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ABSTRACT

Spectral element methods are p-type weighted residual techniques for partial differential equa-
tions that combine the generality of finite element methods with the accuracy of spectral methods.
We present here a new nonconforming discretization which greatly improves the flexibility of the
spectral element approach as regards automatic mesh generation and non-propagating local mesh
refinement. The method is based on the introduction of an auxiliary “mortar” trace space, and
constitutes a new approach to discretization-driven domain decomposition characterized by a clean
decoupling of the local, structure-preserving residual evaluations and the transmission of boundary
and continuity conditions. The flexibility of the mortar method is illustrated by several noncon-

forming adaptive Navier-Stokes calculations in complex geometry.
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1 Introduction

Spectral element methods [22,25,27] are weighted residual techniques for the approximation of
partial differential equations that combine the rapid convergence rate of spectral methods [6,14]
with the -genera.lity of finite element techniques [8,12,29]. The spectral element discretization,
coupled to fast order-independent iterative solvers [21,28,32], yields numerical algorithms which
have proven computationally efficient on both serial and parallel processors [11,10]. Although the
spectral element method is, by construction, applicable in complex geometries [16,18,27], the large
indestructible geometric unit associated with high-order brick elements leads to a certain lack of
flexibility as regards automatic mesh generation, adaptive mesh refinement, and the treatment of
moving boundaries. In this paper we present a new method, the “mortar element method”, which
largely eliminates this rigidity by allowing for nonconforming matching between subdomains.

The “mortar element method® represents a new domain decomposition approach {7,13} in which
there is a clean decoupling of local-structure-preserving internal residual evaluations and the trans-
missions of boundary (or continuity) conditions. The method is not based on Lagrange-multiplier
interface constraints e.g. [9], but rather on the explicit construction of the appropriate nonconform-
ing space of approximation through the introduction of a new intermediary mortar trace space. The
explicit-space approach is more appropriate for fast iterative solution than the Lagrange-multiplier
methods, as it avoids the necessity of solving a coupled, potentially ill-conditioned problem. Al-

though we develop the mortar methods here for spectral element discretizations, they are also
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appropriate in the A-type ﬁnit;e element context [4], in which they constitute an extension and
generalization of classical nonconforming methods [8,9,29,31].

We present here the “mortar element method” in its simplest form for the solution of two-
dimensional second-order elliptic and saddle problems. The emphasis is on the numerical formu-
lation, implementation, and demonstration of the technique, and the illustration of the flexibility
of the nonconforming paradigm; theoretical support for the method is given in [4], in which the
optimality of the discretization is proven. The outline of the paper is as follows. In Section 2 we
present the basic discretization for the Poisson equation in terms of the function spaces over which
the standard variational form is to be tested. In Section 3 we present the ~ssociated nonconforming
bases and the resulting set of discrete equations. Conjugate gradient iterative solution of the mor-
tar discretization is described, illustrating the strong domain decomposition nature of the residual
evaluation procedure. In Section 4 the extension of the method to the solution of the Stokes and

Navier-Stokes problem is presented. Lastly, in Section 5 we give several numerical examples.

2 Spectral Element Nonconforming “Mortar” Spaces

2.1 Problem Formulation

We consider first the solution of a Poisson equation on a domain 0 of R?: Find u(z,y) such

that

—~Viy f inQ, (12)

u = 0 ondQ, (1b)
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where 311 is the boundary of 2, and f is the prescribed force. We suppose that Q0 is rectangularly

decomposable, that is, that there exist rectangular subdomains (¥, k = 1, ..., K such that

i, VK1, k#1 0* na =0 )]

|
i
Cx=

"~
i
[

The problem (1a,1b}) is well posed in X = H} in the sense that the following weak formulation of

the problem admits only one solution: Find « € X such that
(Vu,Vo)=< f,v>, WweX (3)

Here (.,.) represents the L? inner product, and < .,. > denotes the duality pairing between X and
its dual space. For the definition of standard spaces, norms and inner products we refer the reader
to [1].

