CHAPTER 6

Iterative Solution of Elliptic Equations with Refinement:
The Two-Level Case*

Jan Mandelt
Steve McCormick'

Abstract. A two-level theory for FAC {16] and Asynchronous FAC [10] is developed based
on the strengthened Cauchy inequality. We obtain convergence bounds that do not depend on
regularity of the problem and that can be computed locally. We also establish a relationship
between FAC and a closely related preconditioner introduced in {5].
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1. Introduction. The Fast Adaptive Composite grid method (FAC [16]) is
an iterative method for the solution of composite grid equations using solvers on
uniform grids only. It was observed to be a fast, practical method. However, its
theoretical foundations have not yet been fully developed.

In brief, the simplest version of FAC can be described as a conforming finite
element method using a global coarse grid and one or more (non-overlapping) local
fine grids. The spaces of trial and test functions are simply the sum of standard
finite element function spaces associated with all grids. To find the minimum of
the energy functional, minimization is performed alternatively with respect to the
spaces of coarse grid and fine grid finite element functions. Fast solvers can be
applied to the resulting linear systems in many cases, especially when the grids
are uniform. Several levels of refinement and parallel solution on all levels can be
successfully incorporated into this scheme [10].
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In this paper, we are concerned with bounds on the convergence factor of FAC
as an iterative method for the solution of the composite equations. The paper is
organized as follows. In Section 2, we give some simple algebraical propositions
concerning orthogonal projections and the angle between subspaces. In Section
3, we apply these abstract results to obtain a characterization of the convergence
factor of FAC in terms of the cosine of the angle between certain subspaces of the
space of composite grid functions. We then bound the cosine from locally com-
putable estimates, using a technique known in multigrid literature as the'strength-
ened Cauchy inequality, which makes it possible to use bounds already available
in the literature for many classes of finite elements. FAC gives rise to naturally
defined preconditioners, studied in Section 4. In particular, we show that the pre-
conditioner defined by Bramble, Ewing, Pasciak, and Schatz in [5] is equivalent to
one-and-a-half steps of FAC, so an analysis of FAC applies to the preconditioner
from [5] and vice versa. In Section 5, we prove a theorem relating the convergence
factor of a parallel version of FAC (AFAC [17]) with the convergence factor of FAC
itself.

2. Theoretical preliminaries. We begin with several simple lemmas that
establish some algebraical properties of orthogonal projections. Let H be a finite
dimensional linear space with inner product (-,-) and norm || - ||. For u,v € H,
u # 0, v # 0, we write cos(u,v) = (u,v)/||u||||v]|. For U, V nontrivial subspaces of
H, define the cosine of the angle between U and V by cos(U, V) = sup{|cos(u,v)] :
u € U,v € V'}. Further, let Py and Py denote the respective orthogonal projections
from H onto V and V*, the orthogonal complement of V. Let p (A) denote the
spectral radius of a matrix A.

The following lemma is well known and is included only for completeness.

LEMMA 2.1. Let U, V be nontrivial subspaces of H. Then

p(Pu.Pv) = ”PUPVPU” = COSZ(U,V).

Proof. Let PyPyu = Au, A # 0. Then u is in the range of Py, so Py Py Pyu =
Au. This proves that p (PyPy) = || Py Py Py|| because Py Py Py is symmetric.

To prove the second equality, because the case cos(U,V) = 1 is trivial, we
consider only the case cos(U,V) < 1. Because the surface of the unit sphere in H
is compact, there exists a u € U such that [[u|| = 1 and [lv — Pyu|| is minimal.
Denote v = Pyu/||Pyu|| and ¢ = cos(u,v). Then le] = cos(U, V), Pyu = ¢cv, and
Pyv = cu. Consequently, Py Pyu = ctu,s0 p (PvPy) > cos? o, v).

