CHAPTER 5

Parallel Algorithms for Solving Partial Differential Equations

T. Lu*
T. M. Shiht
C. B. Liem'

Abgtract. In §1 to §5, two synchronized parallel algorithms
for the solution of boundary value problems of partial
differential equations are proved. Algorithm 1 is based on
the minimum modulus principle; therefore, it can be applied to
nonlinear PDE's, At such cases, a linearization step should
be done before each iteration. The proof of the convergence
uses the iterative method of groupwise projection. Algorithm
2 is based on the discrete maximum principle. A synchronized
parallel algorithm for the Dirichlet problem of linear
equations satisfying the uniformly elliptic condition is
given in §6.

§1 The parallel algorithm 1

The boundary value problem of a partia]l differential
equation, in general, can be written as

Lu = £, in (1)
iu = g, on of
 is a bounded region with boundary 9. L is a differential

operator and 1 is a boundary operator. We may apply either
the finite difference or the finite element method to (1)

and obtain an algebraic system
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P WPe,y = wr.) = £, j ex (2)
3 i J

where I is the set of indices of all grid points in &

and Qh is the set of all grid points inside § .

We define the discrete neighbourhood

N, =N(p.) = {p.; c., # 0}.
3 3 1 Ji

%
1€1%1

Then (2) becomes

Lh uh(e) = p  c, ulp) = £, j g1 (3)
N p ey 3 3
i3

In order to solve (3) by a parallel algorithm, we divide

™ m
Qh into m subsets Q; Q £ = g Q;, where some of
r

eese, h, h i=1
the subsets may be overlapping. In order to reduce the
waiting time, every Q;, i=1, «+.., m should contain nearly
the same number of grid points. .
Define the discrete neighbourhood of Q; as follows

N(Ql) = U, N(P).
h i
Paﬂh

Pj is called a k-multiple point, denoted by Pj [SE if there

kl
1 1

exists at most k subsets Qh s eee, 8 K such that
k ig
PjEJDIN (2 .
The procedure of the parallel algorithm 1 is as follows:
1° cChoose a tolerance €> 0 and an initial u,. = fu (P},
5 € I}. Set 0 = n. 0 03

o i
2 Compute parallelly for each Qh' i=1, ..., m the

coefficient st of the discrete system (for non-linear case,
a linearization process is needed) and the residuals

i

- i
£, = £, - r €., w (P), j €I,
3 3 P eN. js n s i
s 3
i =i
F° = max |£.1], i=1, «oe, m.
j €T
I
o i
3 If F = max PF < €&, stop the process and output
1< <m

L otherwise proceed to the next step.
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o i i i
4 Set eguations for the correction Au in each Qh'
n

A : I c itpy = § ;€ I,.
i’ P _eN., T3is un( s fj' 3 Ty
s ]
o
5 Find the minimum modulus solutions of A ,
i =1, ..., m parallelly .
. b -
Aul = C, £t
n i

+
where C;,l is the Moore-Penrose generalized inverse mwatrix
of the coefficient matrix of Ai.

[o]

6 If Pje v then there exists il’ ve ey ik such that
k i
p. e =75
and define
1 k is
Au (P.) == L Au "(P,), for j € 1 (4)
nj k g=1 1 J
7°  set u + W Aun=>un, n+l =n and go to 2% 0< w<2.

§2 The parallel algorithm 2

Algorithm 2 is based on the resulting algebraic system
is linear and satisfies the discrete maximum principle. For
convenience, we consider the following Dirichlet problem

Lu = £, in
{ ¥ = g, on of (5)

The discrete system in the entire region is

h
Lhuh = £, in Qh
{ N (6)
u, = g% on BQh
SR B |
Divide Qh into m subsets: Qh = U Qh' Qh can be overlapping.
i=1

i i i i
= \ ; i Q.
Bﬂh N(Qh) Qh is the discrete boundary of >

T.et u* be the unique solution of (6). (6) is
equivalent to the system

n i _ .h ., i
. L u = £, in Qh
{ .
ut = u* on i (7)
h ! o

i=1, »ee g W,
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Since u* is unknown, (7) can only be solved by iterative
methods. The 1lst, 2nd and 3rd step in the procedure are the
same as those for algorithm 1, the other steps are as
follows:

o

4 Solve
h i h i
= : Q
L un+1 £, in h
(8)
¢ ! BQi
Ynt1 © Yn’ on h
for i = 1, «.., m parallelly.
5O If P, ¢ ,, then there exist i,, see, i such that
3 k 1 k
Pj e S N (R )
Set .
1 k 1s
= -~ P ; i T .
Une1lPy) TR I, Vner (By)i 3 €

6° Set n+l =>n and go to 2°.

§3 The iterative method of groupwise projection
for linear systems.

The parallel algorithm 1 introduced in §1 is based on
the iterative method of groupwise projection for linear
systems. The method was first established by S. Kaczmarz
[2]; its further development can be found in [1], [3] and
[4]. In those papers the discussion was confined to the
case of one equation in one group. To deal with our
problem, we shall extend the method to the case of many
equations contained in one group.