For the Galerkin numerical approximation of problem (1a,1b), we test the variational form (3)
with respect to a family of discrete finite dimensional spaces X}, where k denotes a discretization

parameter: Find up € X}, such that
(Vup,Vop) =< f,on >, Y € X, (4)

In the case of a conforming approximation, for which Xj C X, the convergence and convergence rate
of up, towards u is determined essentially by stability (ellipticity and continuity) and approximation
theory (infimum of [Ju—vp||1,q over all vy, € X, where ||- |l1,q refers to the H 1 norm over §1). In the
case of nonconforming approximations, for which X, ¢ X, we must also consider the consistency
error, which measures the deviation of the approximation space X, from the proper space X [8,29].

To date, spectral element approximations (22} have been based on domain decompositions that
satisfy (2) as well as the additional constraint that the intersection of two adjacent elements is

either an entire edge or a vertex; this second constraint is derived from the conforming assumption,



396  Maday et al.

and is also present in the finite element method. In the spectral element context this constraint
can be prohibitively restrictive due to the large geometric units involved. Although relaxing the
conforming constraint clearly introduces a new source of error, it has the potential advantage of
greatly increasing the flexibility of the numerical method as regards mesh generation and adaptive
refinement procedures. This increase in flexibility improves not only the efficiency of the algorithm,
but also the tractability of calculations involving moving and sliding meshes [15]. Furthermore,
the nonconforming approach achieves generality at no cost in loss of local structure, an important
consideration as regards optimal solvers.

We present here a spectral method based on nonconforming approximations in which the con-
sistency errors are commensurate with the approximation errors. To present the nonconforming
spectral element space X, we first describe the anatomy of the discretization. The K rectangular
subdomains of (2) are now identified as spectral elements, and the (z,y) coordinate system is chosen
so as to be aligned with the edges of the Q*. These edges are denoted T*#4, I = 1, ...,4, such that

4
aqk = UI_‘k”. We next introduce the set of “mortars” 47, where
=1
NP = int(ﬁk n ﬁ) (52)
for some k and [, or
AP = int(™ N 31D) (5b)

for some index m, where p is an arbitrary enumeration p = 1,..., M of all (k,I) and m such that
. =k ==l . =m . . .

int(@° N Q) or int({1" N 80) is not empty. The intersection of all closures of all 47 defines a set of
vertices V composed of all elements

=Ny (6)

where ¢ is an arbitrary enumeration ¢ = 1,...,V of all couples (m,n) for which (7™ N J") is not
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Figure 1: Subdomains and Mortars of a Nonconforming Decomposition

empty. (The set V is equal to the set of all the vertices of the 02* by definition of the mortars).

Lastly, we define the skeleton § of the mortar system by

M K
s=U7 =]~ (M
p=1 k=1

The geometry of the nonconforming decomposition is shown graphically in Figure 1.

In order to define the nonconforming space Xy, we first require an auxiliary mortar space W
Wy = {¢ € CO(S)r Vp= 1)'--)M1 ¢l.‘p € PN(7P)1 ¢{gn = 0} (8)

where Py (4P) is the space of all polynomials on 47 of degree < N. The nonconforming space is

then given by
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Xn= {velIL?(Q), Vk=1,..,K, v),. € PN(Q¥) such that 3¢ € W, for which:
Vg=1,..,V, Vk=1,..., K, such that v? is a vertex of 0¥, v . (v?) = ¢(v9); (9a)

and VI=1,.,4,Vk=1,..,K, VWEPN_o(T*), fruilv),—¢)¥ds =0 }. (9b)

Here Py (02*) denotes the space of all polynomials on 02 of degree < N in each spatial direction;
the spectral element discretization parameter is the couple h = (K, N). For a conforming approx-
imation X}, is the standard spectral element space; here, and elsewhere in this paper, we assume
the reader is familiar with the conforming spectral element method [22].

