CHAPTER 4

On the Schwarz Alternating Method II: Stochastic
Interpretation and Order Properties

P L. Lions*t

Abstract. We continue here a systematic investigation of convergence
properties of the Schwarz alternating method and related decomposition
methods. Qur study here is based upon the maximum principle and the
stochastic interpretation of the Schwarz alternating procedure.

Introduction.

This paper is a sequel of [36] and part II of a series of
papers devoted to the mathematical study of various decomposition
methods (domain decomposition methods) for the solution of various
linear or nonlinear partial differential equations. In the recent years,
the applications of iterative methods solving subproblems or problems
in subdomains to the numerical analysis of boundary value problems have
been developed by various authors and a partial list of contributions
to this general theme can be found in the bibliography.

Parts I and II of this series of papers are devoted to the study
of the classical Schwarz alternating method (that we recall in
section I below). In some sense, even if many interesting and important
variants have been introduced recently, the Schwarz algorithm remains
the prototype of such methods and also presents some properties (like
"robustness", or indifference to the type of equations considered...)
which do not seem to be enjoyed by other methods. In part I [36] R
we studied the Schwarz alternating method from a variational view-point
(iterated projections in an Hilbert space) and obtained various conver-
gence results. In some sense, with such a variational viewpoint, one is
naturally led to variants based upon '"control-calculus of variations"
considerations (as in [10] , [113 s [12] ...) which, at least for
Laplace equations, are a bit faster for computing applications.

* Ceremade, Université Paris-Dauphine, Place de Lattre de Tassigny,
75775 Paris Cedex 16.
T Consultant at Informatique Internationale (CISI).

47



48 Lions

On the other hand, as it was originally proved by Schwarz [1] s
the Schwarz alternating method also converges, say for Laplace equa-
tions, because of the strong maximum principle for harmonic functions
(see for instance the paragraph on Schwarz method in [37] ). Let us
observe, by the way, that the Schwarz alternating method seems to be
the only domain decomposition method converging for two entirely
different reasons : variational characterzation of the Schwarz sequence
and maximum principle.

This paper is a systematic study of such properties of Schwarz
alternating method. First, we recall in section 1 from [38_’ the
stochastic interpretation of Schwarz method in terms of successive
exit times from the subdomains of the underlying diffusion processes
(Brownian motion in the case of Laplace equation). This interpretation
shows that Schwarz method is intimately (even if simply) connected
with the deep structure of Laplace's equation,

Next, in section 2, we present a convergence proof for Schwarz
method for uniformly elliptic equations in the case of overlapping
domains : as we will see the convergence is geometrical and we will
indicate an estimate on the rate of convergence. In section 3, we
study the same question when we relax the condition of overlapping,
allowing the "boundaries of the two subdomains" to touch at the
boundary of the original domain”. As we will see, if the situation of
section 2 is not basically modified for Dirichlat boundary conditions
(in this case, our analysis is a minor extension of Schwarz original
convergence proof), we will show that drastic changes occur for Neumann
boundary conditions. Next, in section 4, we observe that if we start
with a subsolution (respectively a supersolution) of the full problem,
Schwarz alternating method creates an increasing (respectively
decreasing) sequence of subsolutions (respectively supersolutions)
and this will allow to prove convergence in some geometrical situations
where the condition that the two subdomains overlap is somehow relaxed
(including the case of Neumann boundary conditions considered in
section 3). Section 5 is devoted to equations which are no more
uniformly elliptic like degenerate elliptic equations or parabolic
equations (heat equation for instance) possibly with a time discreti-
zation : in the cases when the two subdomains strictly overlap, we will
show that geometrical convergence is still true, and this will be
a consequence of the fact that Schwarz lemma is still true for degene-
rate equations (and therefore is not always related to the strong
maximum principle). Next, we will present in seetion 6 another conver—
gence proof based upon the stochastic interpretation : this proof will
be purely probabilistic and will give some hint on the way to
“optimize the domain splitting” in order to obtain the fastest conver—
gence. Section 7 will a brief presentation of the applications of
Schwarz alternating methods when the original domain is split into more
than two subdomains (section 8).

Let us also mention that we will study in the remaining parts of
this series of papers some variants of Schwarz alternating method that
we will introduce to take care of the geometrical situation when the
domain is split (decomposed) in two (or more) subdomains separated
only by an interface ( n-1 —dimensional manifold) - im particular,
these subdomains do not overlap at all.
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. Multidomains decomposition.

1. Presentation of Schwarz method and stochastic interpretation.

We consider a bounded, open domain 0 in iRN and we assume
(to simplify) that ( is smooth and connected. We then decompose {
in two subdomains O1 and 02 such that

m O=01UO2
and we denote by T = 30 , Ty = 30, » Iy = 802 s Vg = 801 n 02 s
Y =80,0 0, 0,=000),0,=00705,0,=0,n70.

Various decompositions are possible as it can be seen from the
following figures

- 02; 01
—
01 02 O1
1.a 1.b 1.c
-SSR Y
 — 02 - 01—?
o,
————
01
2.a 2.b

We will always assume to simplify that Yq2Y, are smooth...

