CHAPTER 15

New Domain Decomposition Strategies for Elliptic Partial
Differential Equations

D. J. Evans*
Kang Li-shant

Abstract. 1In this paper some new strategies for numerically solving
elliptic partial differential equations by domain decomposition are
presented which are applicable to non-overlapped and overlapped regions
of the domain.

1. Introduction. The solution of elliptic partial differential
equations over a 2 dimensional region can be shown to be accomplished
efficiently by a range of Domain Decomposition techniques in which the
solution of smaller problems on subdomains can be grouped together to
produce the overall solution for the whole domain. Such techniques
seem ideally suited for the solution of elliptic problems on irregular
domains and on the present day multiprocessor systems.

The paper considers firstly the case of non-overlapping regions in
which the vital factor is the efficient solution of the linear systems
of equations governing the variables on the interfaces between the
subdomains. Here we propose a preconditioned iterative method called

CG which involves the application of 2 preconditioned stages to the
well known conjugate gradient method resulting in an improved conver-
gence rate for the method.

Secondly, the case of overlapping regions is discussed and cdnver-
gence factors and acceleration strategies for the Schwarz Alternating
Procedure (SAP) are presented which again leads to computatiocnalily
efficient algorithms for solving problems involving partial differential
equations.

2. Problem Formulation for Non-Overlapping Domains. We will first
formulate our approach in the simplest case of a domain split into two
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subdomains with one interface. Consider the problem:
Iu=fon, (2.1)
with boundary condition u = u, on an

where I is a linear elliptic operator and the domain @ is as illus-—

trated in Fig.2.1. We will call the interface between Ql and 92, T.
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FIG. 2.1. The domain Q and its partition

If we order the unknowns for the internal points of the subdomains
first and those in the interface T last, then the discrete solution
vector u=(ul,u2,u3) satisfies the linear system,

Au = b , (2.2)
which can be expressed in block form as:

A A u (b

11 13 1 1
; A%z B3 uyl = byt - (2.3)
B3 B33 B33 Uy by

The solution of system (2.3) can now proceed as follows:

Step 1: Compute _ AT -1 S S §

C = B337R 3B 18137R03B00R03 - (2.4)

_ -1
w, = Allbl ’ (2.5)

-1
w, = A. b, , (2.6)

and solve,2 222
T T

Cu3 = b3—Al3wl—A23w2 . 2.7)

by a suitable iterative procedure to be discussed later.
Then,

2: -
Step Compute u., = w,-A__A _u, , (2.8)
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and u, = W, 22A23u3 . (2.9)
Note, that except for (2.7), the algorithm only requires the
solution of problems with A 1 and A2 s which corresponds to solving
independent problems on the Subdomains. The matrix C (2.4) is the
Schur complement of A 3 in A and it is sometimes called the capacitance
matrix in this contex%. It corresponds to the reduction of the
operator I on 2 to an operator on the boundary T.

The basic idea of the solution technique is to guess an initial
solution on the boundary I and then to iterate to the solution of (2.7)
using the preconditioned conjugate gradient method. Several alternative
strategies have been proposed in which a variant of the capacitance
matrix method becomes an iterative solution for the capacitance system.

In general, each iteration of the capacitance/PCG algorithm
requires one solution of the smaller subproblems on domains €. and
to form the product of the capacitance matrix C and righthand "side
vector. In addition, the initialisation step requires a solution of
the Dirichlet problem on each of the subdomains.

2

3. Explicit Diagonal Block Preconditioning. We now
reconsider the approach used by Evans (1984), i.e. of using a small
block of fixed size, i.e., 4 points and explicitly inverting it within
the iteration. Then the loss of sparseness which will inevitably occur
when an explicit form of iterative method, i.e. the conjugate gradient
method is used will be small and independent of the size of the given
problem.

The main concern of this section is to construct new groupings of
the mesh points of the network into small order groups or blocks of 4
points and to investigate their advantages when used explicitly in
preconditioned iterative methods.

We consider one of the subdomains Ql or 92 (Fig.3.1) with
Dirichlet boundary conditions.

