CHAPTER 24

Multi-Block Euler Method Using Patched Grids*
Torsten Berglind?

Abstract. A general purpose Multi-block Euler Solver for Compressible flows MESC1 is devel-
oped. The Euler solver is of finite-volume type and uses explicit multi-stage Runge-Kutta time stepping.
The basic concept is to express all boundary conditions in terms of image values of the flow variables.
An arbitrary topology can then be specified by assigning boundary conditions on all outer surfaces of the
computational blocks. A windtunnel model consisting of a 65 deg round leading edge delta wing with a
sting is used as a test case. A patched C 1_continuous multi-block grid around the wing-sting configuration
is constructed by transfinite interpolation. The wing is enveloped by an O-O type of grid with parabolic
singularities at the wing tip, and the sting is enveloped by an O-O type of grid with polar singularities at the
nose and the tail , with a slit for the wing grid. This grid is divided into eight computational blocks, so that
each side of a computational block contains precisely one type of boundary condition. The flow at 106 deg
angle of attack and at a free stream Mach number of 0.85, serves as a test case. The computation of the flow
around a wing-fuselage shows substantially better agr t with red data than the corresponding
computation around a wing alone. This comparison serves as a first validation of the overall computational
procedure.

1. Introduction. In recent years, an increasing interest has been shown in flow com-
putations on complex flow regions such as a complete aircraft {9-12]. These flow regions
are too complex to be mapped onto a single-block grid, with reasonable skewness and grid
smoothness restrictions. Numerical methods using structured data, based on single-block
mapping, have to be extended to multi-block transformations. The advantage is not only
that grid smoothness properties are improved, but also that grid points can be concentrated
in regjons of interest more efficiently. The flow region is therefore broken into a set of blocks
where each block is a hexahedron in the computational space.The decomposition of the
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flow region implies that instead of one structured grid, a number of coupled sub-grids
are applied. The coupling introduces interface boundaries between contiguous blocks. Grid
lines of two adjoining regions may or may not align [8]. A more general type of interface
is overlapping grids. The disadvantage with overlapping techniques is that it is difficult to
preserve conservation. This work is restricted to patched C-continuous grids [12], which
means that continuity conditions are imposed on grid points, grid spacing and grid line
orientation at grid interfaces between adjoining blocks as well as any other grid point. This
implies that boundary grid cells at an interface boundary can be computed as interior
grid cells. Bookkeeping of the addresses of adjoining grid cells is needed at the interface
boundaries.

2. Grid Generation. A windtunnel model consisting of a 65 deg round leading edge
delta wing with a sting, proposed for the International Vortex Flow Symposium in Stock-
holm on October 1 to 3, 1986 [14], serves as a test case for the multi-block flow solver.
The sting is spool-shaped and is rounded off at the tail in order to enable an O-O topology
around the both the sting and the wing. The O-O topology is shown to be very efficient for
FEuler computations around delta wings [2,5] . The sting geometry is described in terms of
analytical expressions, whereas the wing geometry is described by spanwise cuts.

The purpose of grid generation is to distribute grid points in a way such that flow gradients
are resolved properly. Grid defects like sudden changes in grid line spacing or grid line
orientation as well as very skewed grid cells contribute to additional truncation errors. A
combination of high flow gradients and metric discontinuities may generate false vorticity
which can destroy the solution. The surface grid at the wing is generated by MESHP44, a
standard code [3] for grid generation around delta wings. Spanwise grid lines on the sting
surface must conform to both grid points, grid size and grid line orientation at the wing-sting
cut. Preliminary grid points close to the sting are generated by transfinite interpolation
based on the boundary grid points. The preliminary grid points are then projected onto

the sting surface [4] . The surface grid for the wing-sting configuration is depicted in Fig.
1 below.
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Figure 1. Surface grid for the wing-sting configuration

Besides the parabolic singularities at the wing tips and the polar singularities at the nose
and the tail of the sting an additional type of mapping singularity appears at the wing-sting
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cut at both the leading and the trailing edge. The farfield boundary is chosen as a half
sphere with a radius of five times the root chord of the wing. The corresponding surface
grid is generated in an algebraic fashion, Fig 2.

The interior grid is generated by transfinite interpolation using the far-field and configura-
tion surface grids and the configuration out-of-surface derivative as interpolation conditions
[1,2,4]. The sudden change in grid line orientation at the intersection between the wing and
the sting on the lower side propagates into the interior domain. The slope discontinuity is
smoothed out with a post processor.
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Figure 2. Oblique view of the 3D grid.

The topology described above is especially suitable for wing-fuselage configurations for
which the fuselage extends far from the wing, because you can add spanwise gridlines on the
nose and tail without increasing the size of the wing grid. The polar singularities implies
good resolution of the nose and tail where high flow gradients occur. Generally an O-0 grid
around a delta wing has a slope discontinuity where the spanwise coordinate lines meet the
symmetry plane. With a multi-block grid this can be avoided, i.e. the spanwise coordinate
lines are all essentially perpendicular to the symmetry plane. Finally, the resolution at the
nose and tail is very good due to the polar singularities. This is advantageous since very
high flow gradients appear in these regions.

