of vectors v, 1 =1,2,... ,L.
For a nonsymmetric scalar system of equations, we set L = 2k + 1 and use for the
respective Ey the vectors:

Eg:vy =[1,1,1,1,1,1,.. T
Ei:v =[1,0,0,1,0,0,..]7
v =1[0,1,0,0,1,0,..]7
vs = [0,0,1,0,0,1,.. )T
Ey:m =[1,0,0,0,0,1,..]T
v = [0,1,0,0,0,0,.. ]7 ®)
vs = [0,0,1,0,0,0,..]7
v = [0,0,0,1,0,0,.. 17
vs = [0,0,0,0,1,0,.. )T

For a symmetric scalar system of equations, we set L = k + 1 and use instead:
Eo:v =[1,1,1,1,1,1,.. ]T
Ey:vy =[1,0,1,0,1,0,.. }7
v =[0,1,0,1,0,1,.. 7
E;:v =[1,0,0,1,0,0,.. 7 ®
v =[0,1,0,0,1,0,.. 7
v3 = [0,0,1,0,0,1,.. ]7

In the nonsymmetric case, there are (2k + 1)n — k(k + 1) distinct elements in ‘Ek of
dimension n, and (2k + 1)n scalar equations in (7). Therefore, only the k = 0 (s.lmple
row-sum preserving) case is well defined. (2k + 1)n — k(k + 1) of the equations in (7)
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explicitly assign individual elements of Ej. The remaining k(k + 1) equations, for k£ > 0,
involve none of the elements of Ej at all, but require a certain sum of elements from
the matrix on the right-hand side of (7), each of which is at least k + 1 diagonals away
from the main diagonal, to vanish. This overdetermination is inconsistent, but not fatally
so for a preconditioner, particularly if the Schur complement matrix being approximated
has terms which decay rapidly away from the diagonal. It costs 2k + 1 solves on each
subdomain to compute the right-hand side of (7).

In the symmetric case, there are (k + 1)n — k(k + 1)/2 distinct elements in Ep of
dimension n and (k + 1)» scalar equations in (7). In this case, however, the overdetermi-
nation is consistent. The diagonal elements of E}, can be read off from explicit assignments
and the remaining elements can be obtained in O(kn) operations. It costs k + 1 solves on
each subdomain to compute the right-hand side of (7).

In either case, setting k = n — 1 determines the Schur complement exactly (assuming
that the tilde-quantities in (7) are identical to their non-tilde counterparts), in which case
the overall algorithm converges in one iteration. This is, in effect, the approach used
by Przemieniecki in [19], and requires as many subdomain solves as there are degrees of
freedom on the interface. As a means of obtaining a specified finite level of precision in
the final result (commensurate, for example, with the discretization error), taking k to be
O(n) is inefficient, and particularly so if the subdomain solves are themselves not exact so
that more than one iteration is needed. Between the extremes of many cheap iterations
and few expensive iterations determined by the index k in each of ILU(k) and MSC(k) will
be an optimal trade-off. In subsequent sections the simple gridpoint-scale zero patterns
in these vy will need extensions to both coarser (§2.4.1) and finer (§2.5) scales.

2.4.1. Extension of MSC to Multiple Interfaces

The descriptions of MSC(k) above are for a simple interface between two subdomains,
as depicted in Fig. 1(a). Generalizations to the compound interface cases shown in Fig.
1(b) (three edges) and Fig. 1(c) (four edges, with vertex) and finer decompositions can
take a variety of forms. Their development is aided by a heuristic rather than formal
approach to approximating the appropriate compound-interface generalization of the Schur
complement (3), recognizing it to be, essentially, a discrete Green’s function.

We note that the element Cj; represents the influence of the data at interfacial node
J (source point) on the discrete residual at interfacial node i (field point). Varying each
interface point separately in turn would enable filling in C' column-by-column. In diffu-
sive problems, we would expect this internodal influence to decay rapidly with physical
separation. In mixed convective-diffusive problems, we would expect dependencies of even
shorter range on the values at “downwind” nodes, and of somewhat longer range on the
values at “upwind” nodes. Depending upon the magnitude of these influences we might
want, in the interest of economy and efficient parallelism, to set large off-diagonal blocks
of C corresponding to sufficiently distantly coupled degrees of freedom to zero, and to de-
termine the remaining (assumed non-neglible) blocks by varying large numbers of source
points simultaneously. This is analogous to the Curtis-Powell-Reid [10] technique for ef-
ficient sparse Jacobian estimation using vector function evaluations, except that we are
prepared, in general, to accept much looser restrictions on which columns may be treated
as corresponding to unrelated degrees of freedom and thus be evaluated simultaneously.

