CHAPTER 2

On the Discretization of Interdomain Coupling in Elliptic
Boundary-value Problems*

Milo R. Dorr?

Abstract. In this article, we consider the discretization of the interdomain coupling of solu-
tions of elliptic boundary-value problems on decomposed domains without overlaps. Our
approach employs Lagrange multipliers to enforce compatibility constraints between adjacent
domains. The multipliers explicitly appear as auxiliary dependent variables in continuous and
discrete variational formulations of the elliptic problem. As a result, the interdomain coupling
is included at a higher level of the discretization than in approaches yielding standard Schur
complement systems. Qur primary focus is on the convergence of such methods as determined
by the choice of multiplier spaces on the interfaces. The main conclusion drawn is that an
appropriate selection of the multipliers, based on well-known regularity properties of solutions
of elliptic boundary-value problems, yields good resolution of the interdomain coupling in
finite-dimensional spaces of very low dimension. This has some important practical advan-
tages, which we demonstrate with some numerical examples.

1. Introduction. In solving an elliptic boundary-value problem on a decomposed domain
without overlaps, a typical approach is to apply block elimination to a standard finite-element
or finite-difference discretization of the problem. This yields a Schur complement, or reduced,
system to be solved for the unknowns on the interfaces between adjacent subdomains. Much
attention has been given (see [18] for a good survey) to the problem of solving these Schur
complement systems, which are generally large, dense, and ill-conditioned. Iterative techniques
with judiciously-chosen preconditioners are the usual methods of choice.

* This work was supported by the Applied Mathematical Sciences subprogram of the
Office of Energy Research, U.S. Depariment of Energy and by Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.

+ Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550,

17



18 Dorr

Since the Schur complement system can be viewed as the linear system resulting from a
discretization of a global coupling problem among the subdomains, it is natural to ask the fol-
lowing questions. What are the regularity properties of the global coupling problem? How
efficiently does the discretization yielding the Schur complement system resolve the inter-
domain coupling? What advantage can be taken of any information which may be known a
priori about the interdomain coupling? The fact that the usual Schur complement system may
not represent the best discretization of the coupling problem can be illustrated by simple exam-
ples in which very fine meshes are required to resolve the solution on each of the subdomains,
yet the coupling between subdomains can be approximated very accurately in a subspace of
much smaller dimension than the number of unknowns imposed on the interfaces by the sub-
domain meshes. The basic problem in such cases is that the need to efficiently discretize the
interdomain coupling was not considered early enough in the discretization process. Hence,
although the meshes on each subdomain are presumably chosen to sufficiently resolve some
desired solution features, the resulting dimension of the Schur complement system may be
much greater than is necessary to resolve the components of the solution which are more natur-
ally related to the interdomain coupling.

Rather than obtaining the Schur complement system as a by-product of block elimination
applied to a standard finite-difference or finite-element discretization of the problem, one might
instead choose to include explicitly in the initial continuous formulation the quantity which will
ultimately be approximated by the solution of the interface system. Since this quantity would
then be present during the discretization process along with the subdomain variables, a more
effective discretization of both the subdomain and interface problems could presumably be
obtained. In this paper, we summarize the results of [13], which describe the use of Lagrange
multipliers in achieving this goal. The Lagrange multipliers, which are functions defined on
the interface between adjacent subdomains, allow the interdomain coupling to be explicitly
included in continuous and discrete variational formulations. Since the subdomain basis func-
tions and interface Lagrange multipliers are independently represented in these formulations,
there is the opportunity to choose the multipliers in such a way as to resolve the interdomain
coupling in finite-dimensional interface spaces of very low dimension.

The utility of Lagrange multipliers specifically for domain decomposition has been recog-
nized by other investigators, e.g., [10]. To our knowledge, in these approaches the Lagrange
multipliers are assumed to belong to the reduced space of functions spanned by the traces of
the finite-dimensional subdomain basis functions, which represents only one possible choice for
the Lagrange multiplier space. In this case, the number of Lagrange multipliers is again
equivalent to the number of unknowns L associated with the interface. Since the construction
of the dense interface problems to be solved for the Lagrange multipliers requires L. linear sys-
tem solves on each subdomain, iterative procedures are proposed which avoid the otherwise
costly construction of the Schur complements. As shown in [13] and the present article, by
choosing the Lagrange multiplier space in a more general fashion, the number L of Lagrange
multipliers on an interface can be so dramatically reduced that for many problems it is entirely
feasible to construct the dense interface problem and solve it directly. Moreover, all of the
subdomain solves required to compute the interface matrix can be done in parallel assuming
that a sufficient number of processors are available. This provides some important flexibility in
achieving load-balanced calculations.

