CHAPTER 23

Parallel Efficiency of a Domain Decomposition Method

M. Haghoo*
\K/lodzimierz Proskurowski*

Abstract. Domain decomposition techniques for elliptic PDEs in a
rectangular region are considered. By dividing the region into square boxes,
the original problems are replaced by a set of subproblems. These
subproblems are ecither independent or can be easily decoupled. More than
80% of execution time is spent to solve these independent and decoupled
subsystems. Therefore this technique is well suited for parallel processing.
We study the speed-up and efficiency factors as functions of mesh size and
the number of boxes. We also study the dependence of the overall execution
time on the number of boxes and processors.

1. Introduction. While many algorithms have to be radically modified
for parallel implementation, or the parallelism has to be realized on very low
level, as in dot products of two vectors, the domain decomposition techniques
are well suited for parallel processing (see also [31).

Substructuring of the domain transforms the large original system into a set
of subproblems of smaller and equal dimensions. Application of a proper
preconditioner that decouples these connected subproblems increases
substantially the rate of convergence. Then these subsystems lend
themselves for a balanced, high level parallel processing.

We consider elliptic PDEs with Dirichlet boundary conditions in a region that
is divided into subregions, subsequently called boxes. In the Neumann-
Dirichlet preconditioner we partition the region in a chessboard like
manner in which white and black squares correspond to Neumann and
Dirichlet boxes. Half of the boxes (the Dirichlet ones) form a set of disjoint
subproblems and remaining (Neumann) boxes can be easily decoupled.
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The dominant portion of the execution time is spent on solving subproblems
on these boxes. Therefore, these expensive computations can be reduced
substantially in a parallel implementation.

We study how well the problem is suited for parallel processing. We use
Intel's hypercube of 16 nodes and large memory. We perform extensive
experiments to find such parameters (number of mesh points, boxes, and
processors) for which the maximum speed-up and efficiency and the
minimum execution time can be achieved. :

2. Problem statement. We seek the numerical solution ui(®,y) on
Q = (0,1)x(0,1) so that:

-Aut+tecu =F onQ,

u =6 onodQ.
By wusing the finite difference method and applying the 5-point stencil
approximation to the Laplacian, we obtain the linear system
Au=f.

The goal is to solve this system effectively. Three factors are considered:
1. Substructuring the domain.
2. Using an effective preconditioner in the Conjugate Gradient method.
3. Implementing the problem om a parallel processor.
Figure 1 shows schematically the relation between these factors.

DIFFEHENTIT. EQUATION

( DISCRETIZATION )

LINEAR { SYSTEM

SUBSYSTEMS ¢ AUHILIARY | SYSTEM

NUMER ICHLISOLUTH]N
Figure 1

3. Substructuring. The domain Q in which the problem is defined, is
partitioned by mesh lines parallel to coordinate system into boxes. We
consider four types of unknowns (see Figure 2):

1. Points inside white boxes,

2. Points inside shaded boxes,

3. Points on separator lines,

4. Cross points.
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We call Dirichlet boxes all points in I, while we call interconnected Neumann
boxes the totality of points belonging to 2, 3, and 4. We further divide the
second group into the the cross points and decopuled Neumann boxes which
we call just Neumann boxes. This notation is used for the Neumann-Dirichlet
preconditioner.

4. Preconditioned Conjugate Gradient Method. The Neumann-
Dirichlet preconditioner, represented by matrix B, is a related problem to A
in which the Neumann conditions are imposed on the sides of every other
box, and Dirichlet conditions on the remaining boxes. Here, as shown in
Figure 2, the region is partitioned so that the white squares correspond to the
Dirichlet boxes, and the shaded squares together with the separator lines
correspond to the Neumann boxes. The sides of Neumann boxes that coincide
with the boundary of the region keep their original Dirichlet conditions.

The original system Au=f can be replaced by the following three steps:

Bv=h, (1
tw=g, (2)
Bu = h+Sw , 3)

where g = ST(f-AB~Th) = sT(f-Av), € =sTAB~1 s, and s = [0, 11T isan? by q

matrix, n is the number of mesh points on each side of the region, and q is the
number of total points in the inter-connected Neumann boxes. Here h is the
same as f except on separator lines where components of h can be chosen
arbitrarily.

