CHAPTER 22

Domain Decomposition on Parallel Computers

Witliam D. Gropp* -
David E. Keyes'

Abstract. We consider the application of domain decomposition techniques for the solu-
tion of sparse linear systems on parallel computers. We counsider two representative types
of MIMD parallel computer; a message passing and a shared memory architecture. For
each we develop complexity estimates and compare these against actual computations.
Various tradeoffs in parallel computation costs are discussed. Our complexity estimates
are tested for a variety of methods, decompositions, and problem sizes. Results from both
an Intel iPSC Hypercube and an Encore Multimax are presented.

1. Introduction

Domain decomposition techniques appear to be a natural way to distribute the so-
lution of large sparse linear systems across many parallel processors. In this paper we
develop complexity estimates for several types of “real” parallel computer architectures,
and validate those estimates on representative machines, with particular emphasis on the
case of large numbers of processors and large problems. We also look at the tradeoffs
between various forms of preconditioning, categorized by the efficiency of their parallel
implementation.

Parallel computers may be divided into two broad classes: distributed memory and
shared memory. In a distributed memory parallel processor, each processor has its own
memory and no direct access to memory on any other processor. Such machines are
usually termed “message passing” computers since interprocessor communication is ac-
complished through the sending and receiving of messages. In a shared memory parallel
processor, each processor has direct, random access to the same memory space as every
other processor. Interprocessor communication is conducted directly in the shared mem-
ory. In practice, of course, most shared memory machines have local memory, called the
cache, and communication is through messages, called cache faults. However, each type of
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parallel processor is optimized for a different interprocessor communication pattern, and
we consider the effects of these optimizations on domain decomposition.

We consider only partitioned matrix methods applied to preconditioned conjugate
gradient techniques such as those reviewed in [5]. Briefly, the matrix is partitioned into
subdomains connected by small (lower dimension) interface regions. For a single domain
decomposed into two subdomains (1 and 2) connected by an interface (3), the partitioned

matrix would look like
Ain 0 Ass

A= 0 Ay Axnl,
Ay Al Ass
where A1 and Azz come from the interior of the subdomains, Aas from along the interface,
and A;3 and A, from the interactions bewteen the subdomains and the interfaces. We
are interested in various preconditioners for A, based on their efficacy and on their parallel
limitations.

The choice of preconditioner is critical in domain decomposition, as with any iterative
method. In the context of parallel computing, the main distinction is between precondi-
tioners which are purely local, those which involve neighbor communication, and those
which involve global communication. (We use the word “communication” here in a gen-
eral sense; in a shared memory machine, this refers to shared access to memory.) As
example preconditioners we consider a block diagonal matrix for the purely local case and
a preconditioner based on FFT solves along the interfaces for the neighbor communica-
tion case. As an example involving global communication, we consider the Bramble et
al preconditioner [1], which requires the solution of a linear system for the cross points.
This method involves only low bandwidth global communication (that is, the size of the
messages scales with the number of processors); we will not consider any method which
uses high bandwidth communication {on the order of the size of the problem).

We develop a complexity model for both types of parallel computer which is based
on two major contributions: floating point work and “shared memory access”. This latter
term measures the cost of communicating information between processors. In a distributed
memory system, this is represented by a communication time. In a shared memory system,
there are several contributions, including cache size and bandwidth, and the number of
simultaneous memory requests which may be served.

2. Comments on Parallelism Costs

In any parallel algorithm, there are a number of different costs to consider. The most
obvious of these are intrinsically serial computations. For example, the dot products in
the conjugate gradient method involves the reduction of values to a single sum; this takes
at least logp time. More subtle are costs from the implementation: both software and
hardware. An example software cost is the need o guarantee safe access to shared data;
this is often handled with barriers or more general critical regions. Example hardware
costs include bandwidth limits in shared resources such as memory buses and startup and
transfer speeds in communication links. Perhaps the most subtle cost lies in algorithmic
changes to “improve” parallelism; by choosing a poor algorithm with better parallelism
than another, less parallel algorithm, artificially good results can be found. An example
is computing the forces in the n-body problem; the naive algorithm is almost perfectly
parallel but substantially slower than the linear in n algorithm (which contains some
reductions and hence some intrinsically serial computations) [3].

We can identify these costs with the domain decomposition algorithms that we are
considering;:

¢ dot (inner) products. These involve a reduction, and hence at least logp time; in
addition, there may be some critical sections {(depending on the implementation).
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s Matrix-vector products. These involve shared data, and hence may introduce some
constraints on shared hardware resources.

e Preconditioner solves. These depend on the preconditioner chosen, and hence gives
us the most freedom in trading off greater parallelism against superior algorithmic
performance.

Note that the sharing of data is not random; most of the data sharing occurs between
neighbors.