As in [13], the following development will consider only the case of two subdomains
separated by a single interface. The results obtained for the two-domain case readily
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generalize to multidomain cases without crosspoints (e.g., stripwise decompositions). The
application of the method described here in the general case with crosspoints will be the sub-
ject of a forthcoming paper. Also, although we are considering only self-adjoint problems
here, there is nothing preventing the extension of our results to non-self-adjoint problems as
well,

2. Lagrange Multipliers and Poincaré-Steklov Operators. In this section, we describe the
method of Lagrange multipliers in the context of domain decomposition. We then show how
the interface problems obtained by the Lagrange multiplier approach are related to certain dual
interface formulations involving Poincaré-Steklov operators. As mentioned in the intmquction,
we will restrict our attention to the case of only two subdomains. Also, since we intend to
focus on the use of Lagrange multipliers to enforce interface rather than boundary conditions,
we will assume only homogeneous Dirichlet conditions on the boundary of the given domain.

Let Q denote a two-dimensional Lipshitz domain whose boundary 9 is the union of

smooth (at least continuously differentiable) arcs. A polygon is an example of such a domain.
Consider the following second-order, self-adjoint elliptic problem in Q:

2
-2 [a,-j(x)M } +em@) =f(x)  onQ @.12)
i =1 0%; 0x;

with the homogeneous, Dirichlet boundary conditions

u=0 on dQ2. 2.1b)

Here, the coefficients a; and ¢ are assumed to belong to L=(<Q) and satisfy the ellipticity con-
dition

2 2
Y a;8E 2B Y EA  forallE, &, aeonQ,
ij=1 i=1

for some constant §§ > 0.

Next suppose that Q is partitioned into two subdomains Q; and €, by an interface T
We assume that T is at least continuously differentiable and subdivides Q in such a way that
the boundaries d€2, of the resulting subdomains are Lipschitz. For example, I' might be a line
segment partitioning a polygonal .

For each £=1,2, let H(€,) be the usual Sobolev space of functions with square-
integrable first derivatives on €, and let Hg(ﬂk) be the subspace of H(,) consisting of the
those functions which vanish on 3, N Q. Let H;'(Q,) be the dual of HDI(Q,C). We denote
by ¥, the operator mapping functions in Hy(,) to their traces on T’ Let H &2(I) denote the
fractional-order Sobolev space on T' consisting of all traces on I' of functions in HA(Q,)
equipped with the norm

120 = liﬂf fl 1
o @ " e Hp(Q)ig =Yty

gl @,y
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and let Hgd?(T) denote its dual. With these definitions, it is clear that Y, maps H,}(Qk) onto
H (D), and it can be shown [14] that ¥, has a continuous right inverse y;’.

Let H = HA(Q)) x HJ(Qy) x Hy”?(T). For each (u,upg™) € H, we define

2 2 OJuy duy 2
Duuzg’)= Y, Y a;——% & cul? - 2fu, | dQ 2.2)
! k=1 Ink ij=1 Y ox; ox;

—2 | g"(uruy) dT.
r

In the last term of (2.2), the Lagrange multiplier g* is integrated against the difference in the
traces of the subdomain solutions , on I. The constraint that the u, should agree on T is
thereby incorporated into the usual quadratic functional to be minimized, which is the first term
of (2.2). As a result of adding the Lagrange multiplicr term, we have obtained a saddle-point
problem, and the critical points (#,45,¢") of ® must satisfy the variational equality

B 428" )12k ) = F(1v2h")  forall (vyvph*)e H , 2.3)
where
. . 2 2 QJu, v
B((ul,uz,g ),(vl,vz,h )) = Z [ z aij.a_ué.__i + cukvk] asd
=1 "o, |ij=1  ox 0x;
- fr[g*(vl—vz)m*(ul-uz)] dr
and

2
Fowwoh')= ¥ [ fudo.

k=1 Q

Let 7 denote the unit normal to T pointing from Q, to Q,, and let A denote the 2x2

matrix whose entries are the coefficients a;. For any ueH l(Q), we define the conormal
derivative operator

Yu=syu=r- AV). 29

We have the following result [13].

