CHAPTER 28

Muitidomain Spectral Solution of Shock-Turbulence
Interactions

David A. Kopriva*
M. Yousuff Hussainit

Abstract. The use of a fitted-shock multidomain spectral method for solving the
time dependent Euler equations of gasdynamics is described. The multidomain
method allows short spatial scale features near the shock to be resolved through-
out the calculation. Examples presented are of a shock- plane wave, shock-hot
spot and shock-vortex street interaction.

1. Introduction. Spectral methods are global approximation methods in which
solution unknowns are expanded in polynomials which are the eigenfunctions of
a singular Sturm-Liouville problem. The primary advantage of these expansions
is the rapid rate of convergence for problems with smooth solutions. However,
the global nature of the approximation can also be a drawback. In particular,
it 1s difficult to handle complicated geometries and to resolve locally important
features.

Domain decomposition is one way to avoid the disadvantages of global ap-
proximation functions. The need for global mappings is eliminated when a com-
putational domain is broken down into several smaller subdomains. It also be-
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comes easy to resolve important features of a solution since expansions of differ-
ent orders can be used in different subdomains. The use of multidomain spectral
methods for these purposes can be found, for example, in the papers by Kopriva
[4,5].

In this paper, we use domain decomposition and grid refinement to resolve
short spatial scale phenomena which are generated during a shock-plane wave, a
shock-hot spot, and a shock-vortex street interaction in two spatial dimensions.
For the shock-plane wave problem, we use Chebyshev- Fourier collocation within
each subdomain. For the other problems, Chebyshev-Chebyshev collocation is
used.

2. Shock Interaction Problem. We assume that the initial state of each
shock interaction problem is a uniform gas, rapidly moving from left to right,
which terminates in an infinite, normal shock. To the right of the shock, the gas
is quiescent except for some specified fluctuation. This fluctuation might be a
pressure. vorticity or entropy perturbation (or any combination of the three). As
time progresses, the shock moves to the right and passes through the fluctuation.
A result of this interaction is that the strength of the perturbation may be
amplified or damped. A wave of one given type may also generate travelling waves
of the other two types. The important feature of these waves from a numerical
point of view is that while entropy and vorticity fluctuations move with the gas,
sound waves move at the sound speed relative to the speed of the gas. This means
that, spatially, there are two length scales associated with features generated by
the shock: one corresponds to acoustic responses which will move far from the
shock, the other is associated with entropy and vorticity responses which remain
near the shock. A detailed discussion of the shock-turbulence interaction problem
can be found in Zang, Hussaini and Bushnell [9].

The shock is handled by fitting it as a moving boundary. In the streamwise
(z) direction the computational domain consists of the continually expanding
region between the moving shock and a fixed upstream boundary at which inflow
boundary conditions can be applied. In the computational domain. we model the
gas by the inviscid Euler gas-dynamics equations. Because the shock is fitted,
it is appropriate to write the equations in non-conservation form in terms of the

logarithm of the pressure (P). velocity (u,v) . entropy (s) and temperature (T)
Pi+uP, +vPy+ yluy +v,) =0

Uy + uy + 0oy + TP =0 (1)
0

v+ uv, 4+ vey + TH,
sy - usy + vs, =0

For the ratio of specific heats, 4. a value of 1.4 is used.

Previous numerical simulations of shock-turbulence interactions have in-
cluded finite difference calculations by Zang. Hussaini and Bushnell {9]. Pao
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and Salas 6] also used a finite difference method to compute the related problem
of the generation of sound waves by a shock-vortex interaction. Single-domain
spectral solutions to the shock-turbulence and shock-vortex interactions were
reported by Salas, Zang and Hussaini [7], Zang, Kopriva and Hussaini [8] and
Hussaini, Kopriva, Salas and Zang [3]. In each case, the use of the expanding
computational domain meant that the effective resolution of the grid and the
accuracy of the solution decreased as the calculation progressed in time.

3. Multidomain Strategy. Figure 1 illustrates the use of domain decomposi-
tion to allow for grid refinement near the shock when the moving shock is fitted.
The region between the fixed inflow boundary and the moving shock boundary
is divided into a number of strips (subdomains). The interface positions are con-
stant in the vertical direction, but vary in time to allow them to move with the
shock. In this way, constant grid resolution can be maintained near the shock
where the short scale effects of the interaction occur.
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Figure 1. Diagram of the computational domain for the shock-turbulence
nteraciton