In the extreme limit of k = 0, we attempt to probe all columns of C simultaneously.
As k grows, the resources for resolving more of the structure of C can be invested in
different ways. This is done by the selection of the v in (7). The v listed above are
appropriate in a purely diffusive problem with a spatially uniform diffusion coefficient and
isolated interfaces (assuming that all the nodes on a given interface are ordered consec-
utively). By spreading out the active source points as evenly as possible, these v put a



DOMAIN DECOMPOSITION FOR NONSYMMETRIC SYSTEMS 329

premium on resolving the influence of nearest neighbors along an interface. In a multiple-
interface problem in which the subdomains possess high aspect ratio, it may be a better
investment to isolate physically nearby interfacial degrees of freedom belonging to different
edges than to isolate degrees of freedom distantly separated on the same edge. For the
v above, taking k greater than the narrowest discrete dimension of the high-aspect-ratio
subdomains would give rapidly diminishing returns, with a similar problem occuring for
boxwise decompositions near the vertices. In such cases, we recommend assigning parity
to the decomposition-defining cuts (in each dimension) and evaluating MSC blocks cor-
responding to odd and even parity in separate stages. In each stage, only one set of cuts
bordering each subdomain is active; the elements of the v corresponding to all others
are identically zero. For stripwise decompositions, this requires twice as many subdomain
solves to compute C. For boxwise decompositions, four times the original preprocessing
work is required.

2.4.2. Extension of MSC to Higher Levels of Complementation
The sparsity structure of the discrete operator A for the simplest decomposition
admitting a two-level complementation is furnished in Fig. 1(c). The ambient matrix

Ay 0 0 0 Ay
A= 0 0 A33 0 Agzs ) (10)
0 0 0 Ay Asgs
Asy Asz Asz Asa Ass
where Ags renders the coupling between all the interfacial points (the union of the edge
and vertex unknowns), is a bordered block diagonal matrix.

Eliminating A;; through A4y leaves a capacitance system which is not sparse in gen-
eral, a situation which is fundamentally very different from that encountered in the ambient
matrix. This poses problems in the parallel context, since it is desirable to construct a
block triangular preconditioner for it in which each edge is handled independently.

Fortunately, cases are known in which bordered block diagonal approximations fo
this first Schur complement make acceptable preconditioners. The (symmetric) purely
diffusive case is covered in [5], and the convectively-dominated case is discussed below in
the absence of recirculation. Especially in such cases, though also in others, it may be
worthwhile to recursively employ MSC techniques to approximate the Schur complement
of the edge degrees of freedom in the matrix which approximates the first complement, and
use the result to precondition the vertex equation system (which consists of a single de.gfee
of freedom in the example of Fig. 1(c)). It should be emphasized that the practic:?.i utility
of higher-level MSC techniques has yet to be demonstrated. However, the fruitfulness
of solving a globally coupled vertex system in the purely diffusive context '[5], warrants
attempted generalizations to other operators. Multigrid technology pm'vxd.es another,
alternative path. The main advantage of the higher-level MSC approach will lfkely be the
same as at the first level: it provides a path to constructing a preconditioner which becom'es
arbitrarily accurate as the bandwidth & is increased at all levels, independent of.specm.l
operator features. Against this advantage must be traded off the expense of appl:omma.tely
solving exponentially more subdomain problems at each level of complementation.

2.5. Block-structured GMR/ILU/MSC domain decomposition .
In most fluid dynamical applications there are several fields defined at each ?oint in
the domain, including the momenta and pressure (alternatively 'the streamfunction and
vorticity), and possibly species concentrations, temperature, density, etc. ‘?he several un-
knowns at a single gridpoint couple strongly with one another, not only directly through
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source terms, but also indirectly through material-dependent transport properties in mul-
ticomponent mixtures. In the ordering of these fields into a discrete vector of unknowns,
it is natural to preserve the locality of this coupling by grouping the r unknowns defined
at each point together. This brings about a block-structured linearized operator in which
the 7 X r blocks are dense, but distributed sparsely, typically in a 5- or 9-diagonal structure
for two-dimensional problems or a 7- or 27-diagonal structure in three dimensions.

