CHAPTER 12

Multiplicative and Additive Schwarz Methods:
Convergence in the Two-Domain Case*

Petter E. Bjorstad!

Abstract. We consider the classical Schwarz alternating algorithm and an additive version more
suitable for parallel processing. The two methods are compared and-analyzed in the case of two do-
mains. We show that the rate of convergence for both methods, can be directly related to a generalized
eigenvalue problem, derived from subdomain contributions to the global stiffness matrix. Analytical
expressions are given for a model case.
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1. Introduction. Recently there has been a strong revival of the interest in do-
main decomposition algorithms for the solution of elliptic problems; cf. e.g. Glowinski
et al [12], and Chan et al [7]. This is to a large extent due to their potential in parallel
computing environments.

Substructuring methods, with a long history from the structural analysis com-
munity [20,1}, are methods where the global domain is partitioned into disjoint (non-
overlapping) pieces. More recently, the use of iterative methods for this class of
problems, has been investigated, see [3] and [6] and the references given in those
papers.

In a famous paper more than hundred years ago, Schwarz [21] developed his do-
main decomposition algorithm, based on computing the solution of two overlapping
subproblems in an alternating fashion. This algorithm is therefore quite sequential
in its original form, and not necessarily the best candidate for a parallel implementa-
tion. More recently P. L. Lions [14,15] has obtained a number of interesting results on
Schwarz’ method and inspired new work on this type of algorithms. His reformulation
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of the classical method in terms of orthogonal projections has motivated the develop-
ment of an alternative additive algorithm, see [11]. This particular formulation was
apparently first described by Matsokin and Nepomnyashchikh [17].

Grid refinement algorithms can also be formulated and analyzed using orthogonal
projections see the papers by Dryja and Widlund [24} and Mandel and McCormick
[16]. The close relationship between Schwarz type methods, iterative substructuring
methods [3] and promising iterative grid refinement algorithms; cf. e.g. McCormick
et al [18,19,13] and Bramble et al [5]. has only recently been realized.

As a beginning contribution to the analysis of these algorithms, we will derive
precise relations between the classical (multiplicative)} and the newly proposed additive
Schwarz’ methods in the case of two domains. We will do this by expressing the
relevant orthogonal projection operators in terms of elementary contributions to the
global stiffness matrix from the subdomains.

A model problem and the necessary notation is described in section 2. We review
the classical Schwarz algorithm, including its variational form in section 3. The re-
lated additive form, is introduced in section 4. Since this algorithm is relatively new,
we also describe some implementation details. In section 5, we explicitly compute
the projection operators introduced in section 2, in terms of stiffness contributions
from the individual subdomains. It is important to note that this derivation is quite
general, and valid for any geometrical shape of the domains. This leads to a decom-
position of the spectrum giving a precise relationship between the multiplicative and
the additive algorithm. We also note that the classical Schwarz’ algorithm is identical
to a method recently proposed by Chan and Resasco [8,9]. A closed form expression
for the eigenvalues as a function of the geometry of the subdomains can only be given
for special cases. We give the eigenvalues as a function of the aspect ratio, for the case
where  is rectangular in section 6. Section 7 contains a few numerical experiments,
confirming the theoretical results.

2. Notations and Preliminaries. To simplify our presentation, we assume
that the elliptic operator is the Laplacian and that we have a zero Dirichlet condition.
Thus,

(1) —Au = f in 0,
u = 0 on 0f2.

The region Q is bounded, two- or three-dimensional, with a Lipschitz continuous
boundary. Our algorithms and results can be extended immediately to linear, self-
adjoint elliptic problems. We use a variational formulation of the problem, which, as
shown by Sobolev [22] makes the maximum principle superfluous.

In variational form equation 1 is written as

ag(u,v) = /Q Vu-Vode = /;lfv de = f(v), Vv € H}{Q),
where the solution u € Hj(€2), the closure in the Sobolev space H!(£2) of the space of

smooth functions which vanish in a neighborhood of 8Q. As always, the space H(f2)
is the subspace of L,(Q) for which | u 1129'1 (@) = @(u,u) is finite. In our analysis we work
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Fig. 1. The partition of the domain.

exclusively with the inner product defined by a(-, -). Thus in this paper orthogonality
and symmetry always refer to this inner product.