For a large class of 2-dimensional linear elliptic differential
equations in which a 5-point approximation scheme on a uniform mesh
(Fig.3.2) is used, it is a simple procedure to approximate the partial
derivatives of the PDE by suitable central finite difference express-
ions using Taylor series and quadrature techniques. Thus, the normal-
ised finite difference equation at the point P has the form,

u +a.u_ _+u_+a,u +o.u =b (3.1)
%%, % %, p U %R, p 3%, p T Pp

for all points within a coordinate square region such as in Fig.3.1l.

Here we have denoted the points on the network to the Left, Top,
Right, and Bottom of the representative point P in Fig.3.2 by
appropriate suffixes.

For such equations, the coefficients al,az,a3 and a4 satisfy the
relationship,

1 2a, +to, Yo, +a, . (3.2)

1 2 3 4
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and when grouped together by a row ordering of the points in matrix
form will reduce the problem to one of solving a sparse system of linear
difference equations Au=b where the coefficient matrix A is of large
order, M=n“ non-singular, positive definite and symmetric of the well

known form,

0 o | N2 g
~ .
A B, SO a4\\\\ ,i=1,2,...,n,
~ . —_
~o S~ S o , with Bi = N N \\ (3.3)
~a ~S. N NN N
~a ~o A3 NN a2
O ~o O SON
\A B L \0L4l

and Ai = aiI, i=1,3. (varga [1]).

However, for the simple case of the unit square and Ax=Ay=1/5 as
illustrated in Fig.3.l, a red/black ordering of the 4-point groups will
result in a coefficient matrix which has the block structure,

r‘ (]
t
| Dl ' Cl
A= I T s (3.4)
.
i
ch . Dy

where Dl=D2=ROIS' with IBEthe (8%x8) identity matrix and,
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Further for larger meshes, it is a simple matter to deduce that
when the 4-point blocks are taken in natural row ordering (Fig.3.3) and
because the block equations only refer to adjacent blocks then the co-
efficient matrix has the familiar structure, i.e.

B, C ]
1 1
A B C
124 2« @)
~ \\ \.\
A = R N . (3.7
- - \\
~
O REURESA c
»
\\\\ k-1
_ At B
where C.ZR_I, A .=R.I and, ’
i3 i i .
R \‘RZ
R, ~_ o~ O
-~
~ ~
~ \\\\
~ NN .
Bi Mo \\\\ , i=1,2,...,k.
~ ~
O N
Se s
~ ~
SR
b 4 o -

Now any explicit block iterative method can be considered as a
point preconditioned iterative method applied to a transformed matrix

AE=[diag{R }]_lA and vector bE=[diag{R }]_lb. Since R_ is a small
order diagonal submatrix which can be éasily inverted. The matrix A
and vector bE (where the superfix E denotes the 'explicit' form) can be
evaluated explicitly from a new computational molecule (Fig.3.4) and is
a preconditioned form (diagonally block scaled) of the original matrix
A. To determine the preconditioned linear system AFu=b%®, with af=
I-L7-U", we proceed as follows:

1 1
B 12 24
L L
12 S R 24
,—}75 P__2 L
- 12
g L I
24 12

FIG. 3.4
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-1 -
The matrix [diag{RO} 1 is simply diag{Rol} and the inverse of R
given by,

fos 2% 20,05 '“3“?'
14 177 5 476
{—ala7 2a1u2 —a2a6 u5 ~|

2
vwhere d—(ula3—a2a4) —2(ala3+a2a4)+l and as—l—ala3—a2a4, a6—1+ala3-a2a4,

a7=l+a2u4—ulu3.