Theorem 2.1. There exists a unique solution Wystag™) of 2.3) . Moreover, if f is such that
there exists a classical solution u of (2.1), then the element Wyolng”)of H given by

u,=u onfly, k=12 (2.5a)
g = Yu, (2.5b)
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is the solution of (2.3).
For each £=1,2, let

2
Buwy= | [ % a aa“ aa" +cuv} a0 @6

2y | ig=l

on Hp () X HY(Y). Given g* in Hgl(T) and £, in H5,), we consider the variational
problem of finding u, in HA(£,) such that

ByQugvy) = jr g'v, dr'+ Ink fivdQ, for all vye HASQ,). Q@

Lemma 2.1. For k=12, given g* in Ho}*(T) and £, in H5"&Y,), there exists a unique solu-
tion uy, of (2.7) and

‘wkllkﬂggonm sC ["g*“}lg&"zﬂ") E ﬁ'fkuﬂﬁl(ﬂg) ]

Jor some constant C.

We now deﬁne the Poincaré-Steklov operator (sce, e.g., [1] and the references therein)
Oy : HR™(T) - HIF M by

08" =Yy, 2.8

where, for g” in Hm"z{l"), u, is the solution of (2.7) with f, =0. Furthermore, let
Ry : H5'(6) — HYP (D) be given by

Rife = Netty 2.9)

where, for £, in H5'(f,), u, is the solution of (2.7) with g* = 0. From Lemma 2.1, whose
simple proof is given in [13], we have that Q; and R, are bounded Operators.

In terms of O, and R,, the Lagrange multiplier g* in H5"2(I") obizined by solving (2.3)
is the mnique solution of

@1+028" =Ryf,-Rif . 2.10)

Equation (2.10) is a statement of ihe fact that solving the Lagrange mukltiplier formulation is
equivalent to finding interface data g” in Hg'?(T) such that, when (2 7} is solved, the traces
on I of the resulting solutions u,, k=1,2, have the same value g in H{2(T). A dual formula-
tion also exists in which one seeks Dirichlet data g on I” such mai when Dirichlet problems
are solved on each saixlzxnam £, the conormal derivatives yeu, of the resulting solutions
have the same value g° on I In terms of the operators O, and &, this dual formulation can
be written as
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@1 +051)g = 07'Rif 1+ Q7'Rof 5. @.11)

Equations (2.10) and (2.11) are compact expressions of the interdomain coupling problems to
be discretized.

3. Discretization. Discrete analogs of the continuous formulations discussed in the previous
section are obtained by the usual procedure of restriction to finite-dimensional subspaces.

For each k=1,2, let Py, (%) be a finite-dimensional subspace of HA(Q,) with basis
(x> B=1.2,....M; }. We assume that, for some m; > 1 and ¢, > 2,

Py, () cH™(Qy) 3.1

and that for every u,cH "‘(Qk), m 20, and 0 < s < min(my,n,) there exists v, in Py (S2¢),
independent of s, such that

12 .
Wtg=Viehyga g, y < CME ™y I o, = min(t,—s 7, —s) , (3.2

Q)

where C is independent of u,, M;, and s. An example of such a space is the subspace of
HB () consisting of continuous piecewise linear functions on a quasiuniform triangulation of
Q. In this case, my = 1, #; = 2, and M, is roughly proportional to #;2 where hy is the mesh
size.

Next, let W,(T) denote a finite-dimensional subspace of HEZ(I) with basis
{wy , A=1,...,L } such that, for some my2-1/2and t,2 2,

W, M) c H™I), (3.3)

and for every " eH™(I), n, 2 -1/2, and 12 < 5 < min(z.,n.) there exists p* in W, (),
independent of s, such that

0l S CL™ 1g” brngy®  Oy=min(tys.nys), (34)

where C is independent of g", L, and 5. In addition, we assume that W, (T) satisfies the
inverse assumption

!!g*ﬂy,m < cy-qug*aﬂ,m , forallg’eWw,(I), -1R2<g<s< my, (3.5

where C is independent of g*, L, and s. For example, W, (T") could be the space of continu-
ous piecewise linear functions on a quasiuniform pattitioning of T, in which case my=1,

?

ty= 2, and L is roughly proportional to the number of partition segments,
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Hy, 1 =Py Q) X Py () x W, (T), M =MM,) .