To prove the reverse inequality, note that for any v € U it holds that [|Pru||® =
(Pru,u) < cos(U,V)||Pyul|||ul], so [|Prul| < cos(U,V)||u|]. Similarly, ||Povl] <
cos(U, V)||v|| for any v € V. Tt follows that [Py Py Py|| < cos?(U,V). D

The next lemma allows us to estimate cos(U, V).

LEMMA 2.2. Let U, V be nontrivial subspaces of H.

() FUNV = {0}, then cos(U+, V) > cos(U, V).

(i) [H=U@®YV, then cos(U+,V') = cos(U, V).

() fXCUandYCVand H=X& Y, then cos(U+, V1) < cos(X,Y).
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Proof. (i) As in the preceding proof, let u € U such that ||u|| = 1 and [ju— Pyu||
is minimal and denote v = Pyu/||Pyul| and ¢ = cos(u,v). Then |¢| = cos(U,V),
Pyu = cv, and Pyv = cu. It follows that v — Pyu/c € Ut, v — Pyv/c € V4,
and cos(u — Pyu,v — Pyv) = ¢, using elementary geometry in the two-dimensional
subspace spanned by v an v. This proves (i). Propositions (ii) and (iii) follow -
immediately from (i). O

The next lemma about localization of the spectrum of the sum of projections
will be useful in the study of AFAC.

LEMMA 2.3. Let H=EDV;. Then
i=1

i (E ij) = e iy, dmin (G015 v0)

i=1

”n
A (Z ij) B v,~ev,~,".,?ﬁix1,,-=1,,,,,., Amax (G(v15- -+, 9n))

j=1

where G(vi,...,v.) = (9i;), %; = (vi,v;), s the Gram matriz of the vectors
Vi, Upe

Proof. For j =1,...,n, let J; be a matrix whose columns form an orthonormal
basis of the space V;. Then Py; = J;J;. Define A = (Jy,...,J,). Then A is a square
regular matrix and X7, J;J; = AA’. Because AA’ is similar to A*'A = A™1(44%) 4,
the spectrum of AA® is same as the spectrum of A'A = (J}J;)7;-,. Now for every
u € H we may write

a1uy

Qnlp

where a; are scalars, the number of elements in each vector u; is same as the
dimension of Vj, and ulu; = 1. Let a = (a;)}-; and v; = Jju;. We then have
Au =377, a;u; and the Rayleigh quotient

w'AlAu  @'G(vy,...,v0)a

uty ata

The lemma is a direct consequence of these observations. [

In the case n = 2, the preceding lemma gives bounds of the spectrum of the
sum of two projections in terms of the angle of their ranges.

LEMMA 2.4. Let H=U®YV. Then

Amax (PU + Pv) =1+ COS(U, V), Amin (PU + Pv) =1- COS(U,V).
Proof. Let v € U and v € V. Then the Gram matrix of u,v is

G(u,v)z(i ‘1‘)

where |a| < cos{U, V), with equality attained for some » and v. The lemma now
follows from the observation that the eigenvalues of G(u,v) are 1+aand 1—a. O
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3. The Fast Adaptive Composite Grid Method (FAC). For simplicity,
we restrict ourselves to the case of a diffusion operator with homogeneous Dirichlet
boundary conditions. Let {1; be an open polygonal domain in R? and 02; ¢ 0
an open polygonal domain or the union of disjoint open polygonal domains. Let
H,, C H}(€;) be a conforming Lagrange finite element space associated with ;
and Hj, C H}((12) be a conforming finite element space associated with ;. Define
the composite grid space

H, = Hjp, + H;.
Consider the bilinear form
a(u,v) =/ avyuvyuv,
Q1

with the diffusion coefficient a piecewise smooth and a > const > 0 in 0;. Also
consider the linear form

f(v) =/;1 Jv.

The space H, is equipped with the inner product a(-,-). We are interested in the
iterative solution of the discrete variational equation

(03] uc H.: a(u,v)=f(v), WweH,.