We will also say that 0, and 0, overlap if '511 and Uéz

do not intersect. Observe that this is the case in figures 1.a,1.b,
1.c but not in figures 2.a or 2.b.
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Next, suppose that we want to solve the following model problem
2) - M= £ in 0 , u=20 on 30

. . . . -1
where f is a given function say in C{0) (or in H '(0) ...) . The
Schwarz alternating procedure consists in solving successively the
following problems : let u® be any initialization say in CO(EB

(i.e. continuous functions on 0 vanishing on 80 ), we obtain

u2n+1 (n 2 0) and u2n (nz21) by solving respectively
(3) O L S 01 . . a?® on 801
() 0o im0, , W =™ o 20, ,
and u2n+1 € C(a1) , u2n € C(Ué) s u2n+1 =0 on I', AT, u2n =0
on FZ N r . In fact, (3),(4) require that u2n,u2n+1 are defined on
U and we extend obviously u2n+1 and u2n respectively to 0 by
u2n and u2n—1 so that u2n+1,uZn <] Co(aj and u2n+1 = u2n on Uéz,
2n _  2n+i —O"
u Zu on U, .
- . 2n+1 2n .
In [36J , we explained how u ,u correspond to successive

projections in subspaces of Hl(O) . We want to present now a different
interpretation of the sequence (un)n in terms of successive exit
times from U& resp. Dé . To this end, we consider any standard
probability space (Q,F,Ft,P) equipped with a Brownian motion B,

. t . . .
continuous and F adapted and we introduce the following stopping
times

(5) T, = inf {tzo, x+B_ ¢ 0}
2Zn+1 - 2
(6) TX = inf {t 2 ’[Xn . X+Bt é 01} for n 20
o _ 2n . 2n—
(7 T, = 0, T, = inf {t 2 TXH t x+B, € Oz} for n 21

for all x € 0 . As it is well-known, the solution u of (2) is given
by the formula -

X
(8) u{x) = E [ f(x+Bt) e, ¥xe (0 .
[

At this point, let us mention once for all that B, is not really a
Brownian motion but B, = VZ B% and B; is a Brownian motion. Then,

we claim that we have the

TLemma 1. For all x € 0 and for all n 2 0 » we have

T
(9) u(x) = E f x f(x-rBt) dt + uo{xﬂ?; n}
[e] T
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Remarks. i) From the definitions (5),(6),(7), one has immediately

4 0 %<1 - forall n20 and for all x € 0.
X n X X

(10)

ii) Recall also (see for instance [39] ) that if k1 is the

first eigenvalue of -A in H;(O) then we have
AT
sup E [e X] < ® for all X € (O,k1)
x60
hence in particular T, < ® a.e., for all x €0 .

Proof of Lemma 1. By induction, suppose that (9) holds for =n and let
us prove the same formula for n+! . Without loss of generality we may
assume that n is even. Then, if =x & 3& R T§+1 = TZ and un+1(

= u™(x) therefore (9) is proved in this case. On the other hand, if

%)

x € U& , we recall from standard facts that un+1 is given by
1

x
an un+1(x) = E J f(x+Bt)dt + un[x+BT,} , ¥ x 6 3}
o x
where T; = inf (£ 2 0, x+B, e 01) .
Then, using formula (9) for u® and the Markov property, (11)

immediately yields (3) for un+1 . A

2. Convergence proof via the maximum principle : overlapping domains.

All throughout this section, we assume that 01 and 02 overlap
and that 301 n a0, 802 NN 80 are both nomempty. The main convergence

result is given by the

Proposition 2. There exist k .k, € (0,1) which depend only respecti-
vely of (01,72) and (02,71) such that for all n 2 0

(12 sup ]u—u2n+1' S k? kg sup lu—uol
31 71

(13) sup lu—uzn] < k? k;—1 sup |u-u’] .
0y ¥

Remarks. 1) We will give below some estimates on k1’k2 .
2) As we will see from the proof below, it is not necessary to
take u° € Co(a) : for instance, it is enough to comsider u° € c(0)

and we then define u1 by {(3) replacing the boundary conditions on 301

as follows ’ .
u =0 on 801 na , w = v’ on 801 fi 02 .

Then, nz e Cﬁfa} and the estimates {12),{13) still hold.
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3) A similar result with the same proof holds for different
boundary conditions on 30 or for more general uniformly elliptic
second-order operators. More precisely, the same result holds if we
replace Dirichlet boundary condition by Neumann or oblique derivative
or Robin type or mixed type boundary condition. Furthermore, the
operator -A may be replaced by any divergence free operator

] 2 )
- .2. 0x. [aij Bx.] * z bi o=, © ¢
i,] i 3 i i o
where a.,.,b.,c €L , ¢ 20 and
1271

(14) J e EE 2 vlE]® forall £ER', ae.x60,
i,3 3 ] for some Vv >0

2
. ) ]
- e —e &
or by a nondivergence operator .X. aij(x) - + ) bi oy c
i,] i h] i i

where 353 € ¢(0) (for instance) satisfy (14), c,bi €L ,¢c20.
1/2
2)