In this paper we consider domain decomposition algorithms with two overlapping
subregions Q) and Q3. We also use the notations Q; = 2\ ﬁ(z), where T is the
closure of Q®), Q, = Q\ O and O = QN Q. The region 2 is thus also divided
into three nonoverlapping subregions €y, )y, and 3 which are separated from each
other by the curves (or surfaces) Ty = 4, N Q3 and ['s =0, N85, In figure 1 on the
left, we display separately, the two subregions from which Q is built and on the right
the partitioning of € into the five subsets just defined. We assume that Ty and T
follow element boundaries, that they are Lipschitz, and that they intersect only in at
most a few points (or along a few curves).

The problem is discretized by finite elements in the customary fashion; cf. Ciarlet
[10]. The region Q is triangulated and a conforming finite element space V* C H}(Q)
is introduced. We assume that all the elements are shape regular, i.e. there is a bound
on hg/px which is independent of the number of degrees of freedom and of I{. Here
hy is the diameter of the element K and pg the diameter of the largest sphere that
can be inscribed in K. The approximate solution u; € V* is defined by

(2) ag(up,vh) = f(vh) N Vo, € Vi,
We note that the exact solution to the discrete problem is given as up = Pysu,

the orthogonal projection of the continuous solution u € HE(Q), from H}(Q) into VA,

3. The multiplicative Schwarz’ algorithm. We return to the continuous case
and write down the Schwarz algorithin in its traditional form. There are two fractional
steps. Let u® be the n-th iterate. Then the updated solution u™*! is determined by,

—Au™? = f in QW
urti2 = g on 80N N 9Q,
w2 = 7 on Ts,
and,
—Autt = f in Q)
utt = 0 on 30 N 89,

uttt = 2 on Ty
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Following P. L. Lions [14,15], we write these equations in variational form. This
formulation is also valid in the discrete case.

ag(up™? —uf,v) = f(oa) - aa(uf,vn)

= ag(up —uf,vs), Yo, € VEn HY(OQW),
ag(uftt —ult 2 v) = f(on) — ag(upt?,op)

= ag(uj — u2+1/2. vn) Y vy € VN HHQO).

Here u]™/? —up € HY{(QW) and uj™! — uit? ¢ H1(Q®), since the boundary values
do not change from one fractional step to the next. The equations can now be restated
using orthogonal projections,

2
upti? oy

1/2
wPtt —

il

Pl(uh - “2) 3

Pyup — u;f"'l/g) ,

I

where P; , i = 1,2, is the orthogonal projection of V* into V; = V*n HL(Q?). The
error e} = u} — uy satisfies the relationship

el = (I - B)(I - R)e; = (I~ (P + P~ PyP)))e}.

In a certain sense Schwarz’ method is therefore a straightforward iterative method of
solving the equation

(3) (Py+ P, — BP)up = g,

for a certain right hand side g,,.

4. The Additive Schwarz’ Algorithm. The product term P, P, in 3 prevents
a straight forward parallel implementation, although many subdomain computations
can be carried out simultaneously in the case where the classical algorithm is ex-
tended to many subdomains. Assuming that we can solve linear systems involving
polynomials in P, and P, it is natural to consider alternatives to equation 3.

'The simplest, additive form of Schwarz more suitable for parallel processing, ap-

pears by simply removing the product term in 3. We are then faced with solving the
system

(4) (P + Pup = g,.