The symbol u will be used to denote the solution of (1).
We consider an iterative method for the solution of (1), whose basic cycle is
defined as follows: ’

ALGORITHM 3.1. (FAC [16]) Let v € H, be the current approzimation to u.
Step 1. Compute the solution of

(2) up € Hp:  a(u+ up,vp) = fvr), Vo, € Hy,

and set u +— U 4 up,.
Step 2. Compute the solution of

(3) uzn € Hopn:  a(u 4 van,v21) = fvas), Vvan € Hap,

and set u +— u + ugy,.
It is easy to see that the algebraic error

e=u—u
is transformed according to
(4) € PHﬁPHi.e.

An estimate p (PHz_Lk PH’.:.) < const < 1 independent of h was established in [16]
using H %.regularity of the elliptic operator, but without restrictions on the degree
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of refinement in §1,. Here we restrict the degree of refinement — the mesh sizes of
H,;, and H,, differ by a factor of two — and we obtain a bound without recourse to
regularity using a technique well known in the multigrid literature. For the purpose
of obtaining local estimates, assume that the boundaries of the elements associated
with Hyy, contain the boundary of Q; and that every element in ), associated with
H,,, is the union of some elements associated with H,. We may then define

(5) X =H,, Y ={u€ H;:u=0onnodes of Hzp}.

It is well known, cf., [1], [4], [13], that then a bound on cos(X,Y’) can be evaluated
locally: Let {K} be the elements associated with the space Hg. For any such K,
denote

ax(u,v) =fKa,vqu.

Then if the inequality

(6) lex(u,v)] < 1Wax (v, v)\/ax(v,v), YueX,veY

holds for all K with the same constant 4 < 1, it follows that

< 'y; Vax(u,u)ﬁx(v, v)

la(u,v)| =

ZaK(u,v)
K

< '7\/2"4((“7"’)\/2 ax(v,v).
K K
This yields the so-called strengthened Cauchy inequality

(7 la(u,v)] € vWa(u,u)y/a(v,v), YueX,veEY.

Thus, ~ is an upper bound on cos(X,Y).

REMARK 3.2. It is easy to see from (6) that the value of -y does not change
if the diffusion coefficient a is multiplied by a different positive constant in each
element. This property is usual for regularity-free estimates; for related — but
different — convergence bounds with this property for multigrid methods, see [7]
and [11].

REMARK 3.3. Estimates of «y for various elements and a constant diffusion
coefficient a are well known, see [1], [4],[13]. Computation of v on K reduces to
the solution of a generalized eigenvalue problem for the local stiffness matrix of the
element K. In the two-dimensional case, the Hj elements result from partitioning
each Hy, element into four elements in the natural way. For this case, the optimal
values of 4 for triangular linear elements as computed by Maitre and Musy [13]
are between v = \/3—‘/—8 for the unilateral triangle and v — \/2% for the degenerate
triangle with one angle close to 7. The model problem with {1; a rectangle divided
in two rectangles 01; and 01;\ 0 is studied by Fourier analysis in [14]. For triangular
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linear elements obtained by dividing all squares in a uniform rectangular mesh in
two triangles in the same way, it holds that

a(%n, uz"'h“““) = aq, (un, uz"'hm) < 6\/ a(un, uh)\/ agq, (u?h-harm 2h-harm)

for all up € Hy,,u2kham ¢ f2h-harm with § ~ 0.669. This bound is sharp for small
h.

Denote
szll:-harm = {‘uzh € Hyy, ¢ a(u2h,92h) =0, Vv € HypN Hh}.

This is the orthogonal complement of Hy;, N Hj, in Hy,. By analogy with the case
when the diffusion coefficient a is constant, the functions from HZ}P*™ are called
2h—harmonic functions in Q.

LEMMA 3.4. It holds that PHiLhPHi:' = P(H;'l:.'harm)_LPH’_:..

Proof. Let v € H, be arbitrary and write u = PH#v. Define wqy, = PHg’;:-h,mu,
so that

2h~h: . — 2h-harm
HZFhem . a(wap, 2on) = a(u, 22n), V2on € Hyy .