Since Hy,;, is contained in H, we may consider the discrete problem of finding (y;,y.A") in
Hyy 1, satisfying

B((WiW2 A ).(01021 ) = F (@1,021")  forall bpdph™) e Hy .  (3.6)

The following result is proved in [13]:
Theorem 3.1. Assume that the solution u of (2.1) satisfies u ngeH""(Qk) for some

m 21, k=1,2, and that ¥’ u € H™() for some ny2-1/2. Let K be a constant independent
of My, and L such that

KL < M2, k=12, 3.7

If K is sufficiently large, then there exists a unique (Wi \,\") in Hy 1 satisfying (3.6).
Moreover,

2 .
Z‘l M= Mgy y + WY =AMy an (3.8)

2 s .
< P R S L S T
<C {151 Ve Py (@) V@) T 1t ew, ()Y TR THarm

2
~6,/2
<c { 2 Ml

+L7% 0wl . b,
k=1 ) yuHYm}

k

where

G = mm( by, ny ) bl 1, k=1,2,
oy=min( ¢y, ny)+ 172,

and C is independent of My and L.

Some error estimates obtainable from Theorem 3.1 for specific choices of Py, () and W (1)
are contained in the following results.

Corollary 3.1. For k=12, let Py, (€) denote a subspace of H} (Qy) consisting of continuous
Piecewise linear polynomials defined on a quasiuniform triangulation of S, and let W, (@) be
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a subspace of HP () consisting of continuous piecewise linear polynomials defined on a
quasiuniform partitioning of I. Then, under the hypothesis of Theorem 3.1, there exists a
unique (Y1, y,\") in Hy ;, satisfying (3.6) and

2
*
Vel RN o, (3.9)
2 - .
<C Z Mk—[mm(nk.z)—ll/z + L-—mm(n,y,Z)—lIZ ,
k=1

where C' = C (i . ,ny) is independent of M, and L.
Corollary 3.2. For k=12, let Py, (Qy) denote a subspace of Hl% (£2;) consisting of continuous
Piecewise linear polynomials defined on a quasiuniform triangulation of Q;, and let W (') be

the subspace of H 010'2 () consisting of polynomials of degree < L+1 defined on T. Then, under
the kypothesis of Theorem 3.1, there exists a unique (y, ,\|12,7\.*) in Hy | satisfying (3.6) and

2
*
énuk—wku,,lmkﬁ 19w /OB Ny 1z (3.10)
2 .
<c| 3 ppmeeAn2 ) e |
k=1

where C = C(u.n, ,ny) is independent of M, and L.

When interpreting the error estimates (3.8-3.10), some care must be taken not to overlook
(3.7). This assumed condition must be maintained in the asymptotic limit of increasing M,
and L to ensure that the constants C in (3.8-3.10) are independent of M, and L. Essentially,
(3.7) stipulates that one may not "over-resolve” the interface problem for a given level of sub-
domain discretization. Thus, in spite of the fact that there are two asymptotic parameters in
(3.8), they are not totally independent. A discussion of why (3.7) cannot be removed in gen-
eral can be found in [2, page 214], and some special cases in which (3.7) can be eliminated are
discussed in [4]. For practical reasons which will be discussed later, L will be limited to a
finite range of relatively small values, in which case there always exists a constant X such that
(3.7) holds for sufficiently large M,. In the numerical results of the next section, we will see
that the need to satisfy (3.7) does not present any difficulties for the problems considered.

In general, the subdomain components Y, of the solution of (3.6) will not agree on I If
the traces on I” of all functions in Py (), k=1,2, span the same space, then continuity of the

approximate solution can be recovered by a simple patching procedure. Consider the interface
jump function

A=y, -1y € HEMD).
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For each k=1,2, let ¢; € Py, (€;) be the solution of the Dirichlet problem

o, élav%% Xy |dQ=0 (3.11a)
for all y; € Py, () O Hg (),
O = (—1)"“% onT, (3.11b)
and define
Ve =W, +0, onQ,. (3.12)

The corrected approximations ; and V, then agree on . Morcover, since
e,y < € WAl 172 s
it follows that

=Wl g,y < D=l g, + C =Wl go

2
< Ilu—\yk "Hl(gl;) + Cygl llu—\]!kl "H&on(r)

2
< CY llu—yy "H*(n,)'
K=l

Thus, the patching procedure does not degrade the asymptotic convergence rate of the approxi-
mate subdomain solutions.