Consider the linear system

(a,, x)} = ajl x1 L ajﬂ xz = bj' 3= 1,e0.,4 (9)
and assume it has a unique solution x*.

Divide the set of indices I ={1, 2, .+..,2} into m
subsets:

I =g Ii' where different subsets can be overlapping. Then
i=1
the system (9) is divided into m groups:

Gi: (aj, x) = bj' j € Ii (10)

where i = 1, ¢+, m.
For each i, Gi has at least a solution x*, in general,

the solution is not unique. It is well known that the
minimum modulus solution of Gi exists and is unigque. This
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solution is denoted by Eix, where Ei is the projection onto

the subspace H, = span {aj; j £ Ii}.

The iterative method of groupwise projection is as
follows:
Choose a relaxation factor w (0 < w < 2) and an initial

. 0 0
approximation x = {x (Pj), j € I}, then the process of

. k+1 k
getting x from ¥ <can be proceed as follows:

k k k
= + =
x(s+1) x(s) mAx(s), s 1, , 2m
k -k k k
x = P I =
(s) {x (s)( ), j € I} and X1 x
where the correction Ax?s) is the minimum modulus solution
of the system
(a Axk ) = b’ - (a xk ) j I,,i = min{(s, 2mt+tl-s)
jl (8) 3 le (s) s ] € i '
Obviously, Ax( )(P ) is defined only for j € I We extend
it to all j € I by simply setting Ax(s)(Pj) = 0 for j € I\Ii.
Finally, we set
k+1 k
% -

= ¥(2m+1) ¢

Now we are going to prove the convergence. In fact, the

exact correction value of x?ﬂ) is x¥ - x?s) and the minimum
. k . . . * k
modulus solution Ax(s) is the projection of x =~ x(s) on the
k * k
b H ie.@0 A = E - .
subspace H , i.e., Ax _, i(x x(s))
k k k
== +
Hence, from x(s+1) X(s) W Ax(s), we have
* k * k
b4 - = I - WE X - X
x(s+1) ( i)( (s))
Let Q, = I - WE,. Then
i i
* k+1 _ * _ _k
X b-4 = Ql .o Qm Qm ‘e Ql(x x)

* k+1 *

= (Q Q) x°) (11)
where Q = Ql N Qm. i+ is known, by direct computation,
that ”Q ” <1, i = i1, ..., m and hence ”Qn < 1. The eguality
holds only if there exists a vector y, “y” 1 such that

Qv = y. This means that y is orthogonal to all a., j € I and
hence y = 0. The contradiction shows that “Q" ="r < 1 and
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*

[* - Xk“_i[b”2k x* = %0 = «2F [[x* - xoll.

It follows that xk-+x* as k =+ o,
The iterative method of groupwise projection when apply
to non-linear systems, the convergence will also follow.

§4 The proof of algorithm 1

In the following, we shall give the proof of linear
problems. Non-linear problems can be proved in the similar
ways

Let

h
L Cyg ug = £50 3 € I, ug = u (Pg) (12)

be the discrete system defined in the entire set Qh and

A i j e I 13
i z st u fj. 3 5 (13)
(i =1, .., m)

be the discrete system defined in the ith subset Q;.

When we solve Ai by using the parallel algorithm 1, we
i i2
take in account that ug and uS (i1 # iz) are independent.
From this point of view, we have assumed that Ai and Ai have
1 2
no unknowns in common. As a compensation to this assumption,
we add the following extra restrictions to Ai'

Bs: us1 - us2 = 0
[ e s >
. ; for Ps € ﬂk, k > 2 (14)
u . u k
s s =0
Then, the equations A,, i = 1, «es, M together with the

eguations BS,PSEﬂ + k>2 are equivalent to the eguations (12).

We name Ai' i =1, «.., m as group 1 and Bs, Pse L k>2

as group 2. Since A, and A, (i, # i_.) have no unknowns in
11 i, 1 2

common, the minimum modulus solution of group 1 simply is the
union of the minimum modulus solutions of A i = 1,04, m
and the latter can be found parallelly.

Let uy = {u (P]), jeI} be an initial approximation to

h . s X

a¥ = {u (Pj), je€ I}, which is the solution of (12). Let

Aué = @;(Pj), jeli}, i =1, ««., m be the correction of ui
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obtained from the minimun modulus solution of group 1 and let

i . .
Su (P ), P € T, k > 2 be the correction of ul o+ Aul
n ) s k — n

n
obtained from the minimum modulus solution of group 2.
Noting that when s, # s_, B and B have no unknowns in
1 2 s s
1 2
common, we may £find the minimum modulus solutions of BS,PSEWk,

k >2 parallelly. Substituting u; + Au: + SU; into Bs' we have

i i i i
c: 6u Py - 8u (P ) = - (A (P ) - Au_2(P))
] n s n s n s n s
i i - i i
Su 1(P )y = Gu k(P )y = = (Au 1(P }y - Au k(P })
n s n s n s n s

The minimum modulus solution of CS is

ij 1 k ij lj
Su “(P_) = k(jglAun (P)) - ba “(P)
Finally, we have
1 k ij
u (P ) = w (P + k(j§1 Au_“(P_)), P_ET ., k > 1

Let El' E2 be the projections defined by group 1 and

group 2 repectively. Let Qi=I - WE,, i =1, 2 and Q = Q, Q,-

According to the proof given in §3, we conclude that
lar - u_li= ke @™ u* - wpll < =*"ux - ul

where r = ”QH = “(I - wEl)(I - Ez)” < 1.