Let us summarize the properties of the approximation space Xj,. First, as regards the uniqueness
of the solution, we note that the uniqueness of the mortar element ¢ € W), is not of major importance
a8 long as its image u, € X), is unique; it is up, not the mortar element, that must be close to
4. The uniqueness of the discrete solution uj follows from the ellipticity of the Laplacian form

(Vun,Vup), Vup € Xn, Vup € X), with respect to the following “broken H?! (92) norm”,

x 1/2
lonllz, = Zu(vh).nkui,m] , Von € Xa. (10)
=1

Although the proof of ellipticity is quite involved (see [4]), an elementary proof of uniqueness can

be readily derived. To wit, we note that if u, and u), are two solutions of (4), we get

K
0=(Vos,Vun) = ) ‘/“_I’E[V(w,)lnk]2 with vy = up — u},,
k=1

and thus v, is piecewise constant. Using the fact that the elements of X;, vanish over 911 and are
continuous at the vertices of V, it follows that v, = 0 and thus u; = ul,.
Although uniqueness of ¢ € W} is not necessary, it is nevertheless true that spurious {or

parasitic) modes in ¢ correspond to unprofitable work, and can potentially cause problems in the
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Figure 2: Nonconforming Discretization Derived from the Refinement
of a Conforming Approximation
subsequent so.ution of the discrete system (see Section 3.2). There is one situation in which the
uniqueness of ¢ follows easily; this is the case where for each 7* there exists an element {1* that
accepts 4P as an entire edge (see Figure 2). This arises, for instance, from a refinement of a
mesh which is initially conforming. In this paper we shall consider only this “refinement” case;
development and analysis of the general problem of Figure 1 is more involved, and is relegated
to future publications. For the “refinement” case uniqueness of ¢ results from the fact that the
mortar element ¢ coincides exactly with the restriction (v;.)‘n,= over 4P. To show this we note that,
by construction, the elements ¢ and vf = (vs) o coincide at the endpoints of 4?. This implies that

¢- vﬁh, is a polynomial of the local coordinate 3,
(¢ - vk, )@ = (1 - 5)2(), (1)

where ® is a polynomial of degree < N — 2. Here, and in what follows, § = % {or § = §) for a
horizontal (or vertical) mortar, where  (or §) is a mortar-local variable which scales z (or y) such
that ~, corresponds to | —1,1[ (similarly, § = 2 (or 8 = §) for a horizontal (or vertical) edge, where

% (or §) is an element-local variable on | - 1, 1[ which scales z (or y) to the appropriate T*!). From
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the orthogonality of ¢ — v,’fl ,» to all elements of Py _z(+) (9b), it-; follows that ® is necessarily zero,
and thus ¢ is exactly the trace of one piece of v;. The uniqueness of the solution uj, to problem
(4) thus yields the uniqueness of the corresponding mortar element.

Let us consider now the consistency error. The scheme (4) based on the definition (9a,9b)
of X}, is optimal in that the consistency error is maintained small by the combination of the L?
condition (9b) and the vertex condition (9a). In essence, the L? condition ensures that the jump in
functions is small in the interior of internal boundaries, whereas the vertex condition ensures exact
continuity at cross points where the normal derivative has more than one sense. We note that the
superiority of the L%- (versus pointwise-) matching of v|.; and ¢ has been demonstrated previously
[2]. The mortar methods are different from previously proposed nonconforming L? approximations
in that the latter are mortarless master-slave spaces, whereas the current approach is democratic;
this allows for very simple implementation in arbitrary topologies.

Lastly, the approximation properties of the space X}, are similar to those of past nonconforming
approximations. For example, for the case of a square domain decomposed into several elements,
as a first result one can use the best global polynomial approximation as a bound for approximation
errors. The combination of stability, consistency and approximation result in an optimal scheme,
the details, and degree of locality of which, are described in [4]. We note that for the special case
of infinitely smooth solutions, u), approaches u exponentially fast as N — oo for fixed K (spectral

convergence).
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3 Representation and Discrete Equations

3.1 Bases

Although the spaces W}, and X, appear quite complicated, they have a simple basis and evalua-
tion procedure which yields an efficient domain decomposition algorithm. In this section we discuss
the basis, and in the following section we describe residual evaluation.