The algebraic system resulting from (3.6) is
S8 + (DU =T, k=12, (3.13a)

vie,-ule, =0, (3.13b)

where

_ 2 aq)kp, a(bkv
(Sk)p,v = j;)k{ Z aij axi axl + c@kyq)kv}dgs

ij=1
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Tp= [ For,dQ,
[+

CARE jrcbkm ar,

and the entries of the unknown vectors 0, and n" are the coefficients of the approximate solu-
tion components vy, and A" with respect to the bases {¢y,} and {w,}, respectively. Solving
(3.13a) for 0., one obtains, for k=12,

6 = Sy U” + T (3.14)

which, upon substitution in (3.13b) yields the following system to be solved for the discrete
Lagrange multiplier n":

2
(X Uise'uom” = U3s5'T, - s T, (3.15)
k=1

Once n" is determined from (3.15), the 0, arc obtained from (3.14). System (3.15) is the
discrete analog of (2.10).

The discrete formulation of (2.11) is

2 2
[T Wiss'uy™m= 3 Wwisg'vywiss't,, (3.16)
k=1 k=1
where the entries of 1 are the coefficients with respect to {w4} of the discrete Dirichlet data to
be determined on I.  After solving (3.16) for 1, the subdomain solutions are obtained from
O =S, U UIST U\ - UISTIT) + 1), k=12, (3.17)

We refer to (3.16) as a Generalized Schur Complement (GSC) system. The motivation
for this terminology is the following. Consider the special case in which the finite-dimensional
Lagrange multiplier space W, (T) is given by

W (D) = {w :w =7y, for some v; € Py (Q)) } (3.18)

= {w W =,v, for some v; € Py, (Q) }

where we have implicitly assumed that Py, (C4), k=1,2, have the same traces on I. We can
arrange the unknown vectors 8, in such a way that the entries 0;,, which couple to T (ie.,
have indices 1 such that Uiy # 0 for some A ) are listed last. Then Sks Ty, U, and 6,
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may be partitioned as

st s % 0 of
Sk—[S'fz sp | T n ) BT e ) % e

where U is a nonsingular LXL matrix. Straightforward matrix algebra yields that (3.16) can
then be written as

2 2
X [sta - shistsh]o = 3 [rf - sucstirt] (.19)

-

where 8= 0T = 0%, k=12. Thus, in the special case defined by (3.18), the system (3.16) is
equivalent to the usual Schur complement system, modulo the transformation of the interface
unknowns effected by the matrix .

Although it is the GSC system (3.16) which generalizes the well-known and much-
studied Schur complement formulation, the presence of the matrices U, in cases where (3.18)
does not hold makes the GSC system more expensive to implement than system (3.15). This
is consistent with conclusion that it is better to use the natural interface data represented by the
Lagrange multipliers as the unknown quantity to be solved for on the interfaces rather than the
Dirichlet data determined by the solution of the GSC system. We note that the estimates of
Theorem 3.1 were obtained for system (3.15), since this was the discrete problem directly
obtained from the continuous Lagrange multiplier formulation,

It is apparent that the predominant cost in implementing (3.15) is the construction of its
coefficient matrix, In each subdomain, it is necessary to solve L linear systems to compute
each subdomain’s contribution to this matrix with an additional subdomain solve required to
obtain the S;'T, contribution to the right-hand side of (3.15). The feasibility of the explicit
construction of (3.15) is therefore heavily dependent upon the size of L. In the discretization
scheme described above, the space W, (I) was chosen independently of the discretizations on
the subdomains (i.e., the Py, (S;)) subject only to the condition (3.7). This implies that we are
essentially free to choose Wy (I") in such a way as to approximate well the natural interface
data Y u onT. As can be seen from (3.8), if this is effectively done, then the error on each
subdomain €, will be dominated by the usual best-approximation errors on the subdomains.
Since we are solving an elliptic partial differential equation, we know that for real problems
the natural interface data y" u will generally be very smooth, except perhaps for singularities of
well-known functional form at the endpoints of I. Because of this smoothness, it is logical to
choose the space Wy (I') to contain either algebraic or trigonometric polynomials on T, since
the smooth data 'y*u can be approximated well by small numbers of such functions. Even if
singularities exist, as the approximation theory [5-8,11,12,15-17] for the p -version of the finite
element method demonstraies, on quasiuniform meshes high-order polynomials are superior to
the usual low-order piecewise polynomials one is effectively using when the space W, (I) is
given by (3.18). Therefore, by using such multipliers L should be very smali. This means
that only a smail number of subdomain solves are required to construct the system (3.153),
which may even be of sufficiently low dimension for solution via direct methods.
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It should be observed that the M;xL matrices U; depend only upon the spaces Py, (€2;)
and Wi (I). In particular, the U, are independent of the elliptic operator giving rise 1o the
matrices S; and therefore could be precomputed. Depending upon the choice of the spaces
Py, (£;) and W ('), the U, can also be quite sparse. Such sparsity can therefore be exploited
both in the construction of the U, and in the computations involved in setting up (3.15). For
example, if Py, (€) consists of continuous piecewise-linear functions on a fine gridding of
€2, only a relatively small number of basis functions ¢,,, have support meeting the interface I'.
This yields matrices U, with many zero entries. On the other hand, if Py, () consists of
globally-defined polynomials, such as in the p-version of the finite element method, then the
U, will necessarily be less sparse, although M, will generally be much smaller in this case due
to the superior approximation properties of such spaces.