§5 The proof of the algorithm 2

We know, from (7) and (8), that u;+1 - u* satisfies
h i . i
L (u - u*) = 0, in Q
n+1 h (15)
i - * = - * 1
{ uq u u u*, on BQh‘\BQh
i = ALY
Ul u o, on SQh ] N
where ul = {ui (P); P € N(Qi)} sl Man # o.
n+1 n+1 ! h' "' h h
=1 i . -1
= H € Q = «es s h P
Let v {un+1(P) D £ N{ h)' i 1, , m!, where un+1( )

is defined as follows: if P& ﬁk’ there exist il' PP ik such
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k i k i
P N x5 J gt =1 3 ]
that € j=1 (Q °) and un+1(P) X §=1 u

It can be shown, by u51ng the discrete maximum principle,
that the sequence ”u - un”OD is strictly monotone decreasing,

ice., if Jju* - un”w # 0, then |[[u¥ - v [lu* - unH°°

n+ 1“00
Hence {un+1 - u*} has a convergent subsegquence. For

convenience, we still write the subsegquence as un+1 - u* and

let its limit be v - u*. Let S8 be an operator such that

* = - g%
1 u S(un u*)

then we have

v - u¥* = s(v ~ u%*) (16)
and

b = a*lly = llstv = unl, < [ - w*ll, (17)
It proves that v = u¥*,

We have proved that the seguence {Hun - u*”m} has a

limit and there is a subsequence of {”u - u*uJ has limit
zero, hence |ju - u*||_ > 0, as n-ow

§6 A synchronized parallel algorithm for
solving Dirichlet problems of second order elliptic PDE.

Consider the following Dirichlet problem
Lu = f, in Q

{ (18)
u g, on 23R

2 . . .
where € R” is a bounded open set, L is a linear operator
satisfying the uniformly elliptic condition.

Let § = 3 S%, M% NN 3Q # 0, and Bﬂk either coincide with 98

or is am arc with endpoints on 9f.
The algorithm is as follows:

1° Choose an initial uo with uOIBQ = g
2° soive parallelly
i
Lun+1 = % in Qi
{ ul = unl .
n+1 on 201~ 3 (19)
i o 301 N9
L g . on i
i,
o .n+l _ 1 B 3
3 u T % 321 Un+1
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Theorem. If (19) has a bounded solution for each i, i = 1,
2, «..m, then either there exists a gq € (0,1), such that
n+1 n
Jox = ™Y <a fbr - W"l

or the above procedure will converge in finite steps. We
state the following lemma without proof.

Lemma
Lu = 0, in @
= T r
{ 0, on IU 5
= r
u g, on I

h = T, .
where BQA 1"1 Ukl"z U 3
If MN is a smooth curve in £ with ME 1"1, N €T2, then
there exists a constant g € (0,1) independent of g such that
~
lu(P)| < qQ, for P € MN.

where Q¢ = max lgl.
r3

Proof of Theorem

Suppose that u* is the solution of (18), then
i

Llu* - lJn+l) = 0. in §
u* - u::+1 = ur - w7, on AN 9%
u* - ui_‘_l = 0, on Sﬂin N
If Hu* - un+1|l = 0, the iteration converges in finite steps.
®

If [ju* - un+1H # 0, there exists P € @ such that
[es]

+ +1
lux(e) - w®" eyl = flur - WPl £ 0 (20)
Case I
If P ¢ m there exist Q. and Pe §, such that
i i
0 0
+1 ig i =
un (P) = un+1(P), hence u¥* LI is a constant on Qi . Since

0

30 N 3 # 0, we have |u* un+1H 0. This contradicts (20).
‘o
Case IT
. n+1 0]
If P ¢ 'nk,k 32. Since L{u* - u ) = 0, foxr P € 'Hk.

From the maximum principle, P € B'ITk. We may assume that

P e R Bﬂk with M, N € 3Q. From our assumption, evidently

”~~
there is i., MNC & .
1 iy
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From Lemma, there exists q € (0,1) such that

and

| A

| A
—~

I A
~

[1]

[2]

[31]

[4]

~ha

wha

wha

i i

1
lu* - w1 | < q max  lut(@) - v (0]

Yar1! =
ti
i k i,
1 1
luxcey-a®* Ryl < Slusr)-u () 1+ 3 sZpler(r-u 2 (]

i k i,

1 1 3
max  Ju*(Q) - uw_ (@] +% L max  Ju*(Q) - wu_;,(Q)
QEE%. n+1 k j=2 Qeaﬂi n

1 ]
k=1 i,
+ ~==) max lu*(Q) - u J (1
k nt+l
Qeaﬂi
3
+ 5L max  Jur(o) - w9
Qedfl,
1,
;|
+ E:l)”u* - un” < g |lu* - "] where § = 2 + kol <,
k b 9 o X X
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