The ILU and MSC techniques can be generalized to accommodate multicomponent
problems. In §2.3 the a‘), u’b and lé) must be reinterpreted as r x r blocks and the ones

in (8) replaced with each of the 7 unit vectors in sequence, e.g.,

Eo: v, = [er,e1,e1,€1,e,61,.. 7
V12 = [627 €2,€32,€2,€2,€2,.. ']T
(11)
V1, = [er, € ery € 6000, .. )T
To resolve the intra-point coupling in the MSC method requires (2k + 1)r subdomain
solves in the nonsymmetric case. Block-point preconditioning has been found superior
in the single-domain context to the componentwise ILU schemes with the same storage
requirements on the convective-diffusive-reactive operators considered in §4. The virtues
of block-line preconditioning in the r = 1 case have also been explored in [8] and [23].

3. Parallel Implementation

There are potentially three penalties to be paid in distributing the GMR/ILU/MSC
solution algorithm over an array of independent processors: synchronization overhead,
communication overhead, and degradation of convergence. These penalties are measured
indirectly through the speedup and efficiency figures-of-merit of a parallel implementation.
The speedup is the ratio of the uniprocessor execution time of a given algorithm to that
of the multiprocessor execution of the same algorithm. The efficiency is usually defined as
the speedup divided by the number of processors. For many algorithms, these definitions
are unnatural in the sense that one would never use the same algorithm in both unipro-
cessor and multiprocessor environments. (Usually better uniprocessor algorithms exist, so
the parallel efficiency as defined above is inflated relative to its advantage.) We adopt
measures in which the execution times are obtained from the most natural algorithm for
each environment, namely, given p processors we employ exactly p subdomains.

The synchronization penalty arises if the processors have dependencies which force
them them to wait for data which are not yet available. Even if the processors are pro-
grammed homogeneously this can happen at convergence checkpoints, for instance, if they
have unequal amounts of work to do, or at points where reduction to a scalar of data dis-
tributed over all processors is required. The amount of work to be done in a processor is a
function of the number of gridpoints in the subdomain assigned to it and the stencil of the
discrete equations to be enforced at those gridpoints. The relative number of boundary
gridpoints (which require somewhat less computational work than interior ones) decreases
as the mesh is refined, and though their distribution between the processors becomes more
uneven, only a small number of processors are thus periodically idled. If the gridpoints are
allocated to the processors as evenly as possible within shape and contiguity constraints
(which is not accomplished in our preliminary examples to follow) synchronization delays
can be made relatively unimportant.

The communication penalty is the time spent gaining access to shared data even after
it becomes available. The significance of this penalty depends on the amount of data to
be shared, on its routing between memory and processors, on the amount of arithmetic
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which the algorithm must perform between fetches and writes, and on the communication-
to-computation speed ratios of the hardware in question.

In an effort to increase the number and length of the independent threads which
comprise a parallel computation, global coupling may be reduced in ways that degrade the
convergence rate of the algorithm. In the context of domain decomposition, this penalty
may arise as the ratio of interface to interior degrees of freedom is increased in refinements
of the decomposition, since the approximations required to form diagonal preconditioner
blocks for the former are often more severe.

In view of the above considerations as well as programming convenience, our parallel
implementation consists of decomposing the logical tensor product computational domain
into logically congruent strips or boxes of contiguous unknowns in two dimensions, (with
the obvious generalizations in three dimensions) mapping these subdomains onto a network
of processors, and programming the processors homogeneously. In this paper, our principal
interest is in convergence rates, so we report on a bus-connected shared memory machine
only: an Encore Multimax 320. The dependent variable arrays are placed in the shared
memory and each processor is confined to roam over subranges of the array indices. The
timings in the tables to follow include the parallel generation of the ILU and MSC blocks
and the entire GMR iteration. To reduce the number of synchronization points inside each
GMR iteration, a small QR factorization from which the coeflicients of the Krylov basis
vectors in the solution vector are derived is carried out redundantly in each processor.
An analogous consideration led to the redundant solution of the equations for the vertex
degrees of freedom in the parallel domain decomposition method described in [13]. Certain
pre- and post-processing tasks, like the coefficient generation of the original operator and
some spectral analysis, are done in serial and not included in the timings below.