B
The block structure of A is the same as that of A (i.e., eqgn.
(3.7)) with the submatrices R_ replaced by identity matrices, and the
submatrices Ri' replaced by RalRi' i=1,2,3,4. In addition, where

Ri’ i=1,2,3,4 has a column or row of zeros so does R;lRi, and where an
element ai occurs as the (p,q)th element of Ri' the gth column of

R;lRi is the pth column of R;l, multiplied by ui. So, for example,

75 (o] ~0._ 0,0 o

1%2% 1%
o] o e -0, 0,0
- - 476
ROlRl = @ 1> : ) (3.9)
2
° 0 % 8%
2 2 —uza
o ° %% 1%7 |
Similarly,
2 2 -
(la2a6 Q 0 2u2a3
o0 0] (o] -0, 0L, 0
- - 2 7
R lR - @ l) 275 3 ,
02 — (o] [o] o.,0
0y OOy 2%
2 2 [¢] 2&
2% % o %% _|
— 2 2 —
—a3a7 2a2u3 o] o]
2 2
2a.,0 -0 0 [e]
- - 7
R lR - @ 1) 374 3 ,
o3 o 0,0 O o]
%3%% %3%
.E3a5 —a2a3a6 o] 0 3

and
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[6 a,0g 0,050,
2 2
- 2
1 -1 (o} a4a6 a3a4 (¢]
R R ,=(d )
o 4 o} 20 2 —aza O
L 1% 4%
o] —0, 0,0 0,0 0|
For the model Laplacian problem and a square grid al=a2=a3=a4=—l/4 so
that,
7 2 1 2\ "6 o 2 71
- - 2
R 1 _ %_ 2 7 2 l[and RO1Rl - _ 5%_ o O 7 L,
° 1 2 7 2‘ o o 2 1‘
2 1 2 o 1

12 7 1°

from which we can establish the computational stencil at the point P
to be as in Fig.3.4.

Further analyses will yield analogous relationships for the
remaining points Q,R and S of the 4-point block.

The use of this computational stencil to derive the solution of
self-adjoint P.D.E.'s is given in Evans [2].

Finally, the transformed matrix AE has the block form, given by
eqgn. (3.7), where,

...l —
I_l RO R2 o
R I R
RO 4\ -~ ORZ\ O
\\ \\\ \\
\\ \'\ \\
- ~ \\ \\
Bi = ~o - ~ , (3.10)
~ ~ > 1
0 = SN Ry Ry
\\R.—lR\\ I
e O 4 —
-1 -1 .
Ci = RO R3, Ai = Ro Ri , i=1,2,...,k.
Thus, in this section we have shown that when the system of
difference egquations,
B E
Au=5b . (3.11)

is derived from the new computational molecule given by Fig.3.4 then
the matrix AF has already been block diagonally scaled by the 4%4
block matrix R_. Thus, this can be regarded as a form of diagonal
sealing or preconditioning.

4. Conjugate Gradient Acceleration. Acceleration strategies to obtain
the solutions of (3.11) have been shown to yield superior convergence
rates in block JOR and SOR schemes, (Evans, [21).

However, in this section we are concerned with the application of
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Conjugate Gradient (CG) method to the Domain Decomposition technique.

Since the matrix A given in (3.1) is symmetric and positive
definite then we can apply the C.G. algorithm in the form,

(m) _ .  (n)
r = b-Au } n=1

g™ _ ey

o = r(n).d(n)/d(n).Ad(n) -

o Pt) u(n)wnd(n) @1
L0t r(n)_and(n) o

T = _r(n+l)Ad(n)/d(n)_Ad(n) \

@) _ r(n+1)+Tn+ld(n) !

+ -
(n l)--u(n)|<5><lo 6, otherwise

until fu
: . . E _.E
Further we can immediately see that since the system A u=b has
been explicitly obtained from Fig.3.4, then in this case, the
Conjugate Gradient algorithm can also be applied directly to A to
form a preconditioned C.G. method to yield an immediate improvement.
Thus we have for the f{rst preconditioning stage,

r(n) = bE—AEu(n)

g™ _ o ®)

o - r(n).d(n)/d(n)-AEd(n) A n=n+l

o8t u(n)+0nd(n)

Ll) r(n)_anEd(n) A -
T " _r(n+l)AEd(n)/d(n).AEd(n) )
gt _ r(n+l)+Tn+1d(n+l)

until Ju® 0™ 531078 otherwise

Next a second preconditioning stage can be applied implicitly when
we premultiply eqn.(3.11) by a non-singular matrix M™l where M~Y is an
approximate inverse of A. Thus, (3.11) is transformed into the pre-
conditioned form, E -1
Au=M"Db, (4.3)

where M is a conditioning matrix such that its inverse is easily
computed.