To begin, we write for the space W),

N
$l» = 2_¢5hY(3), Vpe{l,.., M} (12)
i=0

where we assume that all indices increase with increasing z,y. Here the h;-v are Lagrangian inter-

polants defined by
RY € Py(l-1,1), BY(&) =64, Vi,j€{0,... N} (13)

where the &(= ¢N) are the N + 1 Gauss-Lobatto Legendre points defined by the zeroes of
Ly (2)(1 — 2?), and Ly is the Legendre polynomial of order N [30] so that

1 (-

_ ~1,1, Vje{o,..,N}.
NN TUInE) 2-& z€- L1, Vied }

hfiv (2) =

The definition (12) is not sufficient given the requirement that ¢ € W must be C°(§); to indicate
the continuity condition, we resort to diagrammatic methods. The mortar conventions are described
in Table 1a, with the basis for W} shown in Figure 3b for the nonconforming mesh of Figure 3a.

We next construct a representation for v € X3, in terms of the mortar. To begin, we write
N

= iu,!;hfv(ﬁ)h;"(g), Vke{l,..,K} (14)

Y
ok
=0 j=0

.. 2
where the hY are defined in (13). The internal degrees-of-freedom, vz-‘j, i,j€{1,..,N -1}, are

clearly free, however the boundary degrees-of-freedom are constrained through (92,9b). Based on
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(o] Y00, VON, YN0, UNN
Y05y Y50, YUNj, ViN
j=1.,N-1
vij §,J€ {1,..,N - 1}2
| #(v7) i ’
= | ¢ j=1,.,N-1 [F>e assign vertex
O——0 | ¢} 7=0,.,N 1 3
Cm assign vertex \
mortar-to-edge projection
open or dashed symbol/ | source/destination _
solid symbol or degree-of-freedom/slave ]
o—M« o0 sum vertices
£ | aT 61‘ |
i—’ DEE edge-to-mortar sum

Ve = ¥ E;!_-o ”5h£v(£)h§v(9)

a) b)

Table 1: Symbols for Diagrammatic Basis Representation

*

B
B

S A

a) b)

Figure 3: a) Nonconforming Mesh and b) Associated Mortar Basis
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Figure 4: Diagrammatic Representation of the Basis for X, on Nonconforming Mesh of Fig. 3a

the diagrammatic conventions of Table 1 the admissible v are given by Figure 4, where @ derives

from the projection (9b). In order to construct Q we require a basis for ¢, which we choose as

N-1
Vs = 2 Pag " (8) (15)
g=1
where
n¥3z) = Fl)N’q%% z€]-1,1, ¢ge{1,.,N~1}. (16)
q

To calculate the projection of (9b) we then perform (here exact) piecewise Gauss-Lobatto quadra-

ture on N + 1 points on the element edges and mortar segments, giving

N-1 N
Z Bivi = ZP{j(ﬁj, vie{l,.. ,N- 1} (n
= Pard

where for the destination edge I'** (v;) and source mortar 7* (¢5)

[ v —Bs= L v (o, Vi€ (oW =109
rk‘l
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Figure 5: Definition of Mortar Offset s,

and
il |77 ]
Joustt — P = Dl et — 1+ (6 1) e
L
I Iﬂfv *(~1)pobo,; ifs, =0
- II‘ (19)

-2 (0)ontivy  if | 22 |=I T |
vie{l,..,.N-1} Ve {0,..,N}.
Here s, is the offset of the mortar 4? from the edge I'*#, as shown in Figure 5; the endpoint terms

of (19) derive from the vertex-pinning condition of (9a). Finally we arrive at

Qu = [m = [Ed[ﬂ: vie {1: vy N — 1}) Vie {0:---1N}' (20)

Note that by proper choice of the basis for ¥ we can explicitly form the matrix @, that is, we are
able to directly invert the diagonal inner product B. The alternating-sign term in qg" ~2 assures
that the entries of B are positive.

Although in practice we shall evaluate Y from the diagram without forming the global linear

projection operator, it is nevertheless of theoretical interest to remark that the diagram is equivalent

to
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k k
0'-’- l-'nnn'ov’ Vk [I] 0 vij I-’nnn’m—’ Vk (213)

Y hintargase’ T o @ |\ é(v9), va, &, Vp, Vie{l,.,N-1}

or

v* =Qu. (21b)

We denote the vector vy as the algebraic basis, in that this variable represents the finite-dimensional
approximation space with an equivalent number of degrees-of-freedom; the proper functional basis
corresponds to the images of vT = (1,0,0...),(0,1,0, ....),...,(0,...,0,1) in v* through the transfor-

mation Q, acting on the local bases h;h; as described by (14).