4. Results for Model Problems
This section contains numerical results that display a few of the possibilities of MSC
preconditioning, and, more generally, of the hybrid GMR/ILU/MSC algorithm. In the
solution of linear systems arising from finite-differenced systems of conservation equations
of the form
du,

o+ 8@) - V= V- Dy(@)Vur = fi(i)

forr = 1,..., R, combinations of the first, third, and fourth terms can be handled well with
known methods [7], when R = 1. Comparisons on purely diffusive problems of MSC(k)
for k = 1,2,3 with the optimal preconditioners may be found in [14]. Therefore, the cases
&l > 0 and R > 1 are of particular interest. In the preliminary results contained herein,
only stripwise decompositions (one level of complementation) are considered, and £ = 0

in both MSC(k) and ILU(%).

4.1. Scalar Convection-Diffusion Problems .
In the limit of unbounded mesh refinement and bounded convection velocity ¢, the
nonsymmetric first term in the discrete operator for

eu, — DV =f (12)

will be dominated by the diffusive term, and the optimal preconditioners such as the
square root of the one-dimensional Laplacian (denoted K'/2 in [14]) will be asymptotically
superior to any MSC preconditioner. However, much practical CFD computation occurs
in the opposite singularly perturbed limit. Especially in the early, coarse-grid stages czf an
adaptive grid calculation it is important to have methods which support the artificially
diffusive upwind-differencing of the convective term.
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Figure 2: Element plots of the preconditioned capacitance
system C~1C for the convective-diffusive operator (12) on the
unit square with Dirichlet boundary conditions at Re, = 0
(top), Re, = 2 (middle), and Re. = 20 (bottom), using the
modified Schur complement (left) and root-one-dimensional
Laplacian (right). The horizontal axes are the row and col-

umn indices. Note that the vertical scale is different in each
row of plots.
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Fig. 2 consists of a set of plots of the matrix elements of the preconditioned interfacial
system for the decomposition of Fig. 1(a), for the convective-diffusive operator of (12). To
eliminate any interaction with ILU, the subdomain solves are carried out exactly in con-
structing the capacitance matrix. Two preconditioners, Cp = K12 and Cpy = MSC(0),
are considered at three cell Reynolds numbers, Re. = |c|h/D = 0, 2, and 20, respectively.
For a good preconditioner, C~1C should be as close as possible to the identity. It is clear
that the “straw man” Cp fails as Re, departs from 0, while Cu improves. Another means
of visualizing this improvement is the plot of the capacitance spectra in Fig. 3.The clus-
tering of the eigenvalues near unity as Re. becomes large is due to the easily physically
visualizable fact that at least one of the factors in each of the triple products in equation

' (3) becomes small relative to the diagonal term A3 in this limit. High Re, parabolizes the
flow, making the matrices A3 and Ay3, which transmit information upwind when ¢ > 0,
negligible. The orthogonality of the flow direction and the interface is not essential to this
argument. For high enough Re, at least one in each pair of (A13, A3;) and (Ags, A3g) is
negligible compared to As; at any flow orientation, including alignment with the interface.
However, it is essential that the interface not cut a zone of fluid recirculation.

| |
! ! Re, = 20 HHHHHHHHHHE
HH-HHHHHHH- Re, = 2
HH-HHHHH Re, = O
1 | | ]
g 5 10 15 20 25

UNPRECONDI TIONED CAPACITANCE SPECTRA

! Re, = 20 ‘l ! !
Re, = 2 AHHHIE-
l Re, = 0 4{++4—+H-+ ‘+ + |
0.0 0.5 1.0 1.5 2.0 2.5

MSC (0} -PRECONDI TIONED CAPACITANCE SPECTRA

Figure 3: Spectra of the exact capacitance matrix for the
convective-diffusive operator (above) and of the MSC(0)-pre-
conditioned capacitance system (below), for three different
cell Reynolds numbers.