We note that in iterative substructuring techniques which use methods such as precondi-
tioned conjugate gradient (PCG) to solve the Schur complement system (3.19), it is necessary
to do at least one subdomain solve in each iteration in order to evaluate the action of the Schur
complement matrix on a vector. The approach described above in which the system (3.15) is
explicitly formed also requires a number of subdomain solves. Here, the subdomain solves are
needed to construct the quantities Sy'U, and S¢'T,. Since all of the right-hand sides of the
subdomain problems (namely, the columns of U, and the vector T}) are available at the same
time, these subdomain solves can easily be performed in parallel. This is in contrast to itera-
tive methods where the inherent sequential nature of the PCG iteration precludes exploitation
of this extra level of parallelism on each subdomain. Furthermore, if, on a shared-memory
multiprocessor, we consider as a pool of tasks the subdomain solves needed in the computation
of S,,‘1 U, and Sk‘lTk, k=1,2, then any subdomain solve can be assigned to any available pro-
cessor with no synchronization required until all subdomain solves have been performed
(except for the solves needed to perform the patching procedure). In this way, load-balancing

is enhanced and the granularity of the parallel work remains at the level of the subdomain
solves.

Another advantage of explicitly forming (3.15) in contrast to iterative approaches is that
if many problems involving the same elliptic operator are to be solved (for example in a time-
dependent calculation in which S, and U, do not change) then the matrix of (3.15) can simply
be constructed once, factored and stored.

4. Numerical Results. As our first example, we consider the problem

—~Al + 1 =f in ﬂ, (4.13)
u=g on df2, 4.19)

where Q is the domain pictured in Figure 4.1, and f and g are such that the solution of (4.1)
is

u(x, y) = e*sin(zy). @2
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Figure 4.1. Domain for problem (4.1).

On the interface T separating the two subdomains €, and £, the solution conormal derivative,
or "flux”, is

ou/or? = 2¢7sin(ny ), 4.3

where 7 is the unit normal to T pointing into €,. Let £, k=1,2, be uniformly triangulated,
and let k; denote the maximum diameter of any mesh triangle. Similarly, let I’ be uniformly
partitioned such that (L+1)" is the length of any mesh segment. Let Py (€) and Wi () be
the corresponding continuous piecewise linear spaces satisfying the appropriate boundary con-
ditions. We see that the restictions u, k=1,2, of the exact solution (4.2) belong to C*(Q;)
and that 9u /0% belongs to C=(). If (y;,y2.A") is the solution of the discrete problem (3.6)
corresponding to (4.1), then, provided that (3.7) holds, it follows from Corollary 3.1 that

2 2
g,llluk—\yk “Hl(gk) + llaulaff—?\.* “H&}"(I') <Cu) [ §1 hy + L_SIZ], 4.4
where C (1) is independent of #; and L. In (4.4), we have used the fact that, for a uniform
triangulation of Q, k;, = O (M),
As a second option for Wy (I), we consider the space of globally-defined (i.., not piece-

wise) polynomials of degree < L+1 on I" which vanish at the endpoints of T. In this case,
again assuming (3.7), it follows from Corollary 3.2 that
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2
kzl W=Vl g + 100 0D Wy g oy @.5)

2
S C(u,n-y) [ Z hk +L_("7+1/2)]’
k=1

for arbitrarily large n., where C(u,n.) is independent of &, and L.
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Figure 4.2. Convergence of the domainwise relative energy
norm error with respect to the number of piecewise-linear and
polynomial multipliers in the solution of problem (4.1).

