CHAPTER 7

Iterative Solution of Elliptic Equations with Refinement:
The Model Multi-Level Case*

Jan Mandelt
Steve McCormick™t

Abstract. A multi-level theory for AFAC [2] in a model problem case is developed that is based
on sectional energy norm estimates for harmonic functions. This is the companion paper of {3], which
treats the two-level case.
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1. Introduction. This paper assumes that the reader is familiar with the
companion paper [3]. Here we consider the multi-level case for AFAC [2]. We
first extend the notation of [2] (Section 2), then develop a theoretical structure
for convergence (Section 3), and finally consider a model problem in a specialized
geometry (Section 4).

The convergence bounds obtained here involve the relative size of successive
refinement regions, that is, the maximum ratio of areas of successive refinement
regions. In fact, as this maximum tends to zero, the bounds we obtain tend to
the two-grid bounds developed in [3]. The multi-level theory in [1] also obtains
bounds that depend on the maximum refinement ratio; this theory applies only to
a modified version of AFAC, but unlike ours it does not require that this ratio be
sufficiently small.
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2. Notation. For simplicity, we restrict our attention to a 2D diffusion
operator with Dirichlet boundary conditions. Let {1; be a polygonal domain in
R2 and 2, D O, D ... D ], a nested sequence of polygonal, or union of disjoint
polygonal, domains. Let H; C H!({};) be a conforming Lagrange finite element
space associated with £;,1 < 7 < k. We assume for simplicity that the element
boundaries of ); contain the boundary of ;,; and that every element in ;,;
associated with H; is the union of some elements associated with H,,,,1 <¢ < k—1.
We define the ©** composite grid space

and denote H, = H,,. Consider the bilinear form

a(u,v) -—-/ avu-vyvdQ,
Q

with the piecewise smooth diffusion coefficient a > const > 0 in 1. Also consider
the linear form

flv) = / fvdQ.
Q
The space H, is equipped with the inner product a(-,-) and its norm || - || defined

by ||u|| = (a(v,))?. In what follows, references to inner products and norms (e.g.,
‘orthogonality’ and ‘unit functions’) refer to these definitions.

We are interested in the iterative solution of the discrete variational equation
ueH, : a(u,v) = f(v) VoeH,. (1)

The symbol u will be used to denote the solution of (1). The basic cycle of AFAC
we consider here for solving (1) is as follows:

Algorithm (AFAC [2]) Let ueH, be the current approximation to u. For
each i =1,2,...,%, compute u; from

uieH; © a(u—u;,v) = flv;) VueH,.
For eachv=1,2,...,k — 1, compute w; from
'LU,‘EH,' N H,;+1 : a(u - w,;,’U,;) = f('l)i) V'U,'EH,- n H;+1.
With w, =0, set

[
U u— Z(U.- —w;).
i=1
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Our analysis of AFAC will involve the use of discrete harmonic functions and
their associated spaces and projections. In particular, for each ¢ = 1,2,...,k — 1,
define the i-harmonics

Hi"erm = {w,eH; :  afu;,v;) =0 Ve, NH; }.

Note that H;j~**'™ js just the orthogonal complement of H; N H;,, in H;. Let
P;~*ar™ be the orthogonal projector mapping H, onto H; **™_ For each ¢ =
1,2,...,k — 1, define the ¢;-harmonics

H! ™ = {ueH,, :  alu;,v:) =0 VueH,,, }.

Note that
Hci = H::arm @ Hc-‘+1 (2)

is an orthogonal decomposition, 1 < 1 < k. For convenience we define H. :‘:"" =H,,
and H,, ., = Hyy; = 0 so that (2) holds for all ¢ = 1,2,...,k. Note that in the
decomposition u,, = u}*"™ + u,,,,, ub*™ is just the ¢;~harmonic in H?**™ that
agrees with u,, in 9;\(;4;. Let Pc"',‘""‘ be the orthogonal projector mapping H,
onto H}* ™.