Because the flow to the right of the shock is completely determined by
a specified perturbation of a quiescent gas. we compute within a semi-infinite
region between the shock and an arbitrarily placed upstream boundary = = hy.
For notational purposes. we will denote the shock position by hx(y,t). The
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extent of the region in the vertical direction is —x < y < oc. We subdivide
the region between the shock and the inflow boundary into K strips by placing
interfaces at positions & = h;(y,t), 7 = 1,2,..., K — 1. Each subdomain is then
mapped onto a unit square. In the streamwise direction, we use the mapping

(T - hi—l(ya i))

X =
(hz(yaf) - hi—l(yat))

(2)

The mapping in the vertical direction depends on whether the problem is periodic
or non-periodic. The shock-plane wave interaction problem is periodic in the
vertical direction. For that problem we use

Y =y/L (3a)

where L is the vertical length scale. For the other problems, we use the mapping

1 Y ‘
V=-14 ——= (3b)
2 ( Vel +y? )
where a is a parameter which governs the clustering of the grid points near y = 0.

In the mapped coordinates on each subdomain, eq. 1 can be written as the
system

Q:+AQx + BQy =0 (4)

where Q = [P u v s]T. The coefficient matrices are

U 4X, X, 0 VoY gy, 0
TX, U 0 0 TY, V. 0 0

4 __ xr : d B~— ; .
A=lrx, o © of TY, 0 V 0
o o0 0 U o 0o o0 V

where the variables [[ and V represent the contravariant velocity components
U7V=X,+uX,+ v Xy and V = uY, +vY,.

Within each subdomain, the solution, Q, is approximated by a grid funct%on,
Qi;, at a finite number of collocation (grid) points (X;.Y;). In the X direction,
the collocation points are the nodes of the Gauss-Lobatto-Chebyshev quadrature

rule mapped onto {0.11:

X, = ~1;(l —cos(im/N)) 1=0,1..... N (5)

In the vertical direction, the uniform grid

Y, =j/M =01 M (6a)
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is used for the plane wave interaction problem. For the others, the Gauss-Lobatto
grid .
Y; = 5(1—cos(j7r/.M)) j=01,...,M (6b)

is used.

Each derivative of @ at the grid points is approximated by the correspond-
ing derivative of the spectral interpolant which passes through the Q;;’s. For
problems which are periodic in the vertical direction, this interpolant is the
Chebyshev-Fourier expansion

N.M/2-1

QX Y, t)= Y Qp()Tp(2X — 1)e”™e¥ (1)

p=0,g=—M/2

Problems which are periodic in neither direction require a Chebyshev-Chebyshev

expansion
N,M

QXY )= Y Qpa()TH(2X — )T (2Y — 1) (8)

p::(],q::()

For details, see Canuto, Hussaini, Quarteroni and Zang [1].

Five types of boundary conditions are required. At the far right is the shock
boundary which is fitted in the manner described by Pao and Salas [6]: An
ordinary differential equation is derived for the motion of the shock and this is
integrated along with the interior equations. At the inflow boundary on the left, a
characteristic boundary condition is used. If the inflow boundary is subsonic, the
velocity and entropy are fixed in time. The pressure is computed by integrating
the compatibility equation

P, = (U = aX,) (Lux - Px) (9)

which is derived from the pressure and momentum equations and is written in

terms of the sound speed. a = /v7'. If the boundary is supersonic. all variables
are fixed in time.

The boundaries at infinity for the non-periodic problems are actually bound-
aries at large values of y. There, the velocities and the entropy are computed from
the interior approximation. The pressure is determined by extrapolating along
a characteristic projection normal to the boundary in the manner described by
Gottlieb, Gunzburger and Turkel [2]. Periodic boundary conditions are handled
trivially by the Fourier approximation.

At an interface, the approximation to the X derivative uses a weighted
average of the derivatives from the left and right sides. We write

Qi+ AT Q% + ARQ% + BOy =0 (10)
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where QI,?, Qﬁ are the spectral derivative approximations from the left and
the right. Since the problem is hyperbolic, it is necessary that information is
propagated in the proper directions. Thus, a characteristic weighting is necessary
and the left and the right coefficient matrices are written as

AP =1/2(4 + |A]), AR =1/2(4- 4]
The matrix absolute value is defined as
|4| = Z|Aj1Zz7?
where Z is the matrix of the right eigenvectors of 4 and A is the diagonal matrix

of eigenvalues. For the problem solved here, the matrix absclute value at an
interface is quite simply

AP +A7)  A/a(At =Xy 0 0
CLla/y(AT =27y (AT A7) 0 0

4=3 0 0 20 0 (11)
0 0 02X\

where A* = U/ + aX, and \° = [" are the eigenvalues of 4.