Wsap <
But this must hold for all 25, € Hyp, = HEFP*™ @ (H,, N Hy) because, for zg;, €
Hy;, 0 Hy, a(wan, 22n) and a{u,25;) are both zero by definition. Consequently,
wap, = Py, u, so

P(Hgk-h;rm)lu =u—wy, = Pyyu,

which proves the lemma. O
We can now exhibit a bound on the convergence factor of Algorithm 3.1.
THEOREM 3.5. The convergence factor of Algorithm 3.1 is

p (Pry Pay) = cos’(HE™™, Hy) < cos”(X,¥) < 7%,

where X and Y are given by (5).

Proof. The proof follows immediately from Lemma 3.4, equation (4), Lemmas
2.1 and 2.2, and from the fact that H = HZ}"*™ ¢ H,. O

REMARK 3.6. There is, in fact, a hidden parallelism in Algorithm 3.1. In the
first step, the problem in the space H), decomposes into independent subproblems
if the refinement region {1, consists of several disjoint components, which is often
the case in practice. Cf., a similar remark in [5].

REMARK 3.7. The work in [17] uses the regularity-based estimates of
[16] to develop a theory that covers the cases of singular equations — e.g., where
Neumann replaces Dirichlet boundary conditions — and inexact solvers — i.e.,

where the solutions of (2) and (3) are only approximated. The present theory
extends to such cases in a similar way.
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4. FAC as a preconditioner. We can now define a preconditioner in a nat-
ural way using one iteration of Algorithm 3.1 with initial value » = 0 as an ap-
proximate solver. We obtain the following algorithm.

ALGORITHM 4.1. (FAC preconditioner)

Step 1. Compute u; from

(8) uy € Hy, a.(u;,, vh) = f(vh), Vv, € Hp,.
Step 2. Compute uqp, from
9 uon € Hop,  a(usn,van) = f(van) — a(un,v2n), Vven € Hap.

Step 3. Set u = uy + ugp,.
The value of u obtained by this algorithm is the solution of a variational prob-
lem of the form

~

(10) weH,: buv)=flv), VveH.

For the next theorem, we need a simple statement about iterative methods,
which we formulate as a lemma for reference.

LEMMA 4.2. Let u « G(u,b) = u — B~1(Au — b) be an iterative method for
the solution of the linear system Au =b. Then G(0,b) = B~1b.

Because the following result is somewhat easier to formulate in terms of oper-
ators rather than bilinear forms, we let (-,-) be another inner product on H, and
define the operators A,1§ :H, — H, by

(Au,v) = a(u,v)

(11) (Bu,v) = b(u,v) }Vu,v € H,.

The following theorem is then an immediate consequence of Lemma 4.2.
THEOREM 4.3. It holds that

I- B™ A= Pgy Pgy = Pigaisermy. Py

Because the product P(Hg,';'hum) _LPH,{. is in general not a symmetric operator
(with respect to the inner product a(-,-) on H,), it follows that the bilinear form
b(-,-) is in general not symmetric. Therefore, this preconditioner cannot be used
directly with the conjugate gradient algorithm. However, an effective use of such
a nonsymmetric preconditioner is still possible with more general Krylov space
methods, see, for example, [15].

For the application of conjugate gradients, it is therefore natural to apply an
additional half-step of the FAC algorithm to obtain a symmetric preconditioner.
We then get a preconditioner identical to that of Bramble, Ewing, Pasciak, and
Schatz [5]. (Their work is formulated for Neumann rather than Dirichlet boundary
conditions, but the present discussion can be easily adapted to that framework.)

Application of Steps 1, 2, and 1 of the FAC Algorithm 3.1 with initial value
u = 0 yields the following algorithm.
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ALGORITHM 4.4. (Symmetric FAC preconditioner)
Step 1. Compute u; from
(12) up € Hy:  a(ug,vp) = f(vn), VYo, € Hy.
Step 2. Compute ua, from
(13) Uzp € Hop i a(un + wan, vas) = f(ver), Vven € Hap,.
Step 3. Compute wy from
(14) wy € Hy: o a(up +ugy + wp,vp) = f(v), Vo, € Hy.