Let us consider the possible forms for the matrix M:

E
a) Splitting of A
I1f we assume that A can be written (without loss of generality) as
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AE=I—LE—UE where LE and UE are strictly lower and upper triangular
matrices which can be derived from Fig.3.4 then a suitable sparse pre-
conditioning form for M given by Evans {[3],[4] is,
M= (1or") (1wr®) . (4.4)
b) Approximate factorisation of A E
Alternatively, we can consider the factorisation of A  into easily
invertible lower and upper triangular matrix factors for which some
standard methods are well known, i.e. LU, LLT or LDU. However in the
factorisation procedure of a sparse matrix, large numbers of 'fill-ins'
occur (zero entries which are replaced often by small insignificant
real numbers inherently incorporating a round-off error). Such numbers

also greatly increase the computational work and storage requirements
of the matrix. (Evans [5]).

Thus, in order to reduce the fill-in terms of the triangular
factors L ,U to a minimum, many researchers have considered approximate
factorisation techniques of the form,

M=LU =Aa .

rr (4.5)

where Lr'Ur denote the corresponding sparse triangular factors in which
r non-zero off-diagonal 'fill-in' vectors have been retained.
. ‘s 2 . .
Finally, the (Preconditioned) Conjugate Gradient method (P2CG) is
specifically formulated to efficiently solve the algebraic system

A"u=bE resulting from the above discretization. The CG method is an
iterative algorithm in which the following steps are computed at each

iteration. For k1,
r(n) N M—lb_M—lAEu(n)
a® o _ et
g = r(n=.d(n)/d(n).M_lAEdn
u(n+l) _ u(n)+0nd(n)
r(n+l) - r(n)~ch_lAEd(n) n=n+1
Tn+l _ _r(n+l)M—lAEd(n)/d(n)M-lAEd(n) (4.6)
d(n+l) - r(n+l)+T d(n)
n+l
(n+1)

to be continued until lu -u(n)l<5xlo_6, otherwise

The convergence of the PZCG method is determined both by the clustering
of the eigenvalues and the condition number of M_lAE, and thus
critically depends on the selection of M in (4.4) and (4.5). Good pre-
conditioners M are symmetric and positive definite and significantly
reduce the condition number of the system, are less expensive in solving
Mr (M) = (p-aBy(n ) ; rather than Au=b, and do not significantly increase
the amount of storage relative to the storage needed to solve Au=b, By
appropriately preconditioning the system we greatly reduce the amount of
work expended in the computation of the solution u.
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5. Convergence of the Preconditioned Conjugate Gradient Method. For
the Conjugate Gradient method we have that,

(O))l!

(n)H
A

[ [u—u < ]lpn(u—u < méxlpn(lj)L Ilu*uollA ;

J

A
Vp €F (5.1)

. n :
where Pn is the set of polynomials pn(z)= 2 B_zj, Bj € R of degree at
most n with Bo=l. J=0

To estimate the reduction of the initial error |[u—u(o)ll after n
steps it is sufficient to construct a polynomial p_ of degree at most

n such that pn(0)=l and P is as small as possiblen on the intexrval
[Xl,AM] containing the eigenvalues of A, i.e. so that the quantity, i.e.

the convergence rate
Y, = max [pn(z)l bz € DA (5.2)

is as small as possible.

The best polynomial is well known in approximation theory and is
the Chebyshev polynomial with the corresponding value of Y

n
- o|Yx@1 , n=0,1,2. (5.3)

Y
n ‘VK(A)+1

Thus, for a given €>0 to satisfy,

14

o]
o™ 1, < el a1,

it is sufficient to choose n such that YnSS or

n > k() log 2/¢ , (5.4)
where & (a) = 5 X with AP0 and Apin Mok is the condition
min 3 3

number .