Steps (1) and (3) are solved directly, and the capacitance system (2) is solved
by the preconditioned conjugate gradient method in which B is used as a
preconditioner. Forming € is extremely expensive. Fortunately, € need not to
be generated. Instead, for a given vector wj, one needs to form Cwj in each
step of the conjugate gradient iterations. Considering the fact that Cwj =
(sTayp-1 Swi, one obtains Cwij by solving the system Bz = Swj and then by
applying $TR to z, Thus solving (1)-(3) involves only systems with B.

It should be noted that the conjugate gradient method iterations are carried
out on vectors defined only on separator points (the residuals and other
vectors are zero in the interior of the boxes). Therefore, the corresponding

computations are reduced to points belonging to separator lines only.
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5. Sequential Implementation. As we discussed the main task is to
solve a system with B repeatedly. In this section we detail solving a B-system
sequentially and in section 6 we describe how to solve this system in parallel
Let us denote the matrices A and B by a 4x4 block matrices as following:

' A 2
Ao | m3|0 -- Dirichlet pts f“" 0 | fM3)0
Neumann 0
A = 0 | Rzl Az 0 " inner pts s
als | als| Az | A - Separator pts iz | A
o 0 ﬁ§4 A#] -- cross pts 954 34‘5
\ J

Note that B is different from A only in the darkened boxes.
Let AN denote the right bottom submatrix of B, and define BN as
preconditioner for AN :

i
Ay| fls) 0 Ayl Bysl 0 ]

Then computing v in Bv=h consists of solving:

ANUN = hN 4

Ajiv1=hi-A1303 5)
where YN and hN correspond to the Neumann boxes and the cross points.
While (5) is a system of disjoint subsystems, {4) is a coupled large system and
needs to be decoupled first. We, therefore, use the capacitance system once
more, where the capacitance matrix CN is defined on cross points only.
By using this preconditioner BN , we replace (4) by three steps similar to
those described in Section 4.

BNZN = KN 6)
CNWN = gN N
BNUN=KN + SN W {8)

where gN , CN , and SN are defined similarly to g, €, and § in Section 4.

It is important to notice that in equations (6)-(8) the subsystems on Neumann
boxes are decoupled into a set of subproblems on individual Neumann boxes,
and thus all of these equations can be solved direcily.

By solving (6), (?), and (8) one obtains the solution to (4). Using this solution,
one solves (5), which completes the process of solving a system with B .

We now briefly describe how to solve a subproblem on a Neumann box. The
Neumann boxes are of three types (Figure 3): boxes with four corners
removed, boxes with two corners removed, boxes with one corner removed.
Figure 4 shows the corresponding matrices of the subproblems of inner
dimensions m=3. These matrices are banded positive definite, where half of
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the bandwidth is equal to the width of corresponding box. Shifts of the off
diagonals of these matrices are caused by the missing corners.

Y

To solve subproblems on Neumann boxes, (as well as those on Dirichlet boxes)
one can use a direct solver or a modified fast solver.

With a general purpose package like LINPACK, one can solve subproblems on
individual boxes directly without further modifications. On the other hand,
FISHPACK routines can be applied only to separable problems on a
rectangular domain. Although our model problem (9) is separable, but the
domain (in case of a Neumann box) is not a rectangle. One needs to modify
the problem by extending the domain to a complete rectangle, and using the
capacitance system at the third level. For more detail see [1]. Asymptotically,
the computational complexity of FISHPACK routines is much smaller than
those of LINPACK.

Figure 4

6. Parallel Implementation. The problem is well suited for parallel
processing. From previous section we can conclude that the main
computation task is to solve a linear system with B, repeatedly. As discussed
previously, this system consists of a set of disjoint Dirichlet subsystems and a
set of Neumann subsystems inter-connected through cross poinis. While the
first subproblems are immediately applicable for parallel processing, the
latter ones can ecasily be decoupled. Thus, all the subproblems readily lend
themselves for a balanced high level parallel processing.

The parallel algorithm is based on the sequential one. The following
computations occur repeatedly in the algorithm:

(a) Solving a system with B.

(b) Small steps such as multiplying $§ Ta by a vector, computing inner
products.