Step 4. Set u = up + ugp, + wp.
Problem (14) in Step 3 can be rewritten as

(15) wy, € Hy : a(‘uzh + wh,vh) =0, Vv, € Hy,

because of the definition of u, from (12). Step 3 was introduced in [5] to make sure
that the decomposition u = u), + (35 + wy) is orthogonal, which was motivated by
the following variational interpretation.

For any u € H,, we have the orthogonal decomposition

(16) u=up+ o, oy, € By, uthem g ghhem _ gl

For u"™™ we can further define y?#hem ¢ f2h-ham 5 the unique function in
H}ham which coincides with 4™ on 1 \ £1,.

LEMMA 4.5. The result of Algorithm 4.4 is the solution of the variational
problem

(17) wuEH,: blu,v)=f(v), WweH,
with the bilinear form b(-,-) defined by

(18) b(u,v) = alup,vs) + a(uzh‘hm,vzh-harm).

Proof. We adapt the proof from [5] and provide more details. Let u = uy +
w1 he the solution of (17).

First, let v € Hy. Then v = vy, and (17) and (18) show that uj, satisfies (12).

Next, let v = vy, € Hyy, = v), + 0¥ 1™ and note that

(19) a(u?FBam ) — g(yharm o dhherm)

because v — v2¥bemm ¢ F,, N F, | HEbem Also,

(20) a(ur,v) = a(Pu, un,v) = a{us, Pa,v) = alus,vs).

Thus, we have from (17) and (18) using (19) and (20) that u?*b*™ gatisfies

a5 ™ yoy) = flvan) — a(un,van), Vos, € Ha.
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Consequently, u?*h*™ is just u,, the solution of (13).

Finally, uhham = y2kbarm op ), \ ,, and we find the values of w2 op 1,
from yhherm _ y2hhem — o), where wy, satisfies (15). D

Spectral equivalence of the forms a(-,-) and b(-,-) was established in [5] using
the equality

a(u,v) = a(up,vp) + a(uPhem yhharm)
(the decomposition (16) is orthogonal) and the fact that
(21)a(uh-harm,uh-harm) < a(u2h-harm, u2h-harm) < Ca(uh-harm’ nh—harm)’ VYu € H.,.

The inequality (21) was proved in [6] using the “inverse assumption” and a rather
weak form of elliptic regularity. In particular, (21) holds whenever the coefficients
of the form af(-, -) are continuous and all components of {; have Lipschitz boundary.

As above, let (-,-) be another inner product on H, and define the operators
A,B:H,— H, by

(Au,v) = a(u,v)

(Bu,v) = bu, v) }V"’” € H,.

Now application of Lemmas 4.2 and 3.4 immediately yields the following theorem,
which relates our preceding results to properties of the preconditioner b(,-).
THEOREM 4.6. [t holds that

(22) I-B A= Py Py Ppy = Py Pggiseemy Py
Consequently,
(23) a(u,u) < b(u,u) < ka(u,u), Yuec H,,
where

1

2 h-harm 2
1= = ¢ (P Pragirvsmys Pap) = p (Pagiriamys Prrg)) = cos™ (™™, Hy) < "

REMARK 4.7. It follows from (22) and from the fact that the product of pro-
Jections Py Py Pyy has zero eigenvalues that both inequalities in (23) are sharp,
that is, each holds as an equality for some v € H,. Therefore, the present bound
7, the bound C in (21) from [5] an [6], and the bound from [16] on the convergence
factor of FAC, are all in fact equivalent to different bounds on cos(HZFb>™, 1,).