We thus conclude that the required number of iterations for the
conjugate gradient method is proportional to vk (a).

-2
Since in a typical FD/FE application, we have k{A)=0O(h ~ ) then the
required number of iterations for the C.G. method would be O(h™).

Now, if p(J) and p (L) and p(2B) denote the dominant eigenvalues of
the point 1 line and 2x2 block Jacobi schemes respectively then,

2.2 2.2 2 2
p(J) = 1-w h /2, p{L) = 1-fh , p(2B) = 1-r h ,

confirming that the matrix AE substituted for A in the C.G. schemes will
bring about an improvement of V2  (Evans [2]). Numerical experiments
in progress confirm these expectations.
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6. Schwarz Alternating Procedure for Overlapping Domains. We now
consider the Schwarz Alternating Procedure (SAP) to a domain £ which is
decomposed into 2 overlapping sub-domains ., and @, in which the values
along the internal boundaries T',, i=1,2 are extrapolated (over-
relaxed) by an acceleration factor w.

Consider then the 2-dimensional Dirichlet problem,

-Au = £ in 0={(x,y)| oO<x<1, o<y<i}, (6.1)
ulp=¢
-where £ and ¢ are known. The domain @ (Fig.6.l) is decomposed into
two overlapping subdomains Ql={(x,y)|0<x<x ,O0<y<1} and 92={(x,y)|

xl<x<l, 0<y<l}, where X1<Xk and xk=X£+d'

\

N\

X X >

k

%\i
£

NN

x

FIG.6.1

If we denote the boundaries of @, by I'. (I, = ') and T'(T' < @),
i i i i i 3

(i#3), i=1,2, Pi and T!
extrapolate.

|8

are called the pseudo-boundaries along which we

Applying the Schwarz Alternating Procedure (SAP) with pseudo-

boundary relaxation factor w for solving problem (6.1), we obtain the
following subproblems,

_Au(i+l) = £ , in Ql
N (6.2)
u(i+l) = v(i—l)+m(v(i)-v(i-l)) n T2
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V(i+l)

-A = £, in 92 .
v(l+l) = ¢, on Tz .
{4 , , .
v(l 1 = u(l)+w(u(l+l)—u(l)), on I'', i=0,1,2,... ,

2
) (6.3)

o
(xkly), v( )(xk,y) and u (xz,y) are the initial guesses.
The errors e(l)(x,y)=u*(x,y)-u(l)
v(l)(x,y) satisfy the following subproblems,

where, v(_l)

(x,y) and E(i)(x,y)=u*(x,y)~

—Ae(l+l) =0 , in Ql T
A (6.4)
G G ) e
e =2 @), on Ty )
and,
2 Lo a 2, .
E(i+l) =0, on FZ .
E(J.+l) - e(l)+m(e(l+l)—e(l)), on ré' i=0,1,2,..., |
(6.5)
where E(—l)(xk,y),E(O)(xk,y) and e(o)(xl,y) are the initial errors.
If we assume,
(1) v L) .
E (2, ,v) = 2 b sin mmy, i=-1,0. (6.6)
k m
and, m=1
e© ) =) a@gin oy (6.7)
2 m=1 m

then the solutions of problems (6.4) and (6.5) are given by,

o
. i+ ;
e(l+l)(x,y) _ z 2t l)Ym(x’xk)Sln nry (6.8)
m=1
and,
L]
. i+l :
E(l+l)(xly) = ¥ le )Ym(l-x,l-x£)31n mrY (6.9)
m=1
where, sh mmx
Ym(x'xk) = EE—E;;k .