The performance of MSC(0) in conjunction with approximate subdomain solves, is
given in Table 1 for two different convective directions. (12) is the “vertical” convection
case; for the “horizontal” we replace the first term with cu,. Neumann conditions are
used at the outflow boundary in either case and Dirichlet elsewhere on the perimeiier
of a unit square. All boundary degrees of freedom are incorporated into the matrix;
none are eliminated a priori. Speedups of 5 to 10 are obtained on ﬂ}e largest problems
using 16 processors. Note that in one convective direction the %tera,tmn count degrades
at high aspect ratio, while in the other it actually improves slightly. As suggested by
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Vertical Convection Horizontal Convection

P n I T € I T e
1 17 8 4.8 1.00 10 5.9 1.00
2 17 9 3.3 73 11 3.9 .76
4 17 11 2.4 .50 11 2.6 b7
1 33 11 23.9 1.00 14 30.5 1.00
2 33 12 15.3 78 15 19.0 .80
4 33 14 10.0 .60 15 10.7 .71
8 33 16 7.0 43 15 6.5 .59
1 65 15 127. 1.00 21 186. 1.00
2 65 16 76.7 .83 22 109. .85
4 65 17 43.1 74 22 57.4 .81
8 65 20 28.7 .55 22 32.7 71
16 65 26 24.7 32 21 17.8 .65

Table 1: Iteration count I, CPU time T, and efficiency e
for the convective-diffusive problem (12) at Re, = 2.0 with
horizontal strips and either vertical convection or horizon-
tal convection, as a function of number of processors p and
spatial resolution n.

the different iteration counts in the undecomposed case p = 1, this anisotropy may be
due as much to the difference in angle between the convection direction and that of the
most rapid ordering of the unknowns in the ILU subdomain blocks (always horizontal)
as to any interface orientation effect. Different flow orientations, interface orientations,
and ILU orderings, leave a multitude of primitive combinations to be investigated. Note
that neither combination considered here is superior to the other at all granularities of the
decomposition. The relatively greater efficiency of the aligned case at high p is due to its
poorer absolute p = 1 performance (compare the CPU times of the n = 65 data).

4.2. Vector Source-Diffusion Problems

As an example of a multicomponent problem with coupling through source terms, we

consider a compact discretization of a sixth-order operator by means of three second-order
operators. To be specific, we test

—Vzul = f
—V2U2 =1u, (13)
—V2u3 = Uz

on a unit square with Dirichlet boundary conditions for all components. This introduces
bidiagonal 3 X 3 diagonal blocks which the hybrid algorithm regards as fully dense. As
with scalar Poisson problems, preconditioning techniques superior to MSC can be devised
for such systems by exploiting their special structure.

Results are shown in Table 2 for the same problem decomposed into either horizontal
or vertical strips. Speedups close to 9 are achieved on 16 processors. Differences in
performance between each pair of cases in the same row of the table can be induced only
by the ordering of the ILU preconditioning, which is fastest along the interface direction
for horizontal strips, and fastest in the normal direction for vertical strips. Non-monotonic
iteration count behavior characterizes both orientations; in fact, the decrease in iterations
in going from 2 to 4 subdomains in the n = 65 case contributes to superlinear relative
speedup (the execution time is better than halved).
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Horizontal Strips Vertical Strips
P n I T e I T e
1 17 11 18.4 1.00 11 18.4 1.00
2 17 12 12.9 71 12 13.0 .70
4 17 13 8.1 57 12 7.6 .60
1 33 18 109. 1.00 18 109. 1.00
2 33 22 78.2 .70 22 78.8 .69
4 33 20 38.9 .70 20 39.5 .69
8 33 23 25.1 .54 21 24.0 57
1 65 33 818. 1.00 33 818. 1.00
2 65 40 564. 73 40 567. 72
4 65 37 267. Ni 37 271. .75
8 65 37 145. 71 36 145. 71
16 65 40 96.1 .53 36 88.5 .58

Table 2: Iteration count I, CPU time T, and efficiency e
for the coupled Poisson problem (13) with horizontal strips
or vertical strips, as a function of number of processors p and
spatial resolution n.