5. Asynchronous FAC (AFAC). In this section, we present a variation of
the FAC algorithm which decomposes into independent processes, and show the
relation of its convergence properties to those of FAC. The basic cycle of this
algorithm is defined as follows:

ALGORITHM 5.1. (AFAC [10]) Lei u € H, be the current approzimation to
u.
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Step 1. Compute ug;, from
Ugp € Hyp: alu — tgn, vap) = f(van), Yvan € Hap
Step 2. Compute u; and ws; from

up € Hy:  a(u —up,vi) = f(vs), Vo, € Hy,
wor € Hyp N Hy 0 a(u — wap, van) = f(ver), Yvan € Hap N Hy,

Step 3. Set u < u — (ugp — wap + up).

REMARK 5.2. The three equations in Steps 1 and 2 can be solved in-
dependently of each other, allowing for simultaneous solvers in a multiprocessor
computing system. In addition, when the equation for u; in Step 2 are solved ap-
proximately by the full multigrid method, an approximate value of ws;, is available
at no extra cost in the process of solving for u;. The algorithm as presented here
requires synchronization before Step 3. A completely asynchronous version of the
algorithm is obtained by avoiding Step 3 and adding the replacement

U U~ Uy
into Step 1 and the replacement
u < u — (up — wap)

into Step 2. Then both steps can be assigned to asynchronously running processes,
which requires only locking of memory locations during replacement.

LEMMA 5.3. The error e = u — u is transformed by Algorithm 5.1 according
to

e — €— (PHgil:-harm + PHh)e.

Proof. Writing f(v) = a(u,v), we have
Ush = —Pp,e, up=—Ppe, wy =—Py,ng,e.

The proof is concluded by noting that Py,, — Pg,pom, = Pganevarm. 0

Using Lemma 2.4, we obtain the following theorem. =

THEOREM 5.4. The convergence factor of AFAC (Algorithm 5.1 ) is the square
root of the convergence factor of FAC (Algorithm $.1 ). In particular,

o (T = Pugo = Pr) = 11 = Pygpacm — Pay | = cos(BE™, 1,) <.

Proof. By Lemma 2.4, the extreme eigenvalues of Pyopbem +
Pg, ate 1 — cos(HI™™™ H,) and 1 + cos(HZM™m 1,). Tt follows that
p (I ~ Prgvarm — Pgh) = cos(HZF™™ m). O

REMARK 5.5. This theorem and Lemma 2.4 are related to a result of P.
Bjgrstad [2], which gives a more complete characterization of the spectrum of the
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sum of two orthogonal projections using special properties of finite element spaces.
A paper containing a generalization of both Theorem 5.4 and some results from [2]
is in preparation [3].

REMARK 5.6. Both FAC and AFAC algorithms generalize easily to the
case of more refinement levels. Unfortunately, the theory does not carry over
immediately. A theory can be developed for the multilevel algorithm in certain
model situations [14]. A general multilevel theory for AFAC is the subject of
current research. For a convergence bound on a modified multilevel AFAC method,
see [9].

REMARK 5.7. The classical Schwarz alternating method is based on ge-
ometrical notions of partitioning and overlap, but it can be easily generalized to
subspaces [12]. In this way, the refinement methods treated here can be considered
as general Schwarz methods. In particular, FAC can be interpreted as the classi-
cal “multiplicative” Schwarz process applied to the subspaces H), and Hy;, with
“overlap” Hy, N H,. AFAC corresponds to an “additive” version of the Schwarz
method applied to Hzp, and Hy N (Ha, N Hy)t, which do not “overlap”.

These refinement methods can also be viewed as block relaxation schemes with
blocks corresponding to their respective spaces. Thus, FAC and AFAC can be in-
terpreted as block Gauss-Seidel and Jacobi methods, respectively. The relationship
between their convergence factors noted in Theorem 5.4 can be obtained as a direct
consequence of this viewpoint, cf. [10]. Truly asynchronous FAC corresponds to
the well-known method of chaotic relaxation. Finally, this interpretations shows
that the symmetrization of FAC as in [5] is analogous to the usual scheme for
symmetrizing relaxation that follows each sweep with another in reverse order.
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