CHAPTER 18

Incomplete Domain Decomposition Preconditioners for
Nonsymmetric Problems

Gérard Meurant*

Abstract. The aim of this paper is to derive incomplete Domain Decomposition preconditioners
that can be used on parallel computers with the Orthomin(1) method for solving non symmetric
linear systems. We mainly show how to extend the techniques which have been presented in {13}
and we present numerical results that demonstrate the usefulness of the preconditioners described
in this paper.

1. Introduction. In the last years, there has been a great development of domain decomposition
preconditioners for the conjugate gradient method. This new interest mainly comes from the fact
that these methods can be easily and efficiently used on parallel computers with a large number
of processors. Up to now, the research has been almost essentially directed towards finding good
preconditioners for symmetric linear systems arising from finite difference or finite element dis-
cretizations of elliptic partial differential equations in two and three dimensional domains. Several
papers adressing these issues have recently appeared : Bjorstad & Widlund {1], Bramble, Pasciak
& Schatz [2], Golub & Mayers [9], Chan & Resasco (3], Meurant [13], [14], [15].

In this paper, we will show how to extend the techniques of [13] to the solution of non symmetric
problems arising from the finite difference discretization of diffusion convection equations in two
dimensional domains. As an acceleration of the basic linear iteration we will use the Orthomin(1)
method (see for instance [7]). This method is not the best to solve this problem , but it will be
just enough for our main purpose which is constructing preconditioners,

The outline of the paper is as follows. Section 2 introduces the model problem we are solving. In
Section 3 we briefly present the tools we are using to construct the preconditioners, mainly how
to approximate the inverse of a non symmetric tridiagonal matrix and the generalization of the
basic block preconditioner INV (see [5 ]). Section 4 motivates our derivation exhibiting an exact
DD solver and then, Section 5 shows how to derive an incomplete decomposition whose symmetric
form was first described in [13]. We conclude in Section 6 with some numerical experiments for
model problems with different ratios of the diffusion and convection coeflicients.

2. The Model Problem. The problem we want to solve is a linear elliptic PDE,
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Q being a rectangle. With standard finite differences schemes (5 point) and row-wise ordering,
this leads to a block tridiagonal linear system :

Az = b,
with
D, B
As Dy By
A= . ..
An-i Du_1 Bpa
A, D,

With a centered scheme, as we suppose ¢ > 0, when a = 1, b = 1 and «, beta are constant,
D; is point tridiagonal strictly diagonally dominant if ah < 2+ %—2-, A is diagonally dominant if
aeh <1+ # and fh < 14 % A; is a diagonal matrix. Under these conditions A is a non
symmetric M-matrix.

The Orthomin(1) algorithm that we are using for solving our problem is the following,

20, =b— Az, p° =Y,
(r*, Ap*)
Qp = -———-T:—‘—’
(Ap*, Ap*)
:Bk+1 - mk + Otkpk,
T'k+1 = Tk - akZpk,
8 (Ark+1, Apk)
= = e
(Ap*, Ap¥)

P = g,

Apttt = ArPtl 4 g AP,
We use this method with either A = M~1A4 or A = AM~! where M is the preconditioner.
3.Tools. The first tool we use is how to solve tridiagonal linear systems with sparse right hand
sides. This has been described in [13}for symmetric matrices. As there is no fundamental difference
when the matrix is non symmetric, we refer the reader to this paper.
The second technique, which was developped for the symmetric case in Concus, Golub & Meurant
[6] concerns approximating the inverse of a tridiagonal matrix. When 7' is a symmetric tridiagonal
matrix, T—! is approximated by a tridiagonal matrix irid(T1) whose non zero elements are the

same as the corresponding ones of 7. The justification of this technique is given in [6]. Now let
T be tridiagonal non symmetric,

a; b

Cpei Gn-1 bn_a
Cn an

it is well known that we can symmetrize T by left multiplying with a diagonal matrix D,

1

br-bnay
Cg-Cn



NONSYMMETRIC PRECONDITIONERS 221

Then, T = DT is symmetric and we can apply the same techniques as before to T..

If T is line diagonally dominant, so is T, then the elements of 7! decrease away from the diagonal
on each column. If T is column diagonally dominant then the elements of T~! decrease away from
the diagonal on each line. We can approximate T—! with trid(Tl)D. For this approximation, we
only need to store D and 2 diagonals of T, Another possibility will be to right symmetrize.
The third tool is the block (incomplete) factorization INV of Concus, Golub & Meurant [5] which
can be extended to non symmetric matrices as follows . Suppose A is a block tridiagonal matrix,
then the block Cholesky factorization of A can be written as

A=(A+L) A"  (A+T)

Ay
A= s
Ay

0 0 B

Ay O 0 B,

L= . . U= .. A 3
A, O 0
with
Ay =Dy,

Ay =Dy — A A:_ll Bi.1.

To construct an INV incomplete decomposition, we simply replace the inverse with a tridiagonal
approximation,

A; = D; — A; trid(A7Y) Ai-s.
It follows that all the A; are tridiagonal matrices. The stability of this incomplete factorization
will be adressed in another paper [16 ].

4. An exact DD solver. To develop a DD method, as for the symmetric case, we partition
the domain Q into strips Q;,7 = 1,...,% and we renumber the unknowns in such a way that the
components of z related to the subdomains appear first and then the ones for the interfaces. With
this (block) ordering, the system can be written as

[ B Cy 3] by
B, By Cs T2 by
Bs B ; .
Cr-1 : :

By, Ey Tk =] & |
&1 R By z1,2 b2
Q2 Rs B33 2,3 by
Qk;l Ry By 1k Tp-1,k bp_1k

where each B; is related to a subdomain Q;,
D} B}
A Dt B

. , i=1,..., k.
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Df and B;; are point tridiagonal, m; is the number of mesh lines in Q;.
The matrices C;, E;, @; and R; have a very special structure,

0 E}
: 0

G=| | BE=|.| @=@© - 0@, R=(R 0 0),
cr 0

CM™, B}, Q7" and R} are diagonal matrices.
To derive an exact DD solver, we eliminate 1, ...,z to get a reduced system involving only the
unknowns for the interfaces.