3.2 Discrete Equations

Armed with the variational forms of Section 2 and the bases of Section 3.1, it is now a simple
matter to construct the discrete equations. In particular, we note that our basis construction (21)
allows us to express admissible elemental degrees-of-freedom v* in terms of y. This, in turn, permits
us to construct the global discrete equatioﬁs directly from local structure-preserving elemental
equations, which is at the heart of the discretization-driven domain decomposition approach.

We first construct the decoupled elemental matrices and inhomogeneity,

(Vhyhg, Vhihj)k=1 0 0
0 (Vhl,,hq,Vh.-h‘,-)“=2 0

blk(A%) = (22)

0 0 (Vhyhy, Vhih;)=X
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( (hphq’f)k=1 \

(hohyg, £)F=2
blk(f*) = ,  Yijpqe{0,.., N}t

| (hohg, 1)=5 |
The kth block of blk(A*) represents the Neumann Laplace operator on the elemental domain QF.
We now recognize that not all elemental hih; are possible, and that not all h,h, are admissible;
indeed, the admissible degrees-of-freedom follow from the Q transformation of (21). We thus arrive,

rather simply, at the fully discrete equations:
QTbik(A¥)Qu = QThIk(f*). (23)

We note that independent of the size of the mortar nullspace (@ right nullspace), (23) is solvable. A
sufficient condition for a unique mortar function is that QTQ be invertible; in the conforming cases
QTQ is simply the multiplicity of a node (that is, the number of elements in which it appears).

Equation (23) illustrates that the global Laplace operator can be thought of as a local operator
“mortared” together by the @7,Q operations; indeed, the QT operator is the algebraic form of
the standard direct stiffness procedure (here extended to nonconforming elements). In the imple-
mentation of iterative procedures the Q,Q7 are, of course, never explicitly formed, but rather are
evaluated; diagrammatic evaluation of QT (direct stiffness summation) is shown in Figure 6 in terms
of the diagram conventions defined in Table 1. The domain decomposition decoupling afforded by
the implicit construction of the image basis through u” allows for efficient parallel implementation
following the methods described in [11] for conforming techniques.

Although the emphasis in the current paper is on the mortar discretization, the bases and
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Figure 6: Direct Stiffness Summation QT of Residuals on Nonconforming Mesh
evaluation procedure have been tailored to admit efficient iterative solution, and it is therefore
appropriate to briefly indicate how the method is used in conjunction with (for example) conjugate
gradient iteration. To solve (23) we write

;1o =QTbK(f*) - QTHK(AYQuy; g, =10 (29
om = (tm: 2m)/(g,,, QTHIK(44)Qg,,)

+1= %m + Omg,,

g:

Trt1 = L — amQTbIK(A)Qg,,
b = (£m+1:£m+1)/(fm3 !-m)
91— Tmi1 b’"'gm.’

where m refers to iteration number, r,, is the residual, ¢ the search direction and {.,.) is the
usual discrete inner product. All evaluations are performed through the diagrams of Figures 4

and 6. The bllc(;ik) operations are entirely local at the elemental level, with all transmission and
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coupling through . The local A* calculations are the standard conforming spectral element tensor
product evaluations, as the mortar decoupling allows all local structure to remain intact despite

global irregularity (e.g. non-propagating mesh refinement).

4 The Stokes and Navier-Stokes Problems

In this section we consider the extension of the nonconforming mortar method to the solution

of the two-dimensional steady Stokes problem in a rectangularly-decomposable domain 2,
- vWVu-Vp = f (25)
diva = 0,

with homogeneous Dirichlet velacity boundary conditions u = 0 on 81. Here u is the velocity, p
is the pressure, f is the forcing vector, and v is the kinematic viscosity. The associated variational

problem is: Find (u,p) € (H}(0)?, L2(Q)) such that

v(Vua, Vw) — (p, divw) (f,w), VYw e H}(q)? (26)

(¢,diva) = 0, Vge L2(Q),

where L2(02) is the space of L? functions of zero mean.