As in the two-level case [3]|, the convergence rate for AFAC depends on a
measure of how much an s—harmonic deviates from being ¢;—harmonic, although
now we need to be more precise. In particular, first note that local functions with
support in ﬁ,-\ﬂ,url are both f~harmonic and ¢;~harmonic. (Overbar denotes set
closure.) The space of these functions we denote by H}°**!. Note that H;***! C
H~*erm 0 H**"™, We then define i~doubly-harmonic functions by

Hii—dharm — {u"EHii——harm : afu;,v;) =0 v,vieH:ocal} .
We similarly define ¢;—doubly—harmonic functions by
Hf'_"""'” = {w;eH"*™ : a(u;,v;) =0 Vo;eH**'}.
Note that
Hi-harm — flocel g [i-dharm (3)

is an orthogonal decomposition. (We assume the trivial definitions for these spaces
with ¢ = k so that (3) holds for all ¢ = 1,2,...,k.) Define P/°** and P}~ %™
to be their corresponding orthogonal projectors, that is, P}°°*! and P{~9*e™™ are
the respective orthogonal projectors from H, onto H;°**' and H}~%***™_ Then one
error measure we will need is given by € = max; <; < ||(I—Pr* ™) P{~4**™ || | Note
that € is just the maximal two-grid estimate defined in [3]:

€ = max {”ei_‘_l ” 1€y = (I — P:;arm)u::—dharm_ ,

1<i<k
‘u,::“dharm eﬂf—dharm , ”u::~dharm “ — 1}
= lrgliai{“e;.;.l |t = (I — pcl:arm)u;_ham,

ui—harm EH:'——harm, ”u::—harm ” — 1}'

i
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We introduce the sectional energy inner product aq, ():HxH — R defined
for each 7 =1,2,...,k by

aq, (4,v) =/ a7 uvvdQl.

Q;

The sectional energy norm is defined by ||lulla, = (aa,(u,u))¥. We also define the
harmonic section measuresfor 1 <i<k—2and:+2<j<kby

i—harm ”ﬂ )
Fj

6“_ — ma,x{]]'u,, . uv:—ha.rm E-lqit'--in,arm. , “ui—harm “ — 1}

t

andfor1<i<k—1by

— i—harm e ayi—harm i—harm (i+1)—dharm
;i1 —max{la,(u,. , Vipn )] s eH; s Vipr € ,

flui =" [l = llviall = 1} -
Further, define §; ; = 0 and &§;; = §;;, 1 > j, and § = maxi<i<s Z:=1 8z

3. Theory. Let u denote the solution of (1), u the current approximation,
and e = u — u the algebraic error. Then one cycle of AFAC applied to u transforms
e according to

k
e (I =) Pitem)e. (4)
i=1

Note that if the subspaces H;~"**'™ and H}*"™ agree for all 7, then H, =
Hi-herm @ H2-harm @ .. @ HE~ "™ would be an orthogonal decomposition of
H,. This means that (4) would converge to zero in one cycle, making AFAC a di-
rect solver. In fact, this can happen in practice, namely, for typical one-dimensional
problems and higher-dimensional problems with refinement regions ); wholly con-
tained in just one element of the coarser level, H; ;. However, most practical
problems have H;~"* ™ 2 H}*™  for which we have the following theorem.