Bi,z Cfl T1,2 bll,2
F2 B2,3 G2 .132,3 b’z,a
Fr—2 Bi_gp-1 Gr-2 Tr_2,k-1 bi_ak—1
Fior Biyg Te_1k "
It is easy to see that we have the following formulas for i = 1,...,k -1,

Biiy1 = Biit1— Qi B! Ci— Riyq B Eiy1,
F‘i = —'Qi Bz_l Ei)
Gi-—l =—-R; B,_l Ci)
bliy1 = biip1 — Qi By bi — Riyq B,-].ll bigs.

As for the symmetric case, to simplify these expressions, we use 2 factorizations for the matrices
B; coresponding to a subdomain, a block LU one (top—down) which can be written as

Bi = (Ai + L) A7 (Ai + T3),

{ Al = D}

s . . ; _1 ;i
af=Dj- 4 (a7 B
and a block UL one (bottom-up),

By = (i + ) 57 (2 + L),
{ NP = D
. . - . ._,1 Py
= = Dl - B (s At
With these notations, we have the following result,
Theorem

Fori=1,...,k~1,
Blyy1 = Biy1 — QP (A7) O — R, (Tha) ™ Bl
If
St=(sh™ EL,
Sl=—@y  ALSF 122, m;,

then,
Fy= —C™ 5™,



NONSYMMETRIC PRECONDITIONERS 223

Similarly .
T = (A o,

-1
T =—(A)" BT l=mi—1,...,1,

and,
Gi-1=-R} T},

5. Domain Decomposition Preconditioners. From this exact factorization we can derive an
approximation that will give a Domain Decomposition preconditioner. To do this, we approximate
the inverses of tridiagonal matrices in the same way we were doing in INV.

The motivations have been explained in [15] on a two strips example, so here we directly derived
the preconditioner for the k strips case, k > 2 . We choose M as

M
Mt
-1
M=L My U,
M3
Mt
M,
Mo
L= My, ,
Q1 R Mz
Q2 Rs Hy M3
Qr-1 Rp Hypy My.ip
M, G
M,y Ey Cs
Eper  Cpes
U= My By
My, Ji
Mys J2
My_1x

In the lower right corners of L and U are the factors of an incomplete block Cholesky decomposition
of the reduced system. As in [13 ],{15 ], we choose the approximations

Myz = Bip— QP trid[(AT*)™] CT — B} trid[(}) "] E}.

. . AR : M _1
Miipa = Bigya — QF trid[(AT)™"] CT — Rjy, trid[(T]) "] Bly,
— H; trid(M;4 ) Jica,
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S} = diag[(s}) ™ B},
S = ~diag|(S)) ™ AL ST, 1=2,...,m,,
Hi = —Qsp™,

T = diag[( A7) G
T} = —diag[(A)™ BL T, l=mi—1,...,1,
Jic1 = —R}Til.

In these formulas diag defines a diagonal approximation. Then, H; and J; are diagonal matrices.
M; is chosen as an INV block LU or UL approximation of B;. Whatever is the approximation, we
can solve independantly for the M;’s i.e. for each subdomain, but we have a block recursion for
the reduced system i.e. the interfaces. We call this method INVDD.

As for the symmetric case there are many other possibilities giving more parallelism :

1) take H; = 0, Vi ; then everything is parallel as there is no more recursion within the interfaces
( INVDDH).

2) take only “some” H; = 0, as needed by the number of available processors ( INVDDS).
3) use an incomplete twisted factorization for the approximate reduced system [15 ].

Notice that these approaches are purely algebraic and are feasible for any diagonally dominant
block tridiagonal M-matrices regardless of their origins.

Moreover, one can use different approximations (in place of INV) for the subdomains, like FFT-
based preconditioners or point preconditioners. Modified (i.e. zero row sums) preconditioners are
also possible.

6. Numerical results. We solve the following problem in the domain € =J0,1[ x 10, 1[,

Ou

~Au+ 2a6m

d .
+2ﬂ5§=f in Q, ulsn=0.

We discretize with the 5 point scheme and central differences for the first order term. The right

hand side is the same as in [15 ], the starting guess is a random vector, the stopping criterion is
[Ir*]l, < 107 ||7°]|, and the value of h is T
We are interested in looking, for a fixed mesh size, at the number of iterations of the Orthomin(1)
conjugate gradient-like method as a function of the number of subdomains k, for different values
of @ and B. We give only results for INVDD, the results for more parallel methods (including the
number of operations) will be given in another paper [16 ].

E a=0,=0 a=1=1 a=25,=50 o=100,f=—1 a=300;8=—1

2 24 32 14 18 13
4 25 34 15 19 13
8 25 32 18 19 13
16 27 36 31 20 14
24 32 40 40 24 16
32 33 41 40 27 17
40 36 48 42 31 19
50 34 39 38 28 20

We can see that even if the increase in the number of iterations can be sometimes a little bit larger
than for the symmetric case, it is still very slight so the use of these domain decomposition can be
useful provided the more parallel techniques developed in [15 ] are used.

7. Conclusions. The Domain Decomposition methods presented in this paper offer a great
deal of parallelism when used with iterative methods. Because of the algebraic nature of these
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preconditioners they can also be used with discontinuous coefficient problems as they are based on
robust approximations.
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