The discrete formulation of the problem consists of choosing two discrete approximation spaces,
one for the velocity field and one for the pressure. It is shown in [3,22,24] for the conforming
spectral element approximation that choosing both of these spaces to be polynomials of degree
less than or equal to the same degree N leads to an ill-posed problem, in which spurious pressure
modes arise [5,12]. The existence of such modes is in contradiction with the verification of the “inf-

sup” condition [5]. As regards our nonconforming methods for the Stokes problem, our starting
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point is the conforming staggered mesh method defined in (23] for which the “inf-sup” condition is
satisfied. The correct nonconforming extension is to use the velocity space (X)? defined in (9a,9b),
and for the pressure the space Mj = {¢ € L?, é),. EPN-2 (©1¥)} associated with the conforming
approximation. In essence, the fact the pressure is L? implies that it need not be modified when
the constraints on the velocity are relaxed.

With these spaces we arrive at the following nonconforming discretization:

Find (ug, pr) € ((Xx)?, My) such that

v (Vuh, th) - (Ph, diVWh) = <f,wp> Vwpe€ (Xh)z (27)

(gn,div uy) 0, Vqn€ M,

from which uniqueness, stability, and spectral error properties follow from the results of previous
sections and [4], suitably modified within the Stokes context as described in [23,24]. (We note
that, as elsewhere in this paper, we do not dwell on quadrature issues which are, by now, standard

practice.) We then choose a basis for Mj

N~1N-1
P = 2 O phel H(&)g) @), VEE{l,..K} (28)
=1 j=1

where the g;-v =2 are the N — 2th order Gauss-Legendre interpolants, that is, those polynomials of
Py _z such that g}v “2(¢N-%) = §;;, where ¢V-2 are the N — 2 zeroes of Ly3 [80]. We thus arrive

at the discrete saddle problem

QTHE(AF)Qu - QTbk(D*)Tp = QTHIK(T) (29)

HE(D*)Qu = o.

Here p is the algebraic basis for p analogous to u of (21b), b k(/i"),QT,Q,blk(? *) are defined as in
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(18-22), and D is the gradient operator given by

( (gl 2N =2, Vh;hj)*=t 0 . 0
0 (g —2gN-2,Vh;h;)F=2 0
blk(DF) =
K 0 0 (g;,v—zgév-z’ Vh.'h,')k=K

Vi,j€{0,..,N}?, Vp,qe{l,..,N-1}%

Extension to Navier-Stokes is straightforward given the lower-order nature of the convective terms.

As in the pure elliptic discretization, (29) is amenable to iterative solution. We currently use
a semi-implicit procedure for Navier-Stokes, in which the nonlinear terms are treated explicitly,
and the Stokes subproblem is handled with a Uzawa nested iteration [20]; conforming multigrid
techniques {28] are currently being extended to the nonconforming case. In addition to the staggered
mesh Stokes treatment, elliptic-splitting methods appropriate for higher Reynolds number flows are
also used [17,19]; these discretizations represent sequences of elliptic operations (23), and thus their

extension to the nonconforming case follows from Sections 2 and 3.

5 Numerical Examples

In this section we illustrate various aspects of our nonconforming method by a number of exam-
ples. The central point is the flexibility and ease-of-implementation afforded by a nonconforming

approach based on a consistent, non-context-dependent matching. As our first example we consider

(30)
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the Helmholts problem

~V2%u+Xu=f on 0=]0,1[x]0,1] (31)

o= evslE-D+0-1) on 3Q

where f is chosen such that the exact solution in £2 is given by u = c%((z~1)+(”—1)). In Figure
7a we show a high-resolution conforming mesh A = (K = 16,N = o); in Figure 7b we show a
nonconforming mesh h = (K = 10, N = o), in which the local structure-preserving mesh refinement
is illustrated. In Figure 8 we plot the error in the Xj norm of (10) for both solutions as a function
of N (K fixed) for A = 50. This example demonstrates the rapid (here exponential) convergence
of the spectral element approach, and the superior resolution properties of the nonconforming
discretization, which achieves the same accuracy as the conforming approximation with significantly

fewer degrees-of-freedom.