4) A priori, the rate of convergence given by (k1k is

different from the one obtained by the variational (projections in

2n+1 2n
u

Hilbert spaces) argument of [36] since the "errors" u- » u—u
1

3 13 - o 3
are estimated in different norms ( L here, instead of H

in [367)
5) It is possible to deduce from Proposition 2 the geometric
convergence of W’ to wuw in H1 : in fact, more generally, even if
u, is not smooth (say ug € Hl(O) + CO(U)) one can show easily by
interior elliptic regularity - using thus the fact that 01 and 02
do overlap - that there exists o 2 1 (depending only on the
dimension N ) such that u-u" & H1(O) Nc@ for n2n_ . Then,
. an n_+n o © nn
denoting by u = u ° for n 2 0, one sees that u is a new
. n
"Schwarz sequence" corresponding to the new initialization W=y
hance Proposition 2 applies to u-u®  and one still gets geometric
convergence of W' to u in Lw(O) . Furthermore, we claim that T
converges geometrically to u in Hl(O) : indeed, introducing (as in
[36]) T,5Cy € w>®(0) such that 0 < Cply $1, C4g, 51 on O,
z, =1 on 'Uii » T; 50 on 05j for all i # j e {1,2} , we first
obtain multiplying the equation satisfied by — (for instance) by
2 In
gy (umu™)

fo Clv@-u®™|? = -2 Jo £, V2, V(u-u) (s-u®®)

[72Y

1/2
c JO ;g[V(u—uzn)lz} K0!

Hence, 2n 2 o1
lg, (wu™ ] | S Ck k

H {D 12 )

[¢]
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Then, observing that u—u2n+1 - Cz(u—uzn) € H1(0) , we deduce
easily °
j IV(u-uan)l2 = I V(u-u?™y . V{Cz(u-uzn)}
0 0
1 1
or J [V(u—u2n+1)lz < J |V{C2(U‘u2n)}|2 .
0 0
1 1
And since u-u’™*! - u—u2n = Cz(u—uzn) on 0-01 s we deduce finally
[ |V (a2 Ty |2 < J IV{cz(u—uzn) 1 2
0 0
i.e.
_ 2n+i < n n—1
|u—u IH;(O) < C ik, .

proving thus our claim. Notice also that this proof remains valid for
general uniformly elliptic second-order operators with straightforward
bounds for the first-order terms.

6) 1In the case when, for example, Dé < 0 and thus 302 N 30
= @ then the same result with the same proof holds provided we take
k, =1.

2 A
We now turn to the proof of Proposition 2 which is an immediate
consequence of the following standard lemma.

Lemma 3. Let w € Lm(01) be continuous on 5& - {801 non s,
satisfy '

(15) - Aw =0 in 01 R =0 on 301 - 301 no,
=1 on 301 no .
Then,
k, = sup {wx) / x€ 802 nor e (o,1) .

Remarks. 1) Of course, a similar lemma holds for 02 .
2) An estimate on k1 is given below.

3) 1In one dimension, if 01 = {a,b) , 02 = (ec,d) with

x-a c-a
a<ec<b<d, then w(x) = =3 and k1 =t -
Once Lemma 3 is proven, Proposition 2 follows easily from the
. .. . 2n+1 2n
maximum principle since [u—u l < sup |u—u” |w , hence
Yy
2n+
sup (u—u2n+1| -3 k1 sup [u—uzn[ and thus sup |u-u n 1] Y
Y2 Y1 Y2
b8 k?+1k§ sup [u—uol, sup Iu—uzn] < k?k; sup !u—uol . Then, {(12) and
Y1 Y1 Y1

(13) follows from the maximum principle which yields

2n+1t 2n+1‘

= sup |u-u = sup Iu—uzn! for nz0,
Y1 Y1

sup |u-u
1
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sup lu—uznl = sup [u—uznl = sup ‘u—uzn_1[ forn 2 1.

Finally, let us conclude by mentioning that Lemma 3 is an inme-
diate consequence of the strong maximum principle. A

1t is difficult (apparently) to obtain a sharp estimate on k

since k1 depends very much on the geometries of 01 and 02 .

However, it is possible to estimate K, asymptotically when Y4

1

Yconverges" to Yy - In order to avoid rather unpleasant technicalities,

we will consider only the case of figure 1.c (even if a similar
analysis can be performed in general situatiomns) i.e. Yio¥y & 0.

Then, we just observe that if Vv 1is the unit outward normal to Y,
by Hopf maximum principle we have %%-z K >0 on Y1 . Hence, if

£ = . max d(y,y1) , we have up to the second-order terms ( 82 terms)
vy €Yy,

k1 2 {-ke . Observe also that if Yy "ooes to" 00 , Kk behaves like

dist (YZ,BO)—1 . We will not push further here this kind of estimates.

3. Convergence proof via the maximum principle : weakly overlapping
domains.

We now turn to the case when O1 and 0, do not overlap as it
is the case in figures 2.a or 2.b. We_still asSume, of course, that

YN Yy = ¢ and we now assume that Yy and Y, are not tangent at
points of 30 (belonging to ?1 n ?2 ). Then, we claim that

Proposition 2 still holds in this case. Of course, we just have to
explain why lemma 3 is still valid. Since w < 1 in 0 , it is enough
to show that

lim sup {w(y) / v € Yy s d(y,30) = 0} < 1 .

And this follows easily from potential theory. Observe that in two
dimensions it is possible to identify this limit : indeed, if 61 is

the "angle of 301" at a point y_ belonging to ?1 n ?2 (8, =m
if 01 is smooth) and 0, 1is the "angle between 30 and Y, at
0

this point when w(y) -~ 5 (<1) as y goes to v,y € Y, (see

figure 2 below) 1

Figure 2.
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We now make some comments on the analogues in this case of the
remarks following Proposition 2 : first of all, the extension
(Remark 3) to more general uniformly elliptic operators is still valid
here. Next, if we replace Dirichlet boundary conditions by Neumann
boundary conditions on 90 (replacing =-A by -A+c with ¢ > 0),
then lemma 3 is no more true and in fact it is not difficult to show

that since u" = u® at points v & ?1 n ?2 , the Schwarz sequence
does not converge anymore uniformly on O to the solution u {(choose
u® such that uo(yo) # u(yo) at some point v, € §1r1 ?2 ). This
difficulty may also be seen from a variational view-point since (with
the notations of [36] ) one does not have anymore V (= H1(0)) =V,
(= {u en'(O) , u=0 on 022}) + v, (= {u€H1(0) ,u=0 on O“}).
However, one still has V = VT:V; (see [36] ) and this ensures

(cf. [36] ) that u" converges in H1(0) to u . We will also prove
convergence in this case by a different method in sectiom 4.