In order to retain the same solution u,. the right hand side g, in 3 has changed
to g;. In order to use 4 for the computation of uj,, we must first find this new right
hand side g,. Fortunately it is computable from solving subproblems on the individual
subdomains. We compute g, by writing

Ga = D 0i
i
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where g; € V; and each g; solves the subproblem

a(gi;vn) = a(up,vy) = f(vy) Vo, € Vi

Once the appropriate right hand-side g, has been computed, we can apply a
conjugate gradient iteration (working with the K-inner product) to solve 4 with no
further preconditioning. This strategy requires a procedure for computing the prod-
ucts vy, = Pywy, for a given function wy. Let us consider this problem in some detail
for the subdomain QM corresponding to 7 = 1. The orthogonal projection Pywj; of
wy, on Vi, is defined by

ag(Pywp, ) = aq(ws, 0), V0, € W3,

and Piw, € HY(QW). If we write w, = Pywy + Wy, we conclude that @, must be
harmonic in Q) and have the boundary value wy, on I's. We must take @, = 0 on the
rest of the boundary 80 N QM. Clearly, wy, = wy, in R\ Q,, making v, = 0 outside
§11. The conjugate gradient iteration for solving 4 therefore requires the computation
of a harmonic function on each subdomain in every iteration. All the subdomains can
be processed in parallel. A representation of the projection operator in terms of the
discrete matrix operator of the appropriate subdomain can also be given. Let K be
the global stiffness matrix for the problem on  and let K be the corresponding
matrix for a problem on Q). We define the correspondence between the discrete
finite element functions v, and wj; and the vectors of nodal values y and z in the
usual fashion. If the nodal unknowns are numbered appropriately, we can write:

()
y=P,-.1:=(AO S)Kx.

5. Representation of the Projection Operators in terms of Block Stiff-
ness Matrices. The computer program implementation of the finite element method
most often uses the so called subassembly method when building the matrix corre-
sponding to the discrete, global problem. This principle is based on the observation
that the bilinear form in 2 can be written as a sum of bilinear forms over disjoint subre-
gions as expressed in equation 6 below. In this way contributions from the elementary
elements can be added to form substructures of the full model, the substructures can
again be added to form the full matrix.

The same concept is very useful in the study of certain domain decomposition
methods. Many properties of these algorithms can be understood and interpreted in
terms of the stiffness submatrices corresponding to the subdomains into which the
domain has been decomposed [3].

With subvectors and subscripts corresponding to the degrees of freedom associ-
ated with the open sets Q;,; and §2; and the curves (surfaces) I'y and T's, the entire
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discrete problem can be written as

I\’u 0 0 I&'14 0 I b]_

0 I{gg 0 -0 1(25 I b2

(5) Kz = 0 0 Ii’33 I\’34 1(35 T3 = b3
I&’ﬂ 0 IXL’A 1{44 I\"45 T4 b4

0 Ii,gTs KT 35 IX,}; I(ss Ts b5

As always the elements of I are given by a(¢;, ¢;) where ¢; and ¢; are finite
element basis functions. The zero blocks are a consequence of the fact that, when
using standard finite element basis functions, there is no direct coupling between Q;
and £, etc..

Since the bilinear form is defined in terms of an integral,

(6) . aq($i, 8;) = ag(%i, 6;) + aq\a(9i, 6;),

for any subset @ C . We note that for a pair of basis functions associated with
8%, we get contributions from both terms. Thus, for example the submatrix Ky in
5 can be written Ky = K} 14 )+ Iy 3 where K 44 is the contribution from triangles in
Q; ,2=1,3.

Using the procedure to compute v, = Py, described in the previous section,
we can easily derive explicit expressions for the operator P; itself. We first introduce
some notations for Schur complements that frequently occur in the calculations to
follow. Schur complements arise quite naturally in block Gaussian elimination and
play an important role in the analysis of iterative substructuring methods as well [3].
We define the Schur complement S](-l) as the Schur complement corresponding to the
domain £2; with respect to the interior subdomain boundary I';, as follows:

S =KW - KIK;'Ki;, j=4,i=13 and j=35,i=23.

In a similar way, we define ng) to be the Schur complement corresponding to the
entire region Q2 = Q, U Q3 U T with respect to T'y. It is of the form

1

I\’22 0 I\,25 - 0
5‘22) = I\:&i) —_ ( 0 I&‘g; I&’45 ) O IX’33 I{gs I{34
KL KL K KL

We also define
545 = I\-45 — I\-g;j&’:%ljx’gg,

and write Sy = S + 5 and S; = SI + S We can now write down an explicit,
block matrix representation for the projection operators.