Since the exact solution (4.2) of (4.1) is known, we can calculate the subdomain error
terms in the lefi-hand sides of (4.4) and (4.5) to experimentally observe the convergence rates
predicted by the above theory. We cannot directly compute the interface error involving the
H "™ () norm, but this can be estimated as described in [13]. Figure 4.2 shows some results
obtained using the piecewise-linear and polynomial Lagrange multiplier spaces W, (T') together
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with uniform subdomain partitionings corresponding to k™! =256, 512, and 1024, with
hy=hy=h. Plotted against the number of Lagrange multipliers L is the relative domainwise
energy norm error

2 12
IR
k=1

el 't ©

4.6)

Since a log-log scale is used in Figure 4.2, the predicted 5/2 convergence rate with respect to
L™ for the case of piecewise-linear multipliers is easy to see. On the other hand, the predic-
tion that the errors using polynomial multipliers are decreasing faster than any polynomial rate
with respect to L™} is difficult to verify from the few data points which precede the bottoming
out of the error curves. The fact that the errors do not decrease past a certain point for large L
is to be expected since the subdomain errors will ultimately predominate as more multipliers
are used on I Hence the curve asymptotes represent the errors which would be obtained by a
standard finite-element or finite-difference method applied to the original problem (4.1). We
note that it was necessary to take a ridiculously fine gridding of the subdomains in order to
reduce the subdomain errors enough to even see the convergence rates of the errors introduced
by the Lagrange multipliers. This is partially due to the relatively poor approximation proper-
ties of the piecewise linear functions used on the subdomains, but it is also an indication of the
rapid convergence of the discrete Lagrange multipliers. Using piecewise-linear W, (I'), 4 mul-
tipliers were required to reduce the relative domainwise energy norm error to less than 5%,
whereas for polynomial W, (I), only 2 multipliers were needed to reach this tolerance. In the
latter case, this means that only 2 subdomain solves are required on each subdomain to con-
struct system (3.15), and that the cost of a direct solution of this 2x2 system is negligible.

Since no paiching was performed in obtaining the results presented above, the computed
solutions of (4.1) are discontinuous at I". This discontinuity at " can nevertheless be removed
using the patching procedure described in Section 3. The quantity (4.6) will then represent the
true relative energy norm error on Q. In Figure 4.3, the error curves obtained using polyno-
mial Lagrange multipliers with patching are plotted against the corresponding unpatched error
curves taken from Figure 4.2, Although we showed in Section 3 that the patching procedure
will not degrade the rate of convergence of the subdomain solutions with respect io the number
of Lagrange multipliers, we cannot observe this in Figure 4.3 since, for all three subdomain
mesh sizes, the patching has reduced the interface error below the level of the subdomain error,
This means the error obtained wvsing 1, 2, and 3 polynomial Lagrange multipliers in the
unpatched version of the algorithm is entirely due to nonsatisfaction of exact continuity at the
interface, even though the energy nomn error was only computed in a domainwise sense (i.e.,
discontinuities at the interface do not directly contribute to the errors). It should again be
noted that we are using very fine subdomain grids, and from Figure 4.3 we see that if coarser
subdomain grids had been used then the difference between the unpatched and patched errors
might not be seen. Nevertheless, this example shows that the use of the patching procedure
not only recovers the continuity of the computed solutions at the interface, but in fact can even
further reduce the errors on the subdomains.
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Figure 4.3. Comparison of the convergence rates of the
domainwise relative energy norm error with respect to the
number of polynomial Lagrange multipliers before and
after application of the patching procedure.

As an example of a nonsmooth problem, we consider

~Au+u=f in Q, 4.72)
u=0 on 0, (4.70)

where Q is the L-shaped domain shown in Figure 4.4. We assume that f is such that the
solution of (4.7) is

u(xy) = A=xH0—Hr?3in(20 + ©)/3) 4.8)

where r and © are the usual polar coordinates based at the origin. The singularity in the
derivatives of (4.8) at the origin is representative of the singularity existing in all problems
with reentrant corner angles of measure 3w/2 and homogeneous Dirichlet conditions on the
sides of the domain meeting at such comers [14].
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Figure 44. Domain for problem (4.7).