The analogues of Remarks 4 and 5 are still true here : observe
only for Remark 5 that one has to introduce cut—~off functions C1’Cz

as in [36] involving a singularity at points y € ;1l] ?2 .

4. Sub and supersolutions.

In this section, we want to explain a striking property of
Schwarz alternating method namely that if u° is a subsolution of (2)

(resp. supersolution) then u" is also for all n 2 0 a subsolution

of (2) (resp. supersolution) and furthermore u" is an increasing
(resp. decreasing) sequence. Next, we will give some applications of
this observation to convergence properties even in cases when the
usual analysis (either the variational one as in [36] , or the one
made in the preceding sections 2-3) fails. We begin with the

Theorem 4. Let u° € C(0) satisfy

(16) -al < f in DWW , u@ <0 om 30
(resp. °
(17) A% 2zf in DW , uW20 on 30 ).

Then, for all n 2 1, e Co(a -30n ?1 n ?2) is bounded and also

satisfies (16) (resp. (17)). Furthermore, we have

(18) <™ on T for n2o0 , ub 3 u uniformly on 0
(resp. .
(19) w2 un+1 on 0 for n20 , a 3 u uniformly on 0).

Remarks. 1) Notice that no assumptions on 01,02 are made except
_ . = ~ 1"
Y, Y, = ¢, O1 U 02 = 0 . In particular, Y, and Y, can "meet

tangentially™ at 30 , case which was excluded in section 3.
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2) It is possible to relax the regularity requirements on u®
+ 1
as follows : u’ € c(D) + H1(0) s W) e Co(a) + HO(O) .
3) The same result holds for Neumann type boundary conditions

(and in fact more general ones as well).

Proof. By the maximum principle, we have u1 > v’ in v& since
u1 2u® on 801 and u°® satisfies (16). Since u1 =u° on 3:55 ,

(o] »
we also have u! 2 u  in 0 . Next, we have to show
1

- M

IA

£ in D'(0) .

This is clearly the case in O1 by definition of u1 and it is also
the case in 0453 since u1 agrees with u°® there and u°’ satisfies

(16). Thus, we just have to check that this claim is still true
"across v, ", But this follows from a general observation due to

(o]

H. Berestycki and P.L. Lions [40] since u1 24® in 0 and =u

u
on Y, . We prove the corresponding properties of u for n 2 2
similarly.

Hence, un(x) is an increasing sequence for each n . Since, by
the maximum principle W<y in 0 for all n 20 R un(x) conver-—
ges to some t and g is a bounded function on 0 . Furthermore,
since uww <4 <u in O and u € Co(a) ’ ¥ vanishes on 930 - ;1ﬂ ;2
and is continuous at points of 30 - ?1 f ?2 . In addition, by elliptic
regularity, u2n+1 converges uniformly on compact subsets of 01 and
Tt converges uniformly on compact,subsets of 02 . and since u" is
increasing and 01 U 02 = 0, this implies that u" converges
wmiformly to u on compact subsets of ( , therefore E e c(O) .

. v . .
Finally, u satisfies

N .
- Au =Ff in D‘(OI) R - Aﬁ =f in D'(Oz)
. 2n+ 2 . -
since u" 1,u o satisfy respectively these equations. But 0O, U 02
= 0 , therefore we deduce L
",
- Au = f in D'(0)
hence & = u in 0 and we conclude. A

Theorem 4 is clearly a convergence result, however it is restric—

. PRI . o
ted to some special initial choices of u . Nevertheless, we can
deduce the general case,

Corollary 5. Let e c(0) . Then, u converges uniformly to u
on .

Proof, It is enough to introduce GO,E? € C(0) satisfying
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&% 2zf din D@ , @°2¢® in D

v

IA
ford
o
e
)
<

f in DO , u°

- AEO

fiA

. -0 o . .
(the existence of u ,u 1s an easy exercise). Then, the Schwarz

sequences generated by EO,E? denoted respectively by Gn,u satisfy
by the maximum principle -

oz oW oz in 0
-0
and we conclude applying Theorem 4 to u" and u - A

Let us emphasize that Corollary 5 applies to arbitrary decompo-
sitions of 0O into 01,02 (such that O1 U 02 =0, YNy, = ¢ )
and that the same result holds for Neumann boundary conditions even if

§1n ?2 = @ , cases which were not always covered by the arguments
given in sections 2-3,.

In fact, using these arguments, one can even allow some "interior
non overlapping", more precisely, in two dimensions for example, one
can allow Y, and Y, to intersect at, say, a finite number of points

like in figure 3 below.
4———————;02

V)

o

%

Figure 3.