a) b)

Figure 7: High Resolution a) Conforming and b) Nonconforming Meshes for Helmholtz Problem

As our second example we demonstrate the utility of nonconforming methods in constructing

appropriate meshes; we consider the labyrinth channel of Figure 9, in which the two meshes for the
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O conforming (Fig. Ta)
A nonconforming (Fig. 7b)
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Figure 8: Convergence of the Broken H! Error for Helmholtz Problem
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Figure 9: Nonconforming Labyrinth Channel Mesh, & = (K = 22,N = 9)

two sides of the channel are constructed “separately”, and subsequently merged by mortar. The
boundary conditions are given as: a parabolic velocity profile at inflow, no slip on the channel walls,
and outflow {constant pressure) at the exit. In Figure 10 we show streamlines for the steady Stokes
flow calculated by the discretization (29) and the nested conjugate gradient Uzawa method; notable
are the continuity at element boundaries and the lack of spurious pressure modes. The mesh in
Figure 9 can be thought of as one instance of a sliding channel calculation; nonconforming methods,
with appropriate extension (as in Figure 1}, should prove to be powerful techniques for moving

boundary problems when used in conjunction with arbitrary-Lagrangian-Eulerian techniques [15].
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Figure 10: Stokes Solution for the Labyrinth Channel
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Lastly, we consider a moderate Reynolds number flow past a wedge {17,26] in a channel; the
utility of the nonconforming methods in generating an appropriately refined mesh is apparent in
the mesh shown in Figure 11. Note that we relax here the constraint, introduced for simplicity
of exposition in previous sections, that the elements be rectangular; treatment of general curved
elements represents a simple extension of the methods described in Sections 2-4. In Figure 12 we
show the short time solution of the startup vortex near the tip of the wedge, for a Reynolds number
R = 500 at a time 7 = % = .085 on the mesh h = (K = 16, N = 9) of Figure 11. We prescribe
a slug velocity profile at inflow, no slip boundary conditions on the walls, and outflow (constant
pressure) at the exit. Here R = %, where V is the channel average velocity, H the channel width,
and v is the kinematic viscosity, and ¢ is time. The high resolution in the vicinity of the wedge

allows for a detailed description of the startup vortex.
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Figure 11: Nonconforming Mesh for Startup Flow Past a Wedge

Figure 12: Navier-Stokes Solution for Flow Past a Wedge at R = 500, r = .085



NONCONFORMING MORTAR ELEMENT METHODS 415

References
[1] R. Adams. Sobolev Spaces. Academic Press, 1975.

[2] C. Bernardi, N. Débit, and Y. Maday. Coupling spectral and finite element methods for the
Laplace equation. Mathematics of Computation, to appear (also ICASE report no. 87-70 and
Publication du Laboratoire d’Analyse Numérique de I’Université Pierre et Marie Curie, no.

87031).

[3] C. Bernardi, Y. Maday, and B. Métivet. Calcul de la pression dans la résolution spectrale
du probléme de Stokes or Computation of the pressure in the spectral approximation of the

Stokes problem. La Recherche Aérospatiale (and English edition), 1-21, 1987.

[4] C. Bernardi, Y. Maday, and A.T. Patera. A new nonconforming approach to domain decom-
position: the mortar element method. In H. Brezis and J. L. Lions, editors, Nonlinear Partial

Differential Equations and Their Applications, Collége de France Seminar, Pitman, to appear.

[5] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising

from Lagrange multipliers. Rairo Anal. Numer., 8 R(2), 129, 1974.

[6] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in Fluid Dy-

namics. Springer-Verlag, 1987.

[7] T.Chan, editor. Proceedings of the Second International Conference on Domain Decomposition

Methods for Partial Differential Eguations, SIAM, Philadelphia, 1988.

[8] P. Ciarlet. The Finite Element Method. North Holland, 1978.



416  Maday et al.

[9] M. Dorr. Domain decomposition via Lagrange multipliers. submitted to Numerische Mathe-

matik, 1988.