3. Applications.

3.1 Shock-Plane Wave Interaction. The first application that we consider is
the interaction of a Mach & supersonic shock with a plane pressure wave. Ahead
of the shock, the pressure perturbation is given by

pl — ﬁ(j(k-X»u}f) (12)

where the vector k = k(cos(#),sin(8)) is the wavenumber vector. w is the fre-
quency and 3 is the amplitude. The angle of incidence. #, is measured normal to
the shock. See Zang et. al [9' for a detailed description of this problem.

To avoid overshoots associated with an abrupt start of the wave, the ampli-

tude, 3, is multiplied by the factor

3(1/t5)% — 2(t/ts)> 0<t <t
s{t) = {1( /ts) et (13)

The startup time, ,. is chosen as 1/2 the time it takes the shock to encounter

one full wavelength of the incident wave.

Linear theory predicts that the pressure wave will be amplified and diffracted
by the shock. Also, a plane vorticity and entropy wave will be generated. We can
define the pressure transmission coefficient as the ratio of the refracted to incident
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pressure wave amplitudes. The vorticity or entropy transmission coefficients are
the ratio of the generated wave amplitude to the incident pressure amplitude.

Fig. 2 shows the pressure and vorticity transmission coefficients at ¢ = 0.2
for a 10% (8 = 0.1) amplitude pressure wave incident at 30° to the shock. Three
subdomains were used, each with 16 horizontal and 8 vertical grid points. At
the time indicated, the interfaces were at # = 0.7 and « = 1.5. The transmission
coefficients were computed at each grid line in z from the first coefficient of the
Fourier transform of the solution in the vertical direction. Compared with the
computed solutions are the predictions of the linear theory.
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Figure 2. Dependence at t = 0.21 of acoustic (left} and wvorticity
(right) responses to an acoustic wave incident at 30° to a Mach 8

shock.

The computed responses clearly occur on two different length scales, the
extent of the vorticity behind the shock being roughly one fourth that of the
pressure. Nevertheless, it was possible to resolve the vorticity wave with eight
grid points in the horizontal direction. This high resolution is necessary because
the vorticity is computed from derivatives of the flow variables. Single domain
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calculations show noisy transmission coefficient profiles for the vorticity (8,9].

3.2 Shock-Hot Spot Interaction. A physically more complex problem is the
interaction of a shock with a temperature spot. In this case, the temperature
ahead of the shock is prescribed by

(a)

(b)

©

Figure 3. Grid (a), Vorticity confours (b) and vm’ocil‘y’veciors {c} for
the 25% hot spot interaction with a Mach 2 shock at time t = 0.5.
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T(e,y) = 1 4 ee (z=#) 9" ]/207 (14)

where ¢ is the maximum fractional temperature perturbation, (z,,0) is the center
of the spot and o is its width. For this simulation, we chose ¢ = 0.25, z, = 0.5,
and o = 0.1.

Figure 3 shows the grid, vorticity contours and velocity vectors at time,
t = 0.5. Again, three subdomains were used, this time with 15 herizontal and 40
vertical grid points in each. What is actually shown are the results on a portion
of the grid near the shock and hot spot covering the physical space rectangle
[—.25, 1.25] x [—.5, .5]. Notice the strong counter-rotating vortices which have
been generated by the shock. A weaker set also appears to have been generated
even closer to the shock.

3.3 Shock-Vortex Street Interaction. In this case, the initial perturbation
ahead of the shock is a vortex field. The stream function for this field is

y = ;;log [cosh (g;\ 72 4 (y + 6/2)° — cos (g; (z + c/2)) )} (15)

Figure 4. Vorticity contours ai t = 0.36 for a Karman vortex street
after interaction with a Mach 1.3 Shock.
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The circulation, core radius, shock Mach number and vortex separation param-
eters used were k = 0.186, r = 0.1, M, = 1.3, ¢ = 0.33 and b = 0.048 to

correspond to the single domain calculation of Salas, Zang and Hussaini [7].

Figure 4 shows the vorticity contours of the shock-vortex street interaction
at time, ¢t = 0.36, for a three subdomain calculation. Within each subdomain a
15 x 40 grid was used. Notice the longitudinal compression and lateral elongation
of the vortex field behind the shock. The results are also quite smooth. This is
to be contrasted with the single domain calculations of [7] which required strong
filtering every 160 time steps and still produced solutions which were not smooth.
No artificial smoothing was required for this multidomain calculation.

4. Summary. The solution of three simple shock-turbulence interaction models
has been described. Each problem has the characteristic that the length scales
associated with the pressure and with the entropy/vorticity are substantially
different, thus making it difficult to resolve them efficiently in the horizontal
direction with a single Chebyshev grid. By using domain decomposition it was
possible to resolve these two length scales.
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