I 000 Cy Ty
0000 O Ty
P].T‘—‘ 00710 B4 I3
0 0 0 I Ay x4
0000 O rs
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and
000 O O 1
0T 0Cs O T
P2$ = 00 I B5 0 Z3
0006 O O T4
000 .‘15 I Ts

We have introduced the quantities A; , B; and C; , ¢ = 4,5 in order to simplify
the notation. These quantities are defined as:

A.4 = 511545
As = S;71s%
By = K33 '(Kss — K3sAy)

B5 = Ix'gg—l('.[\.g;l — I{35A5)
C4 “Ik’u -t IX’14A.4
05 = “IX’QQ—II\’25.4.5.

We can now find the matrix representation of the operators defined in 3 and 4,

I 00 0 C4
0 0 Cs O
(7 P+P,=|0 0 2I B; B,
00 0 I A
00 0 45 I
and
I 000 Cy
0 I 00 —A4Cs
(8) P+P-PP=|0010 -ABs
000 I Ay
0 0 0 0 I-—AsAy

We observe that 7 is 2 by 2 block upper triangular with an invariant subspace
corresponding to the unknowns on the two interior interfaces I'; 7 = 4,5, while 8
is block upper triangular. The spectra of the operators are readily available and we
observe a very simple relationship between the two. Let the number of unknowns on
QiorT;beN; 1=1,2,3,4.5.

In the additive case. we have Ny + N, eigenvalues equal to 1 and N; eigenvalues
equal to 2. The remaining eigenvalues have the form 1+ y; where u? is an eigenvalue

of
Asdgys = 1‘2315
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or in terms of the Schur complements
(9) 51557 Susys = p’ Ssys.

One should note that if Ny # N, then there will be |[N5 — N4| additional eigenvalues
equal to one. This observation may be important in cases where there is a significant
difference between the number of points on I'y and I's. Only the smallest number of
unknowns (shortest boundary) on the two interfaces will contribute nontrivial eigen-
values to the operator.

The algorithms presented in this paper and the finite element framework provided
the motivation for this work. We have obtained a complete characterization of the
spectra of the two operators from 3 and 4. It is possible to obtain a similar character-
ization for projection operators in general, we refer to a joint paper with J. Mandel
[2] on this topic.

The matrix 7 is only symmetric in the K-inner product, for completeness we
therefore include the explicit representations of 7 and 8 multiplied by the global
stiffness matrix K.

I{II 0 0 I\’14 0
0 IX-22 0 0 1{25
(10) I{(Pl + PQ) = 0 0 2.[&’33 2]{34 2]{35

1&14 0 7[\’34 1{44 + D4 2I{45
0 1\25 7I&35 2[\:{5 1{55 + .D5

where

Dy = KE, K3 Kay + S45551 S
and

Ds = K3 K3 Kas + SS7* Sss.

For the multiplicative case,

IX—H 0 0 I\’H 0
0 Ly 0 0 IX—25
(11) I{(Pl + P — PQPl) = 0 0 IX’33 1(34 1(35
KT 0 K% 34 Ky Ky + Eys
0 KL KL KL Iss.

with
Eys = Sys(I — AsAy).

We observe that the matrix 10 is symmetric and that the entries corresponding
to Q3 have been multiplied by two as should be expected. Except for this, the matrix
is different from K only by the addition of a symmetric, positive definite term to each
of the block diagonal positions representing the two interior interfaces. The matrix 11
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differs from K only in the (4,5) block position. The matrix is therefore unsymmetric.
Notice that the correction term is closely related to 9.

It remains to show that y in 9 is bounded away from one, independent of the
discretization. Consider the generalized eigenvalue problem

(12) (58 + 5ey = M + 5 )ea.