THEOREM 3.1. Suppose = ¢+ 8§ < 1. Then a bound on the AFAC convergence
factor is given by

pI =Y Prm) = [T= B < ®)

PROOF: Let ui~"*"™ be unit functions in H; **"™. Let U = (u,,;) be the Gramm

matrix for these functions defined by u;; = a(ui=**"™, u!~"**"™). In (2; lemma 2.3]
we proved in effect that

k

p(I =) Pt} =sup{p(I - U)},

i=1
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where the supremum is taken over all possible choices for ui{~**"™. Thus, to bound
the convergence factor for AFAC, we need only bound p(I — U) for arbitrary choices
of ui="*"™ To bound p(I — U), decomposing by (3) and (2), we have

i~harm __ 2 Jdocal — 2 ,dharm
u; =4/1-p% z; + Bivi, v; =1 —€ Yy, +ew.,,,

where |B;| < 1, |&| < €, and zi°°*eH[***, v;eH}~erm, yiharmgfdharm and

: : s — & local
W,,,,€H,, ., which are all unit functions. Define 0; = % a(w,,, ,, 2}3°%') and note
local (i+1)~harmy _ dharm localy __
;ha.t |6:| < 1. Now from a(z{***, v, ) = 0 and a(yZ**™™, z2°') = 0, we
ave

Usipr = €BiA/1— 67, 0; + BiBiyra(v, viy1)-
By definition,
|a('u;, ’Ui+1)| <6iiv1s

and .

lusi | = |a(u}_h“'"‘,u;._h“"")] <6, F>i+1l
Now since u;; = 1 and 5;0:41 < 1, we can write U = I + €T 4+ E, where the
symmetric matrices T' = (I;;) and E = (e;;) satisfy

ﬂ;‘\/l— ,-2+10i j—_—2+1
tj,' j = 2 -1
0 otherwise

tij -_

and
les;| < 6

for 1 <1,5 < k. Thus,
o(I —U) L ep(T)+ 6.

The theorem would now be proved if we could show that p(T) < 1. This we do by
way of the following lemma.

LEMMA 3.1. Suppose T is a k X k tridiagonal matrix of the form T = tridiag

(ﬁi—1v1_‘ﬂ;2+1 0> O ﬂ;\/l-ﬂ,?.,.l 0;), where f;, 6; satisfy |B;| < 1, |8;] <

1,1 < i<k, and B+, = O (for convenience). Then p(T) < 1.

PROOF: If some B; = O then T reduces to matrices of a smaller size. So, without
loss of generality, we assume §8; # 0, 1 <7 < k. We shall first prove that I + T is
positive definite. Let a; be the i-th pivot in the LU-decomposition of 7+ T. Then

2(1 - B2, . )¢?
a =1, a-s'+1:1————~—-———ﬂ’( a"H)'.

It is easy to see by induction that a; > fZ > 0. Thus, I + T is positive definite
because all pivots are positive. Now by changing the signs of all of the §;, we can
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conclude from the above that I — T is also positive definite. Thus, p{T") < 1 and
the lemma is proved.

4. Model Problem. The convergence bounds of the previous section depend
on estimates of the “two-grid” factor € and the “total section” §. While suitable
bounds on € have been obtained in a fairly general setting (cf. [1-3]), there appears
to be no such theory for 6. Since 6 is the sum of integrals of harmonic functions over
decreasingly smaller subregions, it is likely that § can be made as small as desired
by requiring that successive refinement regions cover a sufficiently small relative
area. We now prove this for a model problem with special geometry.

Our model problem is the Poisson version of (1), with ¢ = 1, on the unit square
1 = [0,1] x [0,1]. Our special geometry is based on uniform grids ; that consist of
the respective m; — 1 and n; — 1 interior vertical and horizontal grid lines covering
the region [0,7;] X [0,1], 1 < ¢ < k. We require that every other grid line of Q;,,
coincide with the vertical and horizontal grid lines of Q;, and that

Mg m;

= 2— and Nty =2n,~, 1S'i<k.
Ni+1 7

To simplify the presentation, we will assume that m, = n, > 2 and that the
refinement “speed” is constant: 7,4, = for 0 < 7 < 1,1 < i < k. Finally, we
assume that H; C Hj(£);) is the space of continuous piecewise linear functions on
a natural triangulation of (1;: the triangles are formed by connecting the lower left
and upper right vertices of each rectangle in ;.