4.3. Vector Reaction-Convection-Diffusion Problems

We conclude with examples of Jacobian matrices from a real problem describing a
two-dimensional axisymmetric methane-air laminar diffusion flame under the flamesheet
approximation for the chemical kinetics. The flamesheet exploits a large Damkohler num-
ber (ratio of diffusion to reaction time scales) by replacing a reaction zone of finite thick-
ness with an interface (of unknown location) across which gradients of the temperature
and species are discontinuous. The interface subdivides the physical domain £ into an
oxidizer-free zone Qy and a fuel-free zone o, in either of which the full composition
and thermodynamic state of the gas mixture can be recovered from a single conserved
scalar. The flamesheet is an economical means of computing initial iterates for detailed
kinetics calculations [15], since it requires just three components per gridpoint (a variable
density Stokes streamfunction 3, the vorticity w, and the conserved scalar 5) instead of
the dozens that would be required with full chemistry. The continuous system is of the
following form:
Streamfunction and Vorticity Definitions:

2 _ _ v v
PrUn= g P g YT 8 T or

Streamfunction Equation:

9 (194 _a_(_l_.a_‘ﬁ) =0
5;(;62)4‘67' rp Or tw
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Conserved Scalar Equation:
o (. .9\ 8 (. 9\ @ as\ @ ( as)
sy _ L (Y _ L Y_Z DY =0
EP (S 6r) ar (S 8z) ar \""Par ) ~ 5 \"PP%;

State Relations:

. S), Feq
@) = {Zﬁﬁsg Fe Qg}

" Dp(S), €0
D(’”)z{DcFagsg, ;‘wg}

In practice (see e.g., [22, 16]), these equations are solved by a modified Newton
method and a pseudo-transient continuation scheme (in which the time-step is adaptively
chosen, becoming infinite asymptotically to recover the quadratic convergence of Newton’s
method) on an adaptively refined (and severely nonuniform) grid.

p n I T e

1 17 9 18.3 1.00
2 17 13 16.1 57
4 17 18 12.5 .37
1 33 14 100. 1.00
2 33 17 73.3 .68
4 33 20 47.3 .53
8 33 22 29.1 43
1 65 18 507. 1.00
2 65 18 300. .85
4 65 18 158. .80
8 65 18 87.0 .73

16 65 17 52.2 61

Table 3: Iteration count I, CPU time T, and efficiency e
for Jacobians from the flamesheet problem with horizontal

strips at various stages of spatial resolution =, as a function
of number of processors p.

Table 3 reports results on Jacobians drawn from different stages of a calculation
in which an initially adaptively selected grid was constrained to be refined by factors
of two to avoid load-balancing considerations. There is no relation between problem
difficulty at the three resolutions chosen. In fact, the first two are near the domain of
convergence of Newton’s method on their respective grids (near infinite time step) while
the last has a large diagonal contribution from the pseudo-transient term. The ten-fold
speedups on large problems would lead to worthwhile improvements in turnaround times
on detailed kinetics problems, in which several supercomputer CPU hours can be spent on
linear algebra alone. Though linear algebra does not necessarily account for the dominant
share of the total CPU time in such models, it is the only part whose parallelization
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is non-trivial. Furthermore, linear solvers of simple relaxation type do contribute to the
leading order in the communication overhead in parallelization implementations developed
to date [16]. Domain-decomposed solvers are capable of doing more arithmetic between
neighbor-neighbor interchanges and global convergence checks, at least up to moderate
decomposition granularities.

5. Conclusions and Directions for Further Research

Included in the GMR/ILU/MSC framework is a family of schemes governed by band-
width parameters which lie between the extremes of decoupled block-diagonal precondi-
tioned GMR and domain-decomposed direct elimination. Though surpassed in efficiency
by known methods in several contexts, they provide a means for the parallel solution of
rather general linear systems. Improvements should be sought, however, in several areas:

1. Tuning of order of approzimation between levels. It is clear that each level in the
MSC hierarchy is limited in its attainable preconditioning ability by the levels be-
neath it from which the right-hand sides of (7) are computed. There would clearly be
vanishing returns in cranking up k indefinitely in MSC while leaving it fixed in ILU.
Further work is needed to establish theoretically on model problems and experimen-
tally on representative real problems how the different tuning parameters should be
coordinated.

2. Locally operator-adaptive approzimation. In problems with different physical proper-
ties on different subdomains the requirements on the preconditioning blocks at the
same level in the hierarchy may vary from subdomain to subdomain. Depending on
a locally-averaged Reynolds number, for instance, a fast Poisson solver might be a
chosen over ILU on some subdomain. Alternatively, the k in ILU(k) might be chosen
differently within different subdomains. A mature technique should exploit such ver-
satility, perhaps even adaptively, taking into consideration a load-imbalance penalty
function.