A
\

] n
Indeed, if we repeat the proof of Theorem 4, we find u € C(0~S) "
where S 1is the finite set § = Y N Y, d is bounded on 0 , u

vanishes on 30 - ?1 f ?2 and - AY = f in D'(0~8) . Then, since

v . . P .
u is bounded, the possible singularities at § are easily shown to
be removable, hence

- M o= £ in  D'(0)
and t Zu on 0-5 . Therefore, the same results as Theorem & and

Corollary 5 hold in this more gemeral situation provided we replace
0 by 0~-S in the convergence statements.

5. Degenerate equations and time-dependent problems.

We begin with degenerate second-order elliptic equations. We
want to explain in this case how the preceding arguments show that the
Schwarz alternating method does converge even for degenerate operators
like
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N N
(20) L T TR
i, =1 i=1
m - .
where aij = k§1 Oikojk s Gik’bi are Lipschitz on 0, ¢ is conti-
nwous on 0 (1 £2i,j£N, 12k<m) and
(21) c z c >0 in 0

We will not state precise results since to do so we would need
to detail the way boundary conditions are imposed : this technical
point can be handled using classical theory (see J.J. Kohn_and
L. Nirenberg [417 , D.W. Stroock and S.R.S. Varadhan [42] ) or the
more recent theory of viscosity solutions (see H., Ishii and P.L. Lions
[46_ | for boundary conditions and uniqueness).

We just want to observe here that the method of sub and
supersolutions given in section 4 gives the convergence in the general
case (Dirichlet or Neumann boundary conditions and YN v, = )

using the theory of viscosity solutions and in particular the fact that
. o . . . . 1 . -
if u is a viscosity supersolution then u = u® in 01 and thus

_u1 is a viscosity supersolution in (0 (see M.G. Crandall and
P.L. Lions [43] 3 M.G. Crandall, L.C. Evans and P.L. Lions [44]

P.L. Lions [45] for more details on viscosity solutions). On the
other hand, the method of section 3 to prove geometrical convergence
fails for general degenerate elliptic equations — it is easy to build
first-order operators yielding counter—examples - since it requires
some form of strong maximum principle.

Finally, it is possible to adapt the method of section 2 i.e. in
the case when O and 02 overlap. This is due to the following
lemma,

Lemma 6. There exists some W > 0 depending only on c, » diam O1
and bounds on b,a such that if w 6 C(O ) solves (in viscosity

sense or in classical sense if u € C (0 ))

= i < =
(22) Aw = 0 imn O1 s s;p w1, W|801 0 30 0
then we have 1
(23) sup w £ exp (—u@z)
Y

where d§ = dist (Y1,Y2) = Inf {|{x-y| / x € R A Yz} > 0 .

Remarks. 1) The same result bolds for Neumann boundary conditions.
2) The proof below gives some precise bound on 1 .
3) 1In some sense, going from uniformly elliptic operator A to

N
a degenerate one amounts to replace § by &  in the convergence rate.

Proof of Lemma 6, Let X, e yé . Without loss of generality, we may
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assume that X, = 0 and we denote by p = dist (XO,Y1) =

= Inf {Ixo—yl / v 8 Y1} . Then, we introduce

w(x) = exp u{lx|2—02}

where U > 0 will be determined later on. We then compute Aw to find

N N
-— - - _ 2 -
Aw = [ 2Uu Tr a 41 ) Z aijxixj + 2u '2 bixi-kc] W
1,3=1 i=1
while clearly w 2 0 on 301 and w Z 1
t

on Y1 . Hence, choosing
small enough so tha

<, 2 2u ”b]L»(diam 01) + 2u Tr a + 4u2[kjni(diam 01)2
we deduce Aw 2 0 in 01 . Therefore, by the maximum principle, we have
w S w in 01 .
Hence, in particular, sup w = sup exp {-u dist(xo,yz)z} and
(23) is proven. Yy %o & Ya A

A very particular case of the remarks made above is the case of
parabolic equations with a spatial domain decomposition in 01,02 i.e.
for example

(24) *3‘; - A =£f in 0 N ulBO x [O,Tj=0 s ult=o = uo in U

where for instance u, € Co(v) , £ &c(0 x [O,T]) . Then, if
uw® e (0 x [O,T]) satisfies (and this is not really necessary)

o . o _ . n
u |t=0 =u_ in 0, u 130 % [O,T] = 0 , we define u by (for
n z 0)
2n+1
du 2n+1 _ . 2n+1 _ .
(25) 55— M =f in 01 , u It=0 =u_  in 5} .
2n+1' - u2n‘
“ 80, x [o,1] 80, x [o,1]
2n+2
du 2n+2 _ . In+2 _ R
(26) 5 " Au =f in 02 , u | -0 =Y inm Bé s
u2n+2§ - u2n+1l
30, = [0,1] 80, x [0,7]
and we extend u2n+1,u2n+2 to 0 x [O,T] by u2n,u2n+1 respectively,

Then, all the arguments introduced in sections 2-3-4 apply in this case.

A more interesting situation occurs when we combine Schwarz
alternating method with a time discretization. Four possible combina-
tions were proposed in Part I [36 . Let us just mention here that
using maximum principle arguments as in the preceding sections, one
can prove convergence and error bounds for these methods. We will not
pursue this direction here to restrict the length of this paper.
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6. Convergence proof via the stochastic interpretation.

Using the notations of section 1, we already observe that since
™4+ and D ST <® a.s., ™ 4 0 £ 1 where O is a stopping
xn x x Xn x ]
time. Furthermore, since the Brownian paths i.e. the trajectories of
x+B,_ are continuous (in t ) a.s. we have

x+B € 801fl 802 a.s.