In this section, || - |2 will be used to denote the Euclidean norm on various
“nodal vectors,” i.e., vectors of node values of certain functions in H; (). We will
refer to “nodal matrices” associated with certain discrete spaces H. By this we
mean the usual stiffness matrix that arises from transforming the bilinear problem
(1) on H to an equation involving the nodal values of the discrete solution u in H.
Note that the nodal matrix on the uniform space H; is just the one that corresponds
to the usual 5-point difference stencil

The following lemmas will be used to bound nodal values of harmonic functions.
The first allows us to reduce the two-dimensional problem of obtaining these bounds
to a one—-dimensional one.

LEMMA 4.1. Suppose A and B are m X m symmetric positive definite block tridi-
agonal mairices consisting of the respective n x n blocks

X i=3
A = —I Ji—j]=1
0 otherwise
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Y i=j
B,'j': —I |i“"j|=1 .

0 otherwise
Suppose X > Y (i.e.,, X ~Y is nonnega.twe definite), X and Y commute, and that
z=(zi..-28 ) andy=(y - -4 ) satisly

Ar=s and By=t

where s; = t; = 0,1 < j < ¢ < m. Suppose z, = y,. Then |z;]lz < ||v;llas
1<j5<q.

PROOF: By performing elementary block operations on the augmented matrices
(A:s) and (B : 1), it is easy to see that

qg—1
zj:( IT St_l)xq

l=j

g—1
=( H Tt_1)3q
l=jg

where $; = X, 5, =X -8 T, =Y,and T,,, =Y — T7',1<1l<gq. By
induction it is easy to see that S, > T} and, hence, 57t < T‘ The lemma now
follows from using the fact that St and T, ! are ratmnal functlons of X and Y,
respectively.

In the following, A will be the nodal matrix of the Laplace equation on H;,
that is, X = diag[-1 4 —1]; B will be given by ¥ = 21I.

LEMMA 4.2. Suppose A in Lemma 4.1 is the nodal matrix for H;. Then ||z,|, <
2|z, |l2. This also holds for the nodal matrix for H,, provided the indices j and ¢
are interpreted with respect to grid €1, lines.

PROOF: Using Lemma 4.1 with ¥ = 21, we have
lzill2 < slle, Iz

with equality for the case n = 1, where

and

-1
v=e| II T
=5
is independent of n. We can thus examine the case n = 1 which corresponds to a
simple one-dimensional case where the scalars z; satisfy z; = ’-:cq This proves the
first assertion. The final assertion follows from a similar a.rgument using the fact
that the presence of the interfaces z = %, with [ > 7 + 1 cannot increase llz;]lz for
any j (which we assume corresponds to a grid {3, line). This proves the lemma.
Our final lemma will be used to bound nodal values of harmonics at grid in-
terfaces.
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LEMMA 4.3. Let ui~%**™™ be a unit function in Hi~*"*"™ and let w; be the n;—
dimensional vector of its values at the nodes on the vertical grid line z = n; (- ——)

1 <3< m;. Then
rl \'/?
Nw llz < (m) (8)

nmms(;E%IQUZ (0

where r; = m; — l; and l; = m;,, /2, the number of vertical grid lines of 11, to the
respective right and left of © = n;4,. Moreover, (9) also holds if we replace the
function ui~¢***™ by a unit function ul**™™ in HI**™.

PROOF: By Lemma 4.2 and the fact that ui~?**"™ is i—doubly harmonic, we have

J .
llw;llz < . flw,,ll2, 1<5<m, (10)

and

L—J
lwr, 45l < L llwe |2 (11)

Ll

Since ui~?*er™ ig of unit length, so is its vector of nodal values, w, in the sense that
(Aw)‘w = 1. Since ui~#**"™ js i—doubly harmonic, all but the r;th entry of Aw is
nonzero. Using 7 = r; — 1 in (10) and § = 1 in (11), we thus have

1= (prg —Wr,—1 wr;+1)t Wr,

> 2ljw, 117 — llwr - llzllwn,llz = lwrs flallwn 2

T;—l l,—].
e
1 1
= (2+7) bt

This proves (8). Now using Lemma 4.2 with j = 1 and ¢ = r;, we have

1 rl, \'/?
w < o e ]
o l2 < ; (Ta +li)

which proves (9). The final assertion follows from Lemma 4.2, so the proof is
complete.