2.1. Message passing and Shared memory models

Two methods for achieving parallelism in computer hardware for MIMD machines
include message passing and shared memory. In both of these, the software and hardware
costs discussed above show up in the cost to access shared data. Each of these methods is
optimized for a different domain, and these optimizations are reflected in the actual costs.
In the following, to simplify the notation will will express all times in terms of the time to
do a floating point operation. Further, we will drop constants (like 2) from our estimates.

In a message passing machine, each processor has some local memory and a set of
communication links to some (usually not all) other processors (called nodes). Each pro-
cessor only has access to its own local memory. Communication of shared data is handled
(usually by the programmer) by explicitly delivering data over the communication links.
This takes time s + rn for » words, where s is a start up time (latency) and r is the time
to transfer a single word. This is good for local or nearest neighbor communication, For
more global communication (such as a dot product), times depend on the interconnection
network. For a hypercube, the global time is (s + rn)logp; for a mesh, it is (s + r2),/P.

In a shared memory machine, each processor may directly access a shared global
memory. Communication (access to) shared data is handled by simply reading the data.
However, the actual implementation of this introduces a number of limits. For example,
if the memory is on a common bus, then there is a limit to the number of processors
that can simultaneously read from the shared memory. One way to model this cost is as
1 + p/ min(p, P) [4]. Here p is the number of processors and P is the maximum number
of processors that may use the resource at one time.

In addition, the access to the shared data must be controlled; this can add additional
costs in terms of barriers or critical sections. These can add additional terms which are
proportional to logp.

3. Complexity Estimates

We can estimate the computational complexity for these two models for several forms
of domain decomposition. We note that these are rather rough estimates, good (because
of their generality) for identifying trends.

3.1. Message Passing

In this case we can easily separate out the computation terms and the communication
terms. For each part of the algorithm, we will place a computation term above the related
commaunication term. In the formulas below, the constants in front of each term have been
dropped for clarity.

For strips, we have

A?a: multiply + dgt products + s%bdomain solves + interface solves
= + T+logp + %logZ + mnlogn +
s+ + {(s+nr)logp + s+ + s+
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and for boxes, we have

Aga: multiply -+ dgt products + subdomain solves + interface solves
n?

n n2 n n n
A + T tlgp  + Tlogs + pleg +
s+ris + (s+r)logp + s+rs + s+r

These costs are all per iteration. It is assumed that all neighbor-neighbor interactions can
occur simultaneously.

3.2. Shared Memory

In this case, a detailed formula depends on the specific design tradeoffs made in
the hardware. The formula here applies to bus-oriented shared memory machines; a
different formula would be needed for machines like the BBN Butterfly. These formulas
are dominated by bandwidth limitations (the min(p, P) terms) and barrier costs (the log p
terms).

For strips, we have

n? ( bp ) (n2 2. n dp
—la+ ——]+2{ — + 1o )+2 (——lo —) (c+ —,-—>+nlo n+31 .
» min(p, P1) p T8F P °p min(p, Py) & o8P

A similar formula holds for boxes. Here, a, b, ¢, d, Py, and P, are all constants that
depend on the particular hardware and implementation. P; give a limit on the number of
processors that can effectively share a hardware resource. The ratios a/b and c¢/d reflect
the ratio of local work to use of the shared resource (such as memory banks or memory
bus).

3.3. Implications
For domain decomposition, we can trade iteration count against work and parallel
overhead. We will consider three representative tradeoffs:

1. No communication. This amounts to diagonal preconditioning. Call the number of
iterations Idecoupled'

2. Local communication only. The “K1/2” preconditionings such as those in [1], where
we can expect the iteration count to be proportional to p for strips and ,/p for boxes.
Call the number of iterations [j,.,1-

The cost of the “K/2” preconditioning includes an extra subdomain solve to sym-
metrize the preconditioner and is roughly

n?
nlogn + ?logg + 2(s + rn)

for a strip decomposition and a message passing system. The preconditioning is
dominated by the extra solve for the “harmonic” component; the communication
costs are the same as for the matrix-vector product. Thus the local communication
preconditioning is effective if

2hgeq < Idecoupled'
3. Global communication. In the case of box-wise decompositions, cross points occur at

the intersections of the interfaces. The cross-points form a global linear system that
is discussed in [1]. The iteration count is roughly constant; call it Iglobal'
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In this case, the additional cost is that of a cross-point solve and the communication
of the entries in the cross-point problem and its solution. For the case of a message
passing system, we can do this in p? + (s + r)logp time if each processor solves the
cross-point system and in time P2 4 p(s+ r/p) time if a parallel algorithm is used
for the solve, assuming a straightforward approach based on gaussian elimination on
a ring. More sophisticated approaches for hypercubes which are p + (s 4 r)logp are
known {2].