Therefore, if Y4 n Yy = ¢ , this implies that x € B € 30 a.s.

i.e. 02 T and we conclude

o = 1 2.5.
X

And thus we have proven immediately that :
1) for all x €0, ™ 41 a.s.,
xXn X o
2) hence, by Lebesgue's lemma, u (x) = u(x) for all x€ 0,

3) this convergence is uniform in 0 . For the last claim, we
have to show [ n]
27 sup E [T -T - 0 .
XG—O- X X n

But this follows from 2) and Dini's lemma, choosing Wz o

so that u"(x) = E [sz .

s £ =1

This (striking) proof of convergence clearly adapts to more
general situations (general elliptic operators, possibly degenerate,
other boundary conditions...). Next, we wish to push these stochastic
arguments in order to obtain some estimates on the rate of convergence

n .
of u to u , that is the rate of convergence of Tz to L In
order to simplify the presentation, we will always assume that 0

1
and 02 overlap i.e. YNy, = ® . We first prove the

Theorem 7. There exist k,,k, € (0,1) depending only on 0,,0. such
T 1272 172

i
(28) sup_ P [o <1 ]
x € Yj

IA
=
h
o)
la
[ N
~»
[#1}
il
—
-
la%]
-
[
L
[
-

i, . . . .
where o, is the first exit time from Oi . In particular, we deduce

2n+1 n
<
29 szp P [T > T ] < (k1k2)
2n+2 n n+i
<
0 s:p P [T > 1T ] < k1k2 .

Remarks. 1) As usual, the proof given below is valid for general
boundary conditions and general uniformly elliptie equations i.e.
general nondegenerate diffusion processes.

AT
2) Recalling that E[e *]€C(®) for all A <2, (where A
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is the first eigenvalue of ~A in Hl(O) - see for instance [39] -

. . n :
we deduce easily some estimate on the convergence of u to u since

and [)"@)-ux)] £ CE [Tx— ZJ +CP [TX > sz , ¥x€0
L \
E [TX—T;'] < et > Tz]”uE [Tg ]”a

for all a>1, a =d;f‘_1- .

3) As we will see in the proof below, the crucial estimate (28)
follows from some knowledge of the support of diffusion processes.
Such knowledge - and the available additionnal informations such as
- "invariant measures"... — should play an important role in an attempt
to determine "the optimal decomposition of 0 into 01 and 02 v,
A
Proof of Theorem 7. The estimates (29) and (30) follow easily from
(28) and the strong Markov property. Next, using the continuity of

O;,TX in x , we see that in order to prove (28) we just have to show
for all x € ?J. (i =1,2)
P[x+s.¢?.]>o with j =i .

i i

a

X
To this end, we choose a continuous trajectory (function) ® from
[0,) into B such that w(0) =x , w(1) €30, -7; , w() ¢ 70,
for all t > 1, w(t) € Oi for all t € (0,1) . Then, by a famous

result due to D.W. Stroock and S.R.S. Varadhan [47] » we have for all
T<o, g>0
P [ sup |x+B_~w(t) | < s] > 0 .
tefoT] °©
We next choose T =2 , ¢ small enough so that e > dist (w(2),0,) ,
- . = X i
g < Min dist (m(t),yi) . Then, denoting by

t € [0,T]
Q= { sup lx+B -w(t)| £ E} s
t
& t € [0,T]
we see that on @_, x+B. @ 5& hence 0; $T and thus x+B . ¢ ?i .
And our claim is proven. I A

It is also possible to give a pure probabilistic proof of the
convergence result implied by Lemma 6 for degemerate elliptic equationms.
Recall that 01 and 02 overlap. It is easy to check that Lemma 6

follows from the following inequality
1

cOGX ‘H52
E [e 1 ] s e s ¥x€y,,

0’1<T
X z

(where o;,rx are defined as before but correspond now to the relevant

diffusion process), imequality which can be proved directly by proba-—
bilistic arguments. The mere fact that the right—hand side is strictly
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. . s . . 1 .
less than 1 1is obvious intuitively : indeed if OX < T s this means

that the diffusion process starting from x € Yo exists from 01 by
Y, and since & = dist (Yl’YZ) >0 , it "takes some time" to cross

that distance. The phenomenon involved here is much less subtle than
in Theorem 7.

7. Nonlinear problems.

First of all, we want to observe that all the convergence
arguments given in sections 2-5 are still valid for monotome nonlinear
equations of the form

(31) - M +B8) 38 £ in 0, 4]

“Iao

where B is a maximal monotone graph such that 0 € Dom (B) ~ of
course, (31) means in particular that wu(x) € Dom (B) a.e. in 0 .

A particular an important example is given by R(t) = ¢ if t <0,
B(0) = [O,m) , B(t) =0 if t >0 : it corresponds to variational
inequalities or obstacle problems (in this case the obstacle is 0

but more general functions could be considered as well). We then define
the Schwarz method exactly as in section 1 replacing only the equations

for u" by the above equation (31)... And all the convergence results
are easily adapted to this case. Notice also that obstacle problems
have a stochastic interpretation in terms of optimal stopping, more
precisely in the above example we have

0
u(x) = inf {E J f(x+Bt)dt / 8 stopping time} .
6 o

Then, it is not difficult to show that the Schwarz sequence u is
then given by

a GATz
u (x) = inf {E [ f(x+B )dt + uo{x—rB }
t 11

¥ o far

/ 6 stopping time

Hence, we can also use the probabilistic approach developed in section6.