THEOREM 4.1. For the model problem and special geometry considered here, if

n <  then
6<2<17+ V21 )
1—4/m




MODEL MULTIHLEVEL CASE 101

Thus, § = 0(,/n).

PROOF: Let v, ., and v; be arbitrary unit functions in H,.(_';_':l)_ dharm ond Hi-dharm
respectively. Then

la(vi, vis 1)l < |@a,\a,y, (055 vir 1 )| + laa,,, (0, 0:41)]-

Define 7;eH; by

— _JO0 <y, — .1
’U(xay) - {'U,' z 2 it it

and 9;eH; by

v; (17; y) T < Niga
¥ (z, y) = ¢ (2042 — 7, Y) Miv2 ST 2M40 .
0 T2 2040

Then v; — v; — #;eH!2°*! and ||%]| = v2||v]la,,,, s0
la(vi, vig1)| = |a(@: + B;,v:41)]
< |(J2)'w|+ \/55;i+2,

where z and w are the vectors of node values of v; and v;,; on z = n;,, and
T = iy = respectively, and where J is the linear interpolation operator
mapping {1, nodal vectors on = = 7;4.; to £}, nodal vectors on = = ;.

Note that ||J||; < /2 so that

|(T2)w| < V2 [|2]l2 [lw]l2.

By (8) and (9), and the relations r;,; = 2r; and r—_‘H— = 5, we have

L 1/2
< 25;‘- 2
oo \/_((7', +4 ) <1'e+1(h'+1 +l;+1)>> + V26045 (12)
<N+ V2645

Now let 5 > ¢ + 2 and define 2, as the n,~dimensional vector of nodal values of v;
on z = Ln,, 0 < g < m,;. Assume for the moment that z = n; coincides with a

grid line of Q;, say the p** one. Let A and X be as in Lemma 4.2. It holds that
Xz, —24-1—241=0,¢=1,...,; — 1. (13)

Let

2, = § CrplUy,
k
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where u; are eigenvectors of X, Xu; = Acts, ||ux|z = 1. Note that Ax€(2,6). Then.
by (13) we have
z = chtk (@)ux,
k

where _
pi—p,*  sinh(glny)

t = -
»(9) . I‘;“ sinh(l;lnpy )

2.
and where y; = ﬂ@ > 1 and p* < 1 are the roots of the characteristic
equation Ay — == — p =0.
Writing e, = ((X — I)z, — 2,-1)2,, we have from the fact that z, are values
of a discrete harmonic function that
aa,; (vi, v:) = €, Ga,_, (vi,0:) =&, <[lu]* = 1.

Substituting for z,, we have
€ = Z ¢z (Actz (g) + (tx(g) — te (g — 1))t ().
K

From the properties of hyperbolic functions, it follows that

tx (p) _ sinh(plnps) <P
t(l;) sinh(Llnp.) " r

and

(te(p) — tx(p— D)ti (p) _ cosh(*3iInp) sinh(plnp.) _p
(e (t:) —te( —1))te (k) cosh(Ziting,) sinh(Linp) L
Consequently,
e .
loclls, = an, (0, v) < 2 < P = w7
Hence, A l

6; <n 3 ,5>i+1 (14)
To see now that (14) also holds for the case that z = #; is not a grid line of £;, it
is enough to recognize that \yu - \yu for u in H; is constant on triangles of {2;.

Now from (12) and (14) we have that
5<2<n+\/§ nq\2)=2(7l+—>y
; 1=vn

which proves the theorem.
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