3. Other approzimate Schur complements. MSC is only one means of obtaining a com-
pact approximation of the Schur complement. In problems with simplifying structure,
other compact approximations may exist. For instance, noting the near translation
independence along an interface in a Poisson problem, Golub and Mayers proposed
a Toeplitz approximation to C in [12], requiring just » scalars to represent a matrix
of n? elements. Generalizing along these lines, periodically sampled individual rows
of C;; might be assumed to hold over a surrounding row range. Dorr [11} has also
recently proposed an extremely low-dimensional parameterization of the interdomain
communication by means of Lagrange multipliers, in which it is affordable to explic-
itly construct and directly solve a generalized capacitance matrix. Multicomponent
problems would require a “blocking” of these ideas.

4. Efficient methods for nonunidirectional convection. The restriction of the MSC to
block diagonal form in the interest of clean parallelism may be too steep a price
to pay in convergence rate for problems in which placing cuts through convective
recirculation zones cannot be avoided. One is therefore left with the necessity of
introducing global coupling at a lower level. Implementation issues related to the
evaluation of and solution of the MSC systems with off-diagonal blocks have yet to
be addressed.

It would also be of interest, considering the cost and complexity of constructing hierar-
chical MSC-based preconditioners, to ask how well three other classes of preconditioners do
on the same problems: (1) non-hierarchical coupled preconditioners, (2) non-hierarchical
decoupled preconditioners with overlap, and (3) non-hierarchical decoupled precondition-
ers without overlap. An example of the first would be GMR/ILU in which the incomplete
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factorization is carried out over the entire domain, rather than within subdomains. Since
no interfacial blocks requiring approximation are introduced, this technique, appropri-
ately blocked at the gridpoint level, will have a better iteration count than MSC-based
techniques on most problems; however, its parallel efficiency can be so low in some prob-
lems that it is inferior even to unpreconditioned GMR [3] as a parallel algorithm. An
example of the second Schwarz-type method would be GMR/ILU in which the incomplete
factorization is carried out independently over overlapping subdomains, followed by some
arbitration scheme for the common degrees of freedom. The disadvantages of such meth-
ods are the redundant effort expended on the common unknowns and the trade-off (in
the parallel context) between sequential bottlenecks and the use of “lagged” data in the
overlap regions. An example of the third method would be the use of

_ [ Ann Az _(Aun O
A_(An Azz)’ B_( 0 Azz) (14)
where the A;; are ILU approximations, instead of (1) and (2). In this method, the creation
of independent threads of computation in the preconditioner comes at the expense of
severing the interdomain coupling altogether. It therefore parallelizes with virtually no
overhead, but can suffer in iteration count as the granularity of the decomposition is refined
and more and more of the coupling is discarded, the limit being block-point diagonal
preconditioning. Some experiments with this technique have been reported in [1} and [2],
and we have also tested it on all of the problems reported above, since it involves only
minor modifications to the MSC-based code. For a given n and p, it is nearly always
inferior in iteration count, but not always so in CPU time, since the cost of constructing
and applying the preconditioning is less. Guidelines on when the interface coupling has
sufficient incremental value to warrant (1)-(2) over (14) are lacking except in obvious
special cases,

There is no consideration of complex domain geometry in the present work although
ease of generalization to this case is an equally relevant motivation. The case of prob-
lems requiring too much memory to be managed by just one processor is another one in

which the proposed technique is attractive, despite possible inefficiency relative to a global
technique.

References.

[1] C. Ashcraft and R. Grimes, On Vectorizing Incomplete Factorizations and SSOR
Preconditioners, Technical Report ETA-TR-41, Boeing Computer Services,
December 1986.

[2] C. Ashcraft, Domain Decoupled Incomplete Factorizations, Technical Report ETA-
TR-49, Boeing Computer Services, April 1987.

[3] D. J. Baxter, personal communication, 1987.

[4] P. E. Bjorstad and O. B. Widlund, Iterative Methods for the Solution of Elliptic
Problems on Regions Partitioned into Substructures, Technical Report 136,
Courant Institute of Mathematical Sciences, NYU, September 1984.

[5] J. H. Bramble, J. E. Pasciak and A. H. Schatz, The Construction of Preconditioners
for Elliptic Problems by Substructuring, I, Math. Comp., 47 (1986), pp.
103-134.

[6] T. F. Chan, personal communication, 1987.