The other class of nonlinear second-order equations that can be
analysed by our method is the class of fully nonlinear elliptic
possibly degenerate second-order equations

(32) F(0u,Du,u,x) = 0 in 0 .
This class contains as particular cases the first-order Hamilton-Jaccobi
equations - F is then independent of D2u - which are the fundamental
partial differential equations for optimal deterministic control and
deterministic games (Bellman and Isaacs' equations), the Hamilton—
Jacobi-Bellman equations of optimal stochastic contrel - F convex

or concave in D2u - and the Isaacs' equations of stochastic differen-
tial games. For all those problems, we can use the theory of viscosity
solutions (as in [46] ) to prove {(similarly as we did in the preceding
sections) convergence results for the Schwarz alternating method.
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Notice also that the arguments of section 6 can be used together with
the control or games interpretation of solutions to provide other
convergence proofs.

We will give only one (extreme) example : we consider the Eikonal
equation

(33) |Vu| =f in 0, u=0 on 30
where £ >0 in 0, f € C(0) and u 1is the unique viscosity
solution of (33) - see M.G. Crandall and P.L. Lions [43] . For simpli-

city, we choose uw’ =0 . And we build the Schwarz sequence as follows

u2n+1 - u2n on 301

u2n+1 on 802

(34) ]Vu2n+1l =f in 01 ,

2n+2
u

It

2n+2
u™e

(35) |v £ in 0, ,

and we extend as usual u2n+1,u2n+2 to 0 by uzn,uzn+1 respectively.

Actually, some care is required to build such a sequence. Recall that
we assume that Y, n Yy = $# . To actually build (34),(35) we argue

o 1

. . . . n
inductively and we assume by induction that 0 =u £u £ ... £u

in 0 and u" is a viscosity subsolution of (33), then by comparison
results on viscosity solutions, we deduce that un-H € CO(U) s

un+1 24" in '51 if n is even, Ué if n 1is odd. The fact that
viscosity solution of (34) or (35) exists follows from the

+1

n+1
u

results of P.L. Lions [48] . Then, one can check that " is also

a viscosity subsolution of (33). Since 4" is bounded in Lipschitz
norm and is increasing with respect to n , we deduce that o
converges uniformly to some 3 € CO(EU . Furthermore, by the stability
results of viscosity solutions, g is a viscosity solution of (33)

in 01 and in 02 therefore in 0 . And o = u , proving thus the

convergence.

8. Multidomains decomposition.

We want now to consider extensions of the classical Schwarz
alternating method to the case of a decomposition of ( into more
than two subdomainsg namely

m
0 = ‘U 0i
i=1
where m 2 1 , 01,...,0m are open sets. We begin with the simple

geometrical situation where

i,iksm,

A

(36) Ei n EE fl 5# = {§ whenever 1

i®j=zk=z1i .,
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Some examples where (36) holds are given by figures 4.a,4.b
below while some examples where (36) does not hold is given by
figure 5 below.

é"—_————-ﬂ
 — 0,—
[] T T

Tan ' :
01"_‘ -=1r3
G () — ()~ L
2 m
Figure 4.a Figure 4.b
&

Figure 5.

Then, for all 1 £ i#j < m , we denote by Yij = BOj n Oi .
We next introduce a (parallel) extension of Schwarz alternating

method. For each i € {1,...,m} , we choose ug € C(Di) such that
)

u; =0 on BOi N 30 and we build inductively sequences u? & C(D&)

for n21, 1£1i<<m, as follows

n+1 n+1

~Au, " =f din 0. , u. =0 on 300 30. s
(37) i i i i
n+1 n . .
u. = u. on Y., for all j =1 .
i j ji
We begin with the analysis of the convergence of u? to uI
in the case when 0i and Oj overlap for all i = j , *

(Yij E in j @) or whfn Oi and 0j weakly overlap for all i # j
(if Yij n in =6, Yij
intersection points). In both cases by the arguments of section 2-3,
we find some k € (0,1) such that for all 1 < i#j £ m we have

and ;ji "make a positive angle" at

n+1l

sup u-u £ k max sup lu—ugl

. Z i .

Yl] S Yoi
In particular, this yields

+1

max  sup u—u? ] £ k max sup ]u—u?l

i=]i v, i3y, *
hence J H
(38) max  sup |u—u?l < k" max sup lu—u?l .

iz3 v.. i#j i

ij Yij
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And since, by the maximum principle, we have for all i
+
Iu—uz 1] £ max max |u—u?[ in 0,
A
we deduce from (38) the following inequality
+
(39) max  sup !u—ug 1} < k" max sup ]u—ug[ .
i A i # j ..
i % iz ] le
It is also worth explaining how it is possible to adapt the
arguments of section 4 to this case, proving thus in particular the
convergence in the general case when (Oi)1 <i<m only satisfy

Yij n in =¢ for all 1 £i#j £m . Indeed, let e c(0) be a

supersolution (resp. subsolution) of (2) and choose uz = uol

0,

i
for all 1 £ 1 £m . Then, we claim that for all 1 £ i#j < m
n 2 0 we have

>

. + .
(40) u?+1 <4 in 0.0 0. ,  us ! <o in 0. .
i j i 3 i i i
This can be show easily by induction since once the second claim is
. . +
proven, the first one follows remarking that u? ! and u solve
. . n+1 n In n—1
the same equation in 0, N 0, , u, =wu, on Y., and u, = u,
n i i i i ji ki i
2 u; on Yij . From (40), we deduce easily that u; converges as

n goes to +® to some us and u; = uj on Oi n Oj for all
PPN . . v . .
1£1i#j £m . This allows to define some u which is bounded,
continuous on 0 - U (30i N1 30.) and satisfies
i J
"y .
- M = £ in 0

N . .
From this we deduce that wu = u and the convergence 1s proven 1in
this case.