This problem arises if we consider the (non-overlapping) domain decomposition
of Q into Q@ and Q, with the common interface I'y. If 5 is reduced by block Gaussian
elimination, to a system on I'y only, and this system is preconditioned by the Schur
complement resulting from a similar reduction of the equations on Q1) to I'y, then
Amaz/ Amin 18 the relevant condition number of the iteration operator. We can establish
uniform lower and upper bounds on the corresponding generalized Rayleigh quotient
by using:

:'C4Tsii)$4 S C$4T5£j)$4 N Vl‘4, Z,] = 1, 2, 3.

Proofs of this so called extension theorem are given in [3] and [23]. The constants in
these inequalities depend only on ©,, Q, and Q3.

It should be noted that this iterative method has recently been proposed by Chan
and Resasco [8,9]. Their results show that this method is quite robust, when applied
to certain model problems, having subdomains with large aspect ratios, in the sense
that the rate of convergence seems to be independent of the aspect ratios. As opposed
to this, it is shown in [3] that the so called Neumann-Dirichlet algorithm do have a
weak aspect ratio dependent rate of convergence.

We remark that the Neumann-Dirichlet algorithm [3], results when the precondi-
tioning in 12 contains the term Sf,l) only. A simple calculation will show that

2 3 1T
5@~ s _ 5,.5:18T.
Substituting this into 12 gives
A=1-u?

where p? solves the eigenvalue problem 9.

We have therefore shown that 1 — i? is uniformly bounded from below and above
independent of the discretization. This observation shows that the classical Schwarz’
algorithm can be reduced to a symmetric form on the subspace corresponding to the
interface I'y, and accelerated by conjugate gradients. At the same time this argument
shows that the method proposed by Chan and Resasco is nothing but the classical
Schwarz’ method accelerated by conjugate gradients. We refer to a joint paper with
Widlund [4] for a more detailed discussion of this point.

The condition number of the iteration operator providing an upper bound on
the number of conjugate gradient iterations in order to achieve a given tolerance, is
(1 + p1)/(1 — p1) for the additive method. From 8, it follows that the appropriate
eigenvalues are 1—pu? in the multiplicative case. The condition number of the iteration
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operator is therefore 1/(1 — u?) in this case. It follows that the condition number of
the additive method is bounded by 4 times the condition number of the multiplicative
method. We conclude that the number of conjugate gradient iterations needed in the
additive method in order to achieve a given tolerance, cannot be more than twice the
number of iterations when using the multiplicative algorithm.

This result is somewhat negative, showing that in the worst case we would solve
a problem using the additive algorithm and two processors in the same time as one
processor would run the multiplicative algorithm. Domain decomposition clearly de-
pends on having (many) more than two subdomains in order to be efficient on parallel
processor systems. Unfortunately, the analysis presented in this paper does not extend
easily to the case of many subdomains.

6. Exact Results for a Model Problem. The results of the previous section
are quite general, they do not depend on the shape of the various domains, the
particular discretization, or the specific form of the elliptic equation. The actual
numerical values of the spectra and in particular, the condition number of the iteration
operators can, if necessary, be computed from equation 9.

More details can be given in model cases only. We will in this section derive the
exact values for the rectangular model problem. Study of model problems can lead to
a better understanding of the influence of the relative sizes of the subdomains on the
rate of convergence. We consider the rectangle shown in figure 2. The domain has ¢
interior nodes in the vertical direction, while there are r , n—I—1, and ! interior nodes
in the horizontal direction of 2;, Q; and Q3 respectively. We use linear triangular
elements, this discretization is equivalent with the well known 5-point finite difference
stencil. The notation in this section will be consistent with the paper [3]. Let

3s

Aig = 4sin(9 ¥, i=1,2,. ¢,

20q +1)
and
Gy = 14 Nig/2 — (Nig + (Mig/2)%)2.