[7} T. F. Chan and D. Resasco, A Survey of Preconditioners for Domain Decomposition,
Technical Report 414, Computer Science Dept., Yale University, September
1985. In Proceedings of the IV Coloquio de Matemiticas del CINVESTAV,

Workshop in Numerical Analysis and its applications, Taxco, Mexico, Aug.
18-24, 1985.



DOMAIN DECOMPOSITION FOR NONSYMMETRIC SYSTEMS 339

[8] P. Concus, G. H. Golub and G. Meurant, Block Preconditioning for the Congjugate
Gradient Method, Technical Report 14856, Lawrence Berkeley Laboratory,
July 1975.
[9] R. W. Cottle, Manifestations of the Schur Complement, Lin. Alg. Appl., 8 (1974), pp.

189-211.

[10] A. R. Curtis, M. J. Powell and J. K. Reid, On the Estimation of Sparse Jacobian
Matrices, J. Inst. Math. Appl., 13(1974), pp. 117-119.

[11] M. R. Dorr, Domain Decomposition via Lagrange Multipliers, Second International
Symposium on Domain Decomposition Methods, 1988,

[12] G. H. Golub and D. Mayers, The Use of Pre-Conditioning over Irregular Regions,
1983. Lecture at Sixth Int. Conf. on Computing Methods in Applied
Sciences and Engineering, Versailles, Dec. 1983.

[13] W. D. Gropp and D. E. Keyes, Complezity of Parallel Implementation of Domain
Decomposition Techniques for Elliptic Partial Differential Fquations, SIAM
J. Sci. Stat. Comp., 9(1988), pp. 312-326.

[14] D. E. Keyes and W. D. Gropp, A Comparison of Domain Decomposition Techniques
for Elliptic Partial Differential Equations and their Parallel Implementation,
SIAM J. Sci. Stat. Comp., 8 (1987), pp. s166-202.

[15] D. E. Keyes and M. D. Smooke, Flame Sheet Starting Estimates for Counterflow
Diffusion Flame Problems, J. Comp. Phys., 73 (1987), pp. 267—288.

{16] ————— A Parallelized Elliptic Solver for Reacting Flows, A. K. Noor ed., Parallel
Computations and Their Impact on Mechanics, ASME, 1987, pp. 375-402.

[17] T. A. Manteuffel, The Tchebychev Iteration for Nonsymmetric Linear Systems, Numer.
Math., 28 (1977), pp. 307-327.

{18] J. A. Meierink and H. A. Van der Vorst, Guidelines for the Usage of Incomplete
Decompositions in Solving Sets of Linear Equations as they Occur in Practical
Problems, J. Comp. Phys., 44 (1981), pp. 134-155.

[19] J. S. Przemieniecki, Matriz Structural Analysis of Substructures, ATAA J., 1(1963),
pp. 138-147.

[20] Y. Saad and M. Schultz, Parallel Implementation of Preconditioned Conjugate
Gradient Methods, Technical Report YALEU/DCS/RR-425, Computer
Science Dept., Yale University, October 1985.

[21] ————, GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsym-
metric Linear Systems, SIAM J. Sci. Stat. Comp., 7(1986), pp. 856-869.

[22] M. D. Smooke, Solution of Burner-Stabilized Pre-Mized Laminar Flames by Boundary
Value Methods, J. Comp. Phys., 48 (1982), pp. 72-105.

[23] R. R. Underwood, An Approzimate Factorization Procedure Based on the Block
Cholesky Decomposition and its Use with the Conjugate Gradient Method,
Technical Report NEDO-11386, General Electric Co., Nuclear Energy Div.,

1976.
[24] H. F. Walker, Implementation of the GMRES Method Using Householder Transfor-

mations, SIAM J. Sci. Stat. Comp., 9(1988), pp. 152-163.

[25] J. W. Waits, III, A Conjugate Gradient-Truncated Direct Method for the Iterative
Solution of the Reservoir Simulation Pressure Equation, Soc. Petrol. Engin.
3., 21(1981), pp. 345-353.

[26] O. B. Widlund, Iterative Substructuring Methods: Algorithms and Theory for Elliptic
Problems in the Plane, R. Glowinski, G. II. Golub, G. A. Meurant and
1. Periaux ed., First International Symposium on Domain Decomposition
Methods for Partial Differential Equations, SIAM, 1988, pp. 113-128.