3. Euler Flow Model. The flow is restricted to that of a perfect gas with globally con-
stant stagnation enthalpy ho, so that the static pressure can be derived from the Bernoulli
equation,

pz-;-np@ho-uz—vz—-wz) )

where u,v and w are the cartesian velocity components, p is the density and x = h—;—ll ,

(v= gﬂ) . The energy equation is therefore not needed, unless heat transfer is taken into
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account. The FEuler equations for compressible 3D flow can then be written in the integral
form as follows:

ag - ~ .
a—?dv+f (ng FX +ny FY +n, FZ)d$ =0 (2)
Q an
with,
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where 1 is an arbitrary finite region, and dS is the outward pointing normal surface
vector. The governing system of Egs. (2) is hyperbolic.

4. Numerical Method. The numerical method used to integrate the Euler equations
is a centered finite volume method for the spatial discretization together with an explicit
one-step four-stage time integration scheme [5-7]. Since only steady solutions are of interest
the local time step is used to accelerate the convergence to steady state.

4.1 Spatial Discretization. A centered finite volume discretization is obtained by
applyixhg the integral formulation of the governing Eqn. (3) to each grid cell and assuming

that %?— is constant within each grid cell and that the fluxes are constant across each cell
surface,

—

g . -
VOLijw 5+ Flug g = FlLigju+ FJjig 0
~F iyt PRy = FKogp 3 =0 (3

where,

FI=SIX FX + SIV FY + SIZ Fz

FI=SIX FX +8JY FY +8JZ FZ
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FK = SKX FX + SKY FY + SKZ FZ

are the integrated fluxes and, SIX, SIY, 81Z, SJX, SJY, SJZ, SKX, SKY and SKZ are the
metric coefficients, defined as the cartesian components of the cell surface vectors. The non-
integer indices refer to cell surfaces whereas integer indices refer to cell centers. Non-integer
index values of the fluxes FX, FY and FZ are taken as the arithmetic means of neighboring
cell centered values. Thus, the only quantities needed for the coordinate transformation are
the x, y and z components of the grid points.

4.2 Artificial Viscosity. The Euler equations need artificial viscosity to avoid nonphys-
ical shocks and sawtooth waves (with a wavelength of two grid lengths) in the solution. The
model for artificial viscosity uses a combination of a variable-coefficient second order differ-
ence operator and a constant-coefficient fourth order difference operator [6]. The artificial
viscosity terms are added to the semi-discrete scheme so that the resulting system becomes

%? = N(Q) — x (6:[SWI(Q)5:] + 8;[SWJI(Q)é;] + 8x[SW K (§)6:]))F~

—BCFL (6t +682+68) @ (4)

where N is a nonlinear vector function, y and g are filter constants, SWI, SWJ and SWK
are coefficients proportional to the second derivative of the pressure and §2 and §* are
second and fourth order centered difference operators.
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Figure 3. Merging of two blocks.

5.1 Multi-Block Implementation. To tailor new codes for each new topology is both
time consuming and increases the possibilities of errors that are difficult to find. A general
purpose multi-block flow solver greatly facilitates the application of the flow solver for
different topologies [11,12]. The basic concept is to add to each block extra laye}'s of .grid
cells outside the block, so that boundary grid points can be treated as interior grid points.
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Since the second order filter operates on the pressure, we need image values of not only the
flow variables but also the pressure.

Both the fourth and the second order filter requires two extra layers of image values
outside the flow region. Each image grid cell will share the same storage cell as an interior
grid cell of the contiguous block, Fig. 3. All anomalies of the scheme can then be located
to subroutines dealing with boundary conditions. Subroutines updating the time step,
flow variables and fourth and second order differences are completely symmetric in all
curvilinear coordinate directions i, -i, j, -j, k and -k. The decomposition of the flow field
into computational blocks is done so that each side of a computational block has precisely
one type of boundary condition [10,12]. This means that we introduce more computational
blocks than necessary but the handling of the boundary conditions is simplified. Subroutines
dealing with boundary conditions are written to handle any coordinate surface. This means
that the curvilinear coordinates can be chosen completely arbitrarily by specifying input
parameters.

5.2 Boundary Conditions. As mentioned above, all boundary conditions are to be
expressed in terms of image values of the flow variables outside the computational block.
In our case four different types of boundary conditions are applied: solid wall, symmetry
plane, inflow-outflow boundary and interface boundary.

Figure 4. Decomposition of the physical domain.

At a solid wall the mass flux is zero while the pressure forces balances the momentum
flux. As far as the fluxes are concerned, a symmetry plane boundary condition is the same
as a solid wall boundary condition. At the inflow-outflow boundary absorbing boundary
conditions [5] in their simplest form are applied. The governing equations are linearized
locally and the characteristic variables are computed in the normal direction. The char-
acteristic variables advected into the domain are fixed to the free-stream values whereas
those which are advected out of the domain are linearly extrapolated from the interior to
the boundary. The resulting set of characteristic variables is then transformed back to the
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primitive variables. The numerical boundary conditions for the second and fourth order
filters is described in ref. [6] .