Comparing this to the cost of the local computation of n?[plogn/./p + (s + n)logp,
the floating point work is negligible unless n = p (when the problem is essentially all
cross-points). Assuming then that we use the local method, then the additional cost
of the global communication makes the full cross-point method better whenever

Iglobal(2 —€) < fpcals

where e is the parallel efficiency, equal to 1 minus the ratio of communication time to
computation time.

For the shared memory case, if barriers and the dot product reduction are the domi-
nant parallelism costs, the result is similar.

4. Experiments
The standard test problem considered was

Viu=g

where g = 32(z(1 — z) + y(1 — y)) on the unit square. The first set of experiments
was conducted on an Encore Multimax 320 shared memory parallel computer with 18
processors; we used only 16, allowing the remaining 2 processors to handle various system
functions. The experiments on the Encore Multimax were done in double precision. The
results are shown in Tables 1-2,We note that the Encore is a time sharing machine, so
these times are accurate to only about 10%. The tables show the iteration count I, an
estimate of the condition number &, the time in seconds T, and the relative speedup s.
The relative speedup is defined as the ratio of the time from the previous column with the
time from the current column. The times do not include initial setup, including the cost
of the initial matrix vector multiply and preconditioner solve. While this slightly distorts
the total time, it does allow the time per iteration to be determined by dividing the time
by the iteration count.

The actual computations were performed with no other users on the machine; how-
ever, various system programs (mailers, network daemons) used some resources. In addi-
tion, the programmer can not force each process to run on a different processor.

The next set of experiments was run on a 64 node Intel Hypercube, with 4.5 Megabytes
of memory on each node. All runs were in single precision to allow a large problem to fit
in this memory space. The results are shown in Tables 3-6.

The programs in both of these cases were nearly the same. Only the code dealing
with shared data was changed to use either messages or shared memory (in particular, the
Encore implementation is not a message passing implementation using the shared memory
to simulate message; it is a “natural” shared memory code. The Intel code is a “natural”
message passing code.)

There are some differences between the results for the Encore and the Intel imple-
mentations. These differences seem to be due to the difference in floating point arithmetic
on the two machines. Double precision was required on the Encore to get the fast Poisson
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h~\p 1 2 4 8 16
16 I 1 3
K 1.00 1.26
T 0.2 0.22
s 0.91
32 I 1 2 5
K 1.00 1.09 3.29
T 0.97 0.80 0.78
s 1.21 1.03
64 I 1 2 4 8
K 1.00 1.09 3.29 13.0
T 4.95 4.13 3.33 2.63
s 1.2 1.24 1.27
128 I 1 2 4 8 16
K 1.00 1.09 3.29 13.0 51.9
T 24.3 20.0 16.9 14.2 12.1
s 1.22 1.18 1.19 1.17
256 I 1 2 4 8 16
K 1.00 1.09 3.29 13.0 51.9
T 108 105 84.6 71.9 63.7
s 1.03 1.24 1.18 1.13
512 1 1 2 4 8 16
K 1.00 1.09 3.29 13.0 51.9
T 513 481 420 353 327
s 1.07 1.15 1.19 1.08

Table 1: Results for strips on the Encore Multimax 320.

Table 2: Results for boxes on the Encore Multimax 320,

RT\p 1 4 16
64 I 1 6 7
k | 1.00 10.7 | 10.2
T | 495 6.17 | 1.55
s 0.76 | 3.98
128 T 1 6 7
k | 1.00 11.0 14.1
T | 243 | 312 7.7
s 0.78 | 4.05
256 1 1 6 8
k | 1.00 13.6 | 18.6
T | 108 143 43.4
s 0.76 | 3.29
512 1 1 7 8
k | 1.00 16.7 | 23.7
T | 513 864 205
s 059 | 4.21

using full vertex coupling.
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A \p 1 2 4 8 16 32
32 T 1 2 5
k | 1.00 1.09 3.29
T | 6.08 5.14 5.22
s 1.18 0.98
64 1T 1 2 4 8
k£ | 1.00 1.09 3.29 13.0
T | 299 25.9 21.2 17.3
s 1.15 1.22 1.23
128 1 1 2 4 8 18
k | 1.00 1.09 3.29 13.0 51.9
T | 142 125 105 85.9 78.9
s 1.13 1.19 1.22 1.09
256 1 1 2 4 8 18 41
k | 1.00 1.09 3.29 13.0 51.9 207.5
T | 652 588 508 425 390 361
s 1.11 1.16 1.20 1.09 1.08

Table 3: Results for strips on the Intel Hypercube.

h\p 1 4 16 64
32 I 1 5 7

1.00 7.88 7.01
6.08 6.93 3.29
0.88 2.11
1 6 7 6

1.00 10.7 10.2 7.16
29.9 40.4 10.9 4.5
0.74 3.71 2.42

[=23
b

6 7 7
1.00 11.04 14.1 10.5
142 195 48.4 12.6
0.73 4.03 3.84
256 1 6 8 8
1.00 13.57 18.6 14.5
652 925 262 57.7

st
N
o

@ MR e MR e NE ~Ne N
oy

0.70 3.53 4.54

Table 4: Results for boxes on the Intel Hypercube, using
full vertex coupling.

solver we used to work for h = 1/512. Single precision was required on the Intel to fit the
problems in memory.