[10] P. F. Fischer, L. W. Ho, G. E. Karniadakis, E. M. Rgnquist, and A. T. Patera. Recent
advances in parallel spectral element simulation of unsteady incompressible flows. Proceed-
ings of the Symposium on Advances and Trends in Computational Structurel Mechanics and

Computational Fluid Dynamics, Waskington, D.C., 1988.

[11] P. F. Fischer and A. T. Patera. Parallel spectral element solution of the Stokes problem.

submitted to Journal of Computational Physica, 1988.

[12] V. Girault and P. A. Raviart. Finite Element Methods for the Navier-Stokes Equations.

Springer, 1986.

[13] R. Glowinski, G. Golub, G. Meurant, and J. Périaux, editors. Proceedings of the First In-
ternational Conference on Domain Decomposition Methods for Partial Differential Equations,

SIAM, Philadelphia, 1987.

[14] D. O. Gottlieb and S.A. Orszag. Numerical Analysis of Spectral Methods. SIAM, Philadelphia,

1977.

[15] L. W. Ho. A Speciral Element Method for Free-Surface and Moving Boundary Flows. PhD

thesis, Massachusetts Institute of Technology, 1989.

[18] G. E. Karniadakis. Numerical simulation of heat transfer from a cylinder in crossflow. Inter-

national Journel of Heat and Mass Transfer, 31(1), 107, 1988.

[17] G. E. Karniadakis. Spectral element simulations of laminar and turbulent flows in complex

geometries. Numerical Applied Mathematics, to appear, 1988.



NONCONFORMING MORTAR ELEMENT METHODS 417

(18] G. E. Karniadakis, B. B. Mikic, and A. T. Patera. Minimum-dissipation transport enhance-
ment by flow destabilization: Reynolds’ analogy revisited. Journal of Fluid Mechanics, 192,

365, 1988.

[19] K.Z. Korczak and A.T. Patera. An isoparametric spectral element method for solution of the
Navier-Stokes equations in complex geometry. Journal of Computational Physics, 62, 361,

1986.

[20] Y. Maday, D.I. Meiron, A.T. Patera, and E.M. Rgnquist. Iterative saddle problem decompo-
sition methods for the steady and unsteady Stokes equations. submitted to Journal Computa-

tional Physics, 1988,

[21] Y. Maday and R. Mufioz. Spectral element multigrid. II. theoretical justification. submitted

to Journal of Scientific Computing, 1988.

[22] Y. Maday and A.T. Patera. Spectral element methods for the Navier-Stokes equations. In
A.K. Noor, editor, State-of-the-art surveys in computational mechanics, ASME, New York,

1988.

[28] Y.Maday, A.T. Patera, and E.M. Rgnquist. The P,—Py 2 Legendre spectral element method

for the multi-dimensional Stokes problem. in preparation.

[24] Y. Maday, A.T. Patera, and E.M. Rgnquist. Optimal Legendre spectral element methods for

the Stokes semi-periodic problem. submitted to SIAM Journal of Numerical Analysis.

[25] A.T. Patera. A spectral element method for fluid dynamics: laminar flow in a channe] expan-

sion. Journal of Computational Physics, 54, 468, 1984.



418 Maday et al.

[26] D. L. Pullin and A. E. Perry. Some flow visualization experiments on the starting vortex.

Journal of Fluid Mechanics, 97, 239, 1980.

[27] E. M. Renquist. Optimal Spectral Element Methods for the Unsteady Three-Dimensional In-
compressible Navier-Stokes Equations. PhD thesis, Massachusetts Institute of Technology,

1988.

[28] E.M. Rgnquist and A.T. Patera. Spectral element multigrid. I. Formulation and numerical

results. Journal of Scientific Computing, 2(4), 389, 1987.
[29] G. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice-Hall, 1973.

[30] A.H. Stroud and D. Secrest. Gaussian Quadrature Formulas. Prentice Hall, Englewood Cliffs,

New Jersey, 1966.

[31] J. M. Thomas. Sur lanalyse numérique des méthodes d’éléments finis hybrides et miztes.

These d’Etat, Université Pierre et Marie Curie, 1987.

{32] T.A. Zang, Y.S. Wong, and M.Y. Hussaini. Spectral multigrid methods for elliptic equations.

Journal of Computational Physics, 48, 485, 1982.