A final remark concerning the situation when (36) holds is
the possibility of allowing more flexibility in the iterative method
(37) and more precisely of replacing the boundary condition on each

Y.. by
Jr n+1 P .. ..
&41) up o=y with p=p(n,i,j) , on in for all j=1i .

We then assume that p(n,i,j) is nondecreasing with respect to n ,
p(n,i,j) $n for all n 20, p(n,i,j) >+ as n + +» , for all
1 $£i#j £m . For instance, the first proof we made zbove is
modified as follows

n+1
max  sup |u-u; f

E Yij 1 #] Yij
k lim  sup ]u~u§

n i#®3i Y.. n Y. .
i3 1030

£ k max  sup ]u—ug(n’i’j)l

hence

A

(n)g
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for some 1 £ io;tjo £m , and for some sequence t(n) > +o as

n > +° , And this yields : 1lim max  sup lu—u?+1l =0 , and the

. n i#3 Y..
convergence is proven. ij
We now turn to more general geometrical situations than (36).
An example is given by figure 5 and another meaningful example is
given by the following.

014_-___9
-l
o ,lOz 0
0, 1T TI™ = oz~
_L_g__}‘ ____.03_.
W
‘ :3~“—7

Figure 6.

We will need some restrictions on the decomposition : in two
dimensions we will need to assume that Boi fn BOj N Uk is a finite

set for all i,j,k distinet in {1,...,m} . In higher dimensionms,
similar conditions involving the dimensionality of such intersection
sets are needed but we will skip them for the sake of simplicity.

We next have to explain how we modify (37) in this general
situation : we will use the same equation as in (37) but we modify
the boundary condition as follows

( u?+1 = u? on BOi N Oj n { U 0?] for all jiii
1 1 i#1,]
u?+1 =ub . on 30,0 0, N 0, N ! U o<
3132 1 J1 2 [j¢i9j19j2 3
(42) < for all j1¢j2¢i¢j1
u?+1 =u" . on 90.0 0. N 0.
* 3 Poodr o o
L where {i,j1,...,jm_1}={1,...,m}
and u? i (for all k 2 2 ) is chosen to satisfy (arbitrarily)
103y
(43) Min {u? ,...,u? ) < oY . £ Max (u? ,...,u? .
3 Tk SR RSN 1 I

To prove the convergence of this method, we first observe that if we
choose Go’go supersolution of (2) (resp. subsolution of (2)) such
that u_ 2 ul on U, , u Sul on 0., forall 1<i<m, then
o i i —0 i i
it is easy to show
n

(44) u; < u? G? for all n20, ié6 {1,...,m}

IIA

n -n . .
where u,,u; are the sequences generated by the above iterative



SCHWARZ ALTERNATING METHOD Il 67

method with the special choices

GIJI i = Max (1_131 N .,1_13.1 )
(45) n1 k n1 nk

u. . = Min [(u. ,...,u,

Tty LJ1’ —Jk)

for all n20, kz2, jq-+.d, distinet in {1,...,m} . There-
fore, it is enough to prove the convergence of EI;":? and we will

-n . . . 0
do so for ug (for instance). Exactly as in section 4, because u

is a supersolution, one checks easily that (u;) is bounded in
o in
L (Oi) and

A

(46) w1 <@ in 0. for all n20, i€ {1,...,m}.
1 1 1

-n .

Therefore, u, converges uniformly on compact subsets of 0i to
- e

some u. €L (Oi) n C(Oi) which is continuous and vanishes on

80]._ I 30 except maybe at a finite number of points and which
satisfies

- A, =f in O, , ugu, in 0.

i i i i

Furthermore, there exists a finite set § contained in (0 such that
for all i,j.,...,j, distinct in {1,...,m} , for all

i
3.0 0, n...no, n (* Uk 05) N s° and we have there :
i b} i s s . ]
1 k J¢1,31,...,Jk
u = max (. ,eu )
i i dy ~
We then introduce w = max (u. seeasll, ) on 0, 1 ...N 0. N
o Tk * x
n [ U C’:] for all i]""’ik distinet in {1,...,m} ,
" .
P dy,,iy
k € {1,...,m} and we observe that w is bounded on 0 , continuous

ke {1,...,m1} , WUy 5e..su; AT continuous on

on 90 except maybe at a finite number of points and satisfies

- Aw £ f in D'(0-S) , uéuiéw in Oi
for all i€ {1,...,m} .

Because w is bounded and S 1is finite this yields

-Aw £ £ in D)

Hence wZu in 0-8 and in particular u; Su in Oi , proving
thus the convergence.

and together with the boundary condition, we deduce w £ u in O .

In some very particular geometrical stituations like the one
given by figure 5, we can improve the above convergence proof :
indeed, in this case, the same proof as in the case when (36) holds
applies and we obtain in this way geometrical convergence.
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