The quantity a;, appears frequently in the analysis of model problems using Fourier
analysis. It is bounded by

3——'2\/§<a,-q<1.

r= n=13

000008 PO0BSOEBBOELSEIOENEOGEIDISE
1=6 L
®
y O Ty Q3 T 2, $|a=7
L ]
X .
1-z Z

Fig. 2. The model problem geometry.
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Using a derivation very similar to the one in section 4 of [3], we proceed to diagonalize
the eigenvalue problem 9. After a rather tedious calculation one obtains the following
exact formula for the eigenvalues y;:

2r¢ . 2n+4 2044 2n+2 2042
(13) /142 _ a’iq (aiq - aiq — aiq + aiq
t T ore 2n+2l46 2044 2n+2 -
Qiq (aiq — Q@ ) — O +1

We observe that [ = n ie. full overlap gives u; = 0 and one can derive the upper
bound

‘7a2
Hi < - .
S D0+ a, 1 —ay)

The bound therefore decreases with the size of the overlap as 1/(I + 1), where [ is the
number of interior nodes in the x-divection, inside the overlap subdomain 3.

We can also compute the eigenvalues u? in the continuous limit as the discretiza-
tion parameter i = 0. We scale the rectangle to unit length and introduce the relative
sizes z,Y, z as indicated in figure 2. The eigenvalues are

(ea,z _ eal)(eo,: + eo )(6‘)'3 _ ea.r)(ea,z + ea,r)
(ea,'z _ 1)(60‘,: +1)(e™ — 6&‘;(1‘-*-1))(6&.‘2 + e&;(x+1))

(14) pi=

where we write o; = im/y. It turns out that 14 is a very good approximation to 13 for
almost all interesting cases. The example in figure 2 has u; = 0.06, while an overlap
corresponding to only one grid line in the figure, increases u; to 0.67 .

7. Numerical Examples. We give a few numerical results to confirm the the-
oretical results and to give the reader an idea of the performance of the algorithms.
For simplicity, 2 is the union of two rectangles.

We use a uniform mesh spacing h = 1/256 with the size of {; being .75 by .5,
and Q2 extending 3/16 above and 5/16 below Q, see figure 2. This gives a total
of 40449 unknowns, with 127 along I'y. We consider the same problem as in [3] with
the exact solution u(z.y) = 22 + y* — ze” cos y. The number of iterations required to

92

Fig. 3. The computational domain.
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reduce the initial error to the truncation error level (a factor of 3-107°) are reported
both for the classical Schwarz’ method and for the additive version. The conjugate
gradient method is used in both cases. We create the overlap {23 by extending the
rectangle Q; a distance z into Q. Table 1 gives results for six different sizes of (2.
The first column is the overlap length z. Column 2 shows the largest eigenvalue py,
the next two columns give the condition number and the number of iterations Npn,
for the multiplicative method. Column 5 and 6 have the same information for the
additive method. The last column lists £ in the continuous limit, for the rectangular
model case just studied, with y = .5 and Q) being an extension of £ of length .25.

1 T 1+p R
X m| 1o N, —1-1_”1 No| 19

1/128 | 0.95 | 10.70 | 17| 40.75| 33 | 0.95
1/64 |0.91] 5.61| 13 |20.41] 24 0.90

1/32 | 0.82| 3.08 911024 | 171081
1/16 068! 1.85 71 5.19| 11 0.66
1/8 0.47 | 1.29 6] 2.80 91041
1/4 0.37 ] 1.16 51 2.19 710.00

Table 1. Multiplicative and additive Schwarz.

We note that the estimated eigenvalues from our conjugate gradient iteration.
behaves exactly as predicted by the theory. The numerical results demonstrate that
the condition number of the additive method approaches four times the size of the
multiplicative condition number, as the overlap tends to zero. The actual number of
iterations required by the additive method, is also two times what is needed for the
multiplicative method when the overlap is very small. The iteration counts of the two
methods are closer in the case of a little larger, perhaps more realistic overlap. Finally,
observe that the exact eigenvalues for the rectangular model case in the continuous
limit, are quite close to the actual eigenvalues for this T-shaped region, except for the
special case when the model problem has complete overlap.

8. Acknowledgments. The author thanks professor Olof Widlund for many
valuable discussions related to the present work.
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