According to (6.8) and (6.9) and the pseudo-boundary conditions of
problems (6.4) and (6.5) we have,

{i+1) (i~1)
e

(xk :y) +wk S (Xk ry)

(x, .¥) ) a i Mgiy mry = {(1-w)E
k m1 B

i

(i—l)+mb(i)
m

vy (L lmx) [(L-w)b

m=1

Isin mmy ,
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i.e.,
(i+1)
a

ab PV, i=0,1,2,... .
m m

- . (i-1)
= Ym(l—xk,l xz)[(l—m)bm +

and in the same way we get,

b(i+l)
m

_ (i) (i+1)
= Ym(xz,xk)[(l-m)a Hwa

n 1, 10,1,2,... -

From (6.10) and (6.1l) we have,

(i+1) _ 2_(i)_ L Eny 2 (i-2)
a = pm(xz,xk)[w a. 2w (v l)am +{w-1) a 1,
i=2'3l4l"' r
and,
(i+1) _ 2 (i) -y 2 (i-2)
bm = pm(xl,xk)[m bm -20 {w l)bm +{w-1) bm 1 .

i=1,2,3,... ,

where, for w=1,2,3,...

pm(xl,xk) = Ym(xz'xk)'ym(l-xk'l_xl) ’
s an(lO) 'bn(n_l) and inO) are known,

a;l) = ym(xz,xk)[(l-w)bé_l)+mb;9)] .

bn(ll) = ym(l—xk,l-xl)[(1—w)arf1°)+wan(ll)] ,

aéz) = Ym(xx,xk)[(1—w)b;?)+wb;;)] .

Thus, from (6.8),(6.9),(6.12) and (6.13) we have,

(i+1) 2 (i+1) 2
[le (x,y)HL2 < Jle™ x|
2
r1 .
= J [e(l+l)(xk,y)]2dy
0
= % E [a(i+l)]2 )
m=1
_ 3y 2 (i) (i-1)
3 2 {pm(xz.xk)[w a) —Zw(w-l)am
m=1
+(w—l)2a(l_2)]}2
m

A

3y {plm2|a(l)-—2a.a(l-l)+a2.a(l-2)l}2 .
m=1 m m m
and,
IIE(i+l)
m=1
where a=(w-1)/w, and,
sh mx sh ﬂ(l—xk)

2\( \
7 ) .
lek ﬁlﬂlﬂﬁ

Py = pl(xz.xk) = {

2 v 2, (i i -
(X:Y)IIL <3 z {plm Ib;l)‘zabél 1)+a2b;l 2){}2’
2

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)
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(1) _ i (1)

If we let a =r (or b
m m

of (6.12) (or (6.13)) is obtained in the form,

i
=r ), then the characteristic equation

r3— (x )wz( )2 =0 6.2
Dm llxk r-a = . (6.20)

From (6.16) and (6.17) we can see that the convergence-rate is
determined by the low-frequency component (see Evans, [61,[7]). So we
define the convergence factor of procedures (6.2) and (6.3) as,

r(p,w) = max |r,| , (6.21)
1<j<3
where rl,rz,r3 are the roots of the cubic equation,
r3—plw2 (c-a)® = 0 , o%p <L . (6.22)
By making the substitution,
r = (R+ 9%’-2—) ' (6.23)
the reduced cubic eguation is obtained in the form,
R3+R(2a - %pwz)pw2+(§pw2a— é%p2w4—a2)pm2 =0, (6.24)
or R3+bR+c =0 , (6.25)
with, b = pw2(2a - %pwz) ’ (6.26)

22 2 _ 2 2 4_ 2)
pw (Epm a §7p w -a v

]

c
where a=(w-1)/w, and chonvergence factor at w=1.

The maximum rate of convergence of (6.22) is given by the value
of w which allows the discriminant of (6.25) to be zero, i.e.,

c2/4 + v°/27 = o . (6.27)

By substituting the values of b and ¢ of (6.26) into (6.27), we obtain
the expression which when simplified yields the relation,

a3(27a—4pm2) =0 . . (6.28)

Thus, the optimum value of w, i.e. w_, which yields_the maximum rate
of convergence is given by the nonlinear relation w“=27a/4 or the cubic
equation,

w3__21w+_2_z=o ’ (6.29)

4 4p
which is already in its reduced form.
Now for w>l the discriminant of (6.29) is <O so the solution of
{6.29) is given by the trigonometic relations,
w, = 2/-8/3 cos(s/3) .
2Y-8/3 cos(s/3+21/3) ’ (6.30)
2/-B/3 cos(s/3+41/3) ’

it

)

it

and wg
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with, s = arc cos(B/2V-8/27) , (6.31)

where B=-27/4 .