5. Comments

While the overall results for strips may seem poor, they actually represent very good
speedup on a per iteration basis.

A number of the full vertex coupling (global) results show superlinear relative speedup.
This is a real effect, which derives from the superlinear growth in the cost of solving a
single domain as a function of the number of points in the domain. This speedup is of
course available to a single processor algorithm. In fact, the slight relative speedups seen
for the strip decompositions are due almost entirely to this effect alone, since the number
of iterations is proportional to the number of processors.
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A~ \p 1 4 16 64
6 11

1.00 12.1 25.3
6.08 8.15 4.34
0.75 1.88
1 6 12 17

1.00 15.9 32.2 94.4
29.9 40.2 17.4 8.44
0.74 2.31 2.06

)
[3S]
oy
—

64

128 6 13 19
1.00 20.1 40.5 119.7
142 195 88.9 30.1
0.73 2.19 2.95
256 1 7 13 33
1.00 24.8 49.6 794.8
652 1080 425 231

» MNa ~oe NaNe N ~Ne N
-

0.60 2.54 1.84

Table 5: Results for boxes on the Intel Hypercube, without
vertex coupling but with interfaces.

5.1. Comparison with the theory

In the case of the message passing results (Intel Hypercube), it is possible to fit the
theoretical complexity estimate to the measured times. Taking only the highest order
terms in the latency s and the computation suggests a fit for the strip decomposition of

n? n? n
a1— + ag—log — + a3 + aglogp.
p p p

We have ignored the r terms because s > rn for given n on the Intel hypercube. To avoid
any problems with small n/p (such as not being in the asymptotic regime for the FFT and
fast Poisson solvers), we eliminated the data with 1/(hp) = 8. A least squares fit to the
data yields a; = 0.00048, az = 0.0012, a3 = 0.027, and a4 = 0.030. The relative residual
is 0.038. With these values (or directly from the data), the efficiency per iteration can be
shown to be around 90% for the larger problems.

The data for the box decompositions is harder to fit (in part because our model
does not include some implementation effects on the Intel and because the communication
terms are small). However, the formula

0.00021™ + 0.0013 ™ Tog %= + 0.0023-"= + 0.0721o
. > + 0. ? og 7F . 7F . gP

is a reasonable fit with relative residual 0.092. The efficiency per ileration is lower, because
of the increase communication overhead, but is still above 70% for the larger problems.
This makes the strip decomposition superior for moderate numbers of processors (where
the iteration counts are similar).

This leads to the results in Tables 5 and 6, where a simpler communication strategy
has been traded against larger iteration counts. The results are summarized in Table 7,
which shows the optimal choice of preconditioners for our implementation on the Hyper-
cube. For significant parallelism, the globally coupled preconditioner prevails in spite of
its higher communication overhead.

For the shared memory machine, the complexity estimates are harder to demonstrate.
In part, this is due to the design of the shared memory machines; the number of processors
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R T\p 1 4 16 64
32 1 1 12 18
k | 1.00 29.1 49.2
T | 6.08 8.62 3.95
s 0.71 2.18
64 1 1 17 25 32
k£ | 100 61.0 103.6 187.9
T | 299 60.6 20.1 10.1
s 0.49 3.01 1.99
128 1 1 23 35 a4
k | 1.00 124.9 | 212.6 397.6
T | 142 395 128 39.7
s 0.36 3.09 3.22
256 1 1 27 48 210
& | 1.00 | 2529 | 4308 | 23480.
T | 652 2170 829 789
s 0.30 2.62 1.05

Table 6: Results for boxes on the Intel Hypercube, using
diagonal blocks only (no coupling.)

p\h~1 16 32 64 128 256
4 Decoupled Global Local Local Global
16 Global Global Global Global
64 Global Global Global

Table 7: Optimal choice of algorithm for the given problem
and implementation on the Intel Hypercube, from the choices
of decoupled block diagonal, locally coupled interfaces, and
full vertex coupling preconditioners for the box decomposi-
tion.

is deliberately limited to roughly what the hardware (i.e., memory bus) can support. The
dominant effect is usually load balancing or the intrinsically serial parts of the computation
(synchronization points and dot products).
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