Figure 4.4 also indicates a very natural domain decomposition of Q via the introduction
of interfaces I'; and T,. Although three subdomains are shown, we observe that the problem is
actually symmetric with respect to the line y = x and therefore can be treated as a two-domain
problem with one interface. The decomposition shown in Figure 4.4 has the advantage of
yielding geometrically simple subdomains, yet both interfaces contain the reentrant corner and
therefore also contain the singularity. Letting s denote the arc length along either I'; or T as
measured from the origin, we have that the solution flux on I';, j=1,2, is given by

Qu /o, = —(1 —s2s13 4.9

modulo a sign depending on the direction of the unit vector #; normal to T;. Letting
Py, (&), k=1,2, be the same piecewise linear subdomain space used in the previous example,
and taking the Lagrange multiplier spaces Wy, (T';) to be the spaces of all continuous pieceWise
linear functions on uniform partitionings of T';, it follows from Corollary 3.1 and the regularity
properities of (4.8,4.9) that if (3.7) is sat1sﬁed and (Y;,¥2W3. M A,) i the solution of the
discrete problem (3.6) (trivially generalized to the case of three subdomains and two interfaces)
corresponding to (4.7), then

zuu,c—w,;n,,,(m+ zuau/arf Mlyznqy (4.10)
k=1

k=1

SC(u)[é h,?’3+L‘2’3] .
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Furthermore, letting Wy, (I';) be the space of all polynomials of degree < L+1 which vanish at
the endpoints of T';, then

3

2
M=l + ZIOUIBR Ay an @1
k=1 =1

2
<Cw) [ Y B2+ L“5’6] .

k=1

Figures 4.5 and 4.6 are the analogs of Figures 4.2 and 4.3 for problem (4.7). Uniform
triangulations of the subdomains €, corresponding to mesh sizes of k~'=16, 32 and 64,
hi=hy=hs=h, were used together with L.=1,2,4,8, and 16 multipliers on each of the interfaces
T';. Comparing these results with Figures 4.2 and 4.3, the negative effects of the reduced
interface flux regularity are evident. Considering Figure 4.5, we see that for h=1/64, at least
10 polynomial multipliers were required to reduce the error to the point at which the sub-
domain errors are dominant, and the error using 16 piecewise-linear multipliers had not yet

3 _____  Piecewise—linear multipliers ]

___________ Polynomial muitipliers

~1

1

: N W g h=116

5/6 Tl

Domainwise Relative Energy Norm Error

D
(@] P | . o . PO S ST ¥
=

10
Nurnber of Lagrange Multipliers (L)

Figure 4.5. Convergence of the domainwise relative energy
norm errar with respect to the number of piecewise-linear
and polynomial multipliers in the solution of problem (4.7).
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reached this floor. Even 10 multipliers must be considered a rather large number since this
would mean that 10 subdomain solves would be required in subdomains ,; and €5 and 20
solves in £, to construct the system (3.15). As Figure 4.6 shows, by applying the patching
procedure the error can nevertheless be reduced to the subdomain error floor using 5 or 6 poly-
nomial multipliers for the case #=1/64 and even fewer for the cases £=1/16 and h=1/32.

In the previous example, our principal concern was the convergence of the Lagrange mul-
tipliers. In obtaining our computed results, we therefore used simple uniform subdomain tri-
angulations even though the problem has a singularity at the origin. Indeed, the subdomain
approximations can be greatly improved by appropriatec mesh refinement near the singularity.
However, the same techniques may also be applied on the interface. We could generalize the
spaces W, (T';) to consist of arbitrary degree piecewise polynomials on a partitioning of I'; as
is done in the A—p version of the finite element method [6,7,15-17]. Since we know the form
of the singularity at the reentrant corner, we could appropriately grade the interface meshes
near the singularity to improve the approximation properties of the Lagrange multiplier spaces
Wi (T;). It seems clear that, from a practical point of view, it will always be easier to imple-
ment effective Lagrange multiplier spaces W, (T';) on the one-dimensional interfaces in order to
exploit known solution characteristics than it would be to make an equivalent change in the
two-dimensional subdomain spaces Py, (€2y).
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Figure 4.6. Comparison of the convergence rates of the
domainwise relative energy norm error with respect to the
‘number of polynomial Lagrange multipliers before and
afier application of the patching procedure.
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Based on the results obtained for the smooth model problem (4.1) and the nonsmooth

model problem (4.7), we conclude that the set of polynomials of degree < L+1 on I' which
vanish at the endpoints of T" are a good general-purpose choice for the Lagrange multiplier
space W, (I'). Considering the fact that the Legendre polynomials mapped to I" can be used to
construct a hierarchical basis for such a space, there are other benefits of this choice as well.
Furthermore, we have seen that it is generally a good idea to perform the patching procedure
even if the application at hand does not strictly require continuity at the interfaces.
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