Finally, we have interface boundaries between computational blocks contiguous in the
physical space. Since the same continuity restrictions of the computational grid are imposed
at block interfaces as for the interior grid, these boundary grid cells can be treated as any
other grid cell. The flux boundary conditions and the numerical boundary conditions for the
fourth and second order difference operators automatically fall out by using image values
from adjacent blocks. This can be obtained by either using indirect addressing and simply
assigning the same address for corresponding grid cells or by updating the image values
each stage of the time step. As shown in Fig. 4 above the flow region around the wing-sting
configuration is decomposed into eight blocks so that each block surface has precisely one
type of boundary condition. A schematic representation of the corresponding multiply-
connected computational blocks is shown in Fig. 5. An interface boundary is specified
by a pairwise enumeration of block surfaces contiguous in the physical space. However
two coordinate surfaces can be merged together in essentially four different ways. It is
consequently necessary for each coupling to also assign the type of merging.

— | -i® ®
- k{diofo kil
i i i
XN
b Ek -t
o)
KlddoL
i
O -1@ -i®
L ki A
i i i

Figure 5. Flow chart of couplings between computational blocks

6. Computational Results. The flow around the wing-sting configuration was com-
puted at 10 deg angle of attack and a free stream Mach number of 0.85. The grid contains
111,000 interior grid points and an oblique view of the grid was shown in Fig 2. The flow
calculations were carried out with x = 0.2, 8 = 0.01 and CFL = 1.0. The initial flow field
was extrapolated from computations on a coarser grid. Velocity vectors in three vertical
planes are shown in Fig. 6. The flow properies have been interpolated onto intersection
points between the grid and the plane. The velocity components have further been inter-
polated to an equispaced grid in this plane. The velocity vector plots show clearly the
development of the vortex on the upper side of the wing. Figure 5 reveals that the vortex

starts somewhere downstream of the 0.3 section.



292 Berglind

Measurements of surface pressure at a Reynolds number of 1.3 x 107 [14], have been
made along the previously mentioned chord sections. Computations around the wing-sting
configuration are also compared with a similar computation around a wing alone with
286,000 grid points [13]. The boundary layer in the experiment separates under the primary
vortex and rolls into a secondary vortex which reduces the strength of the primary vortex.
The suction peaks will therefore tend to be higher in the Euler calculations than in the
experiments.
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Figure 6. Velocity vectors at —=- = 0.3, 0.6, and 0.8 .

Figure 7 shows measured and computed C,— distributions at the sections —£— = 0.3, 0.6
and 0.8. As expected, it can be seen that for 0.3 section, the Cp— curve on the lower side
shows better agreement with experiment than the corresponding curve for the wing alone
computation. On the upper side of the wing the difference is very small between the wing
and the wing-sting computations. Also at the sections £~ = 0.6 and 0.8, the agreement
to the experiments is improved compared with correspoﬂ(oﬁtng computation around a wing
alone, especially on the lower side of the configuration where the sting extends most. An-
other thing that is striking is that the suction peak for the wing-sting computation is much
lower than for the alone wing computation. This can be explained by the fact that the
strength of the vortex grows with a better resolution i.e., with the number of grid points,
however the position of the vortex does not change. Also the absence of sharp bends on the
the upper Cp— curve for the wing-sting computation probably has to do with the coarser

grid. Finally a C,- distribution on the configuration surface can be seen in Fig. 8. Traces
of the vortex can be seen on the wing,

7. Conclusions. A general purpose Euler code which offers possibilities to compute
generic multi-block grid topologies by specifying just a few input parameters, is developed.
The multi-block grid approach is an important tool in generating efficient computational
grids around complex configurations, such as a realistic aircraft. The computational results
for a wing-sting configuration show that the grid topology used here efficiently resolves high
flow gradients especially at the nose and tail and captures the vortex on the upper side of
the wing. The grid topology is especially appropriate simple wing-fuselage configurations
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for which the fuselage extends far from the wing, such as space shuttles. Comparisons
between wing-fuselage and wing alone computations show, as expected, that the former gives
a better agreement with experimental values. Euler computations around more complex
configurations remains for the future. Even though the effort in describing the grid topology
to the Euler code is very small, the amount of work to generate a C!— continuous multiblock
grid is substantial. To get rid of the continuity restriction at grid interfaces would not only
facilitate the grid generation a lot, but also make it possible to refine the grid in each block
independently. A desirable extension for the future of the multi-block Euler code is therefore
implementation of a more general interfacing.
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Figure 7. Cp- distributions at the sections -2—= 0.3, 0.6, and 0.8.

Figure 8. C,- distribution on the upper side of the wing-sting configuration.
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