The optimum value of w which maximises the convergence rate
(1<w<2) is then given by,

w, = 2V-B/3 cos(s/3+41/3) , _ (6.32)
or w0, = (3/V0) cos[(s+4w)/3]1 , (6.33)

with s=arc cos(—%;i.

The optimum convergence factor p _at the optimum value w_ is
determined from the solution of (6.25) at which the discriminant

2
c /4+b3/27=0.

The roots of (6.25) are given by,

R, = A+B
R, = -(a+B) /240.5(A-B) V31 , (6.34)
Ry = -(a+B)/2-0.5 (a-B) V31 ,

where //7 /ri*-**g———
A 3V-¢c/2+Vc f4+b /27 ,

3‘[0/2 —/02/4+b3/27 .

Also, at the optimum value wo,relation (6.28) holds from which we
can establish that,

B

]

AO—B0 = —3ao/4 ’ (6.35)

= -1 .
where a (wo )/wO
Thus the optimum factor p_ is given by the solution of (6.22)
which is related to the solutidn of (6.25) by the transformation (6.23)
and is, 2
=3 + .
o ao/4 pr/B R (6.36)

and by virtue of (6.28) we have,

Py = 3a0 = 3(mo-l»&0 .

Finally, the range of convergence of the Schwarz alternating
method with overrelaxation factor ¢ on the pseudo boundaries can be
determined as follows.

From an examination of the sign of the discriminant (02/4+b3/27)
of (6.25) it can be established that at the ends of the convergence
range, there exists one real root and two complex conjugate roots of
(6.23). Thus, if we denote the roots of (6.23) as a_ ,0.*iy. and using
the theory of equations, the following relations can be“estfblished,
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2
o + 2a2 = pw
2 2 2
2a1a2+(a2+72) = 2apw (6.37)
02442y = aZou>
a) (e, *y,) = apw .

Now the range of convergence is determined by the roots Iaziiyz =1
and consequently the relations (6.37) become,

2
oy + 20t2 = pw
2
2ala2+l = 2apw (6.38)
2 2
a, =apw
£ i 2 2 2 2
© yield, (2apw”-1) /a“pw” = pu” (1-a) , (6.39)
2
or pw = 1/[a(l+a)] .

By the substitution of a=(w-1)/w, this relation simplifies to the
quadratic equation,

(w-1) (2w-1) = 1/p , (6.40)

for the determination of the values w=w,. for which the Schwarz
alternating method is convergent and is,

%=ZGJMVBﬂ%MLUM). (6.41)
Convergence Optimal Optimal Convergence range
factor p overrelaxation convergence Lower Upper
at w=1 parameter o factor £ b
po=Y (P wy)

0.6 1.127 0.339 -0.196 1.696
0.65 1.144 0.378 -0.162 1.662
0.7 1.163 0.421 -0.131 1.631
0.75 1.185 0.468 -0.104 1.604
0.8 1.210 0.520 -0.079 1.579
0.85 1.240 0.581 ~0.057 1.557
0.9 1.279 0.654 -0.036 1.536
0.95 1.334 0.752 -0.017 1.517
0.98 1.389 0.841 -0.007 1.507
0.99 1.419 0.887 -0.003 1.503

TABLE 6.1



190  Evans and Kang

pl' 09 .
| |
1 real, 2 complax roots —X 3 real X — 1real, 2 complex roots

7y

0954

—— —— —— i

0-90

0-85 +

0-80+4

0-70+

065 L4 ¥ A T

I
|
I
l
075 |
I
|
|
¥
1

FIG. 6.2

Some typical values of the optimal overrelaxation factor ® ,the
maximum convergence factor p_ and the convergence range of the
Schwarz alternating method for various values of p are given in Table
6.1. Also, a plot of p against w is given in Figure 6.2 for %50.9 at

w=1.
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