We denote the number of mesh points in each coordinate direciion by n, the
number of boxes by ng, the total number of separator points by s, and the size
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of a box by m. Thus, the total number of points is n2, the number of boxes is
noz, and the number of points in a box is m 2. This notation is used throughout
the paper.
Each preconditioned conjugate gradient iteration contains one instance of
operations (a) and a few instances of (b). Denote the number of operations
for (b) by s. The number of separator points is bounded from above by nnz X
2m, since each box contributes at most 2m points. Thus:

s<ngZ x2m = (n/m)2 x 2m = 2n2/m,
and the operation counts for (b) is proportional to n2/m.
In contrast to (b) the cost of solving a system with B is significant and it
dominates all the others combined. The operation count for a banded
symmetric positive definite subsystem on a box is of order m% for the
decomposition, and of order m3 for the substitution. Since our model problem
(9) has constant coefficients, only three different types of boxes arise, and
thus three different subsystems needed to be formed, factored, and saved at
the preprocessing stage with negligible cost and small amount of storage.
Then, using the factored form, one needs only substitution to solve a
subsystem on a box. Thus, this operation count during the iterations is
reduced to m3. Therefore, the number of operations for solving a B system is
proportional to:

ngZxm3 =(n/m)2xm3 = n2m.

Consequently, the ratio of the operation count for a B-solver over the other
computations in each iteration is proportional to n2m/(n2/m) = m2, which is
substantial for all values of m (4 <= m <=17) used.
The experiments confirm that B-solvers are the dominant parts of the
computations and show that well over 80% of CPU time is spent for B-systems
(see further in Table 3). We, therefore, solve these systems in parallel.
A system with B is solved by performing (6), (?), (8), and (5), in that order, by
direct methods. In this process there are three instances of data exchanges,
those corresponding to (6), (8), and (5).
The parallel algorithm proceeds as follows. First, after solving the Neumann
subsystems of (6), processors have to communicate to form gN, the right hand
side of (7), that is solved directly and sequentially in the host (CN has already
been formed in preprocessing steps). Then, the processors solve (8) in
parallel and distribute the data for Dirichlet subsystems. Finally, after
solving (5) in parallel, the processors exchange data to form the inner
products for conjugate ugradient iterations.
We assign one or more of the subsystems to each node of the parallel
processor. The communication for solving one subsystem consists of sending
the right hand side of the subsystem to a node and receiving the solution
from the node.
There are some sequential computation in the preprocessing stage and in
conjugate gradient iterations. The volume of these computations is relatively
small.
We, therefore, can divide the computations into three categories:
computations for solving systems with B, other repeated computations, such
as computing inner products, adding two vectors, etc, and one-time
occurring computations, such as forming and factoring Cy.
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We apply parallelism only to the first category. The volume of computations
of second and third ones are small. We justify this further in the next section
(see also Table 3).

7. Numerical Results. The programs were developed in FORTRAN-77.
The sequential version was run on a DEC-KL10, and the parallel version on a
16-node Intel's hypercube, iPSC (Intel's Personal Super Computer).
As a model problem we chose

Autu=F (9)
in (0,1)x(0,1) with Dirichlet boundary condition. The right hand side F is
chosen so that the exact solution is u = 20sin{xy)n(1-x).
Let as before m and ng be the number of mesh points and boxes in each
coordinate direction, respectively. We ran the sequential program for n = 16,
24, 32, 48, 64, 96, 128, and ng = 2, 4, 6, 8, 12, 16. All possible combinations
were executed. Table 1 shows the number of iterations and estimate of the
condition number of the capacitance matrix C for different values of n and
ng. The table contains the main results obtained using the sequential version.

CONDERGENCE RATE
Number of
Mesh Boxes Separator Cross Number of Estimate of
Points Points Points Iterations Condition #
322 42 168 9 7 7.08
82 336 49 8 4.91
482 42 264 9 8 8.79
62 420 25 9 1.54
82 560 49 8 6.39
122 792 121 7 4.92
162 960 225 7 4.01
642 42 360 9 8 10.11
g2 784 49 9 7.68
162 1440 225 ? 4.94
962 4% 552 9 8 12.11
6 900 25 10 10.81
82 1232 49 9 9.56
122 1848 121 9 7.63
162 2400 225 8 6.45
1282 42 744 9 8 13.61
g2 1680 49 9 11.02
162 3360 225 9 7.65

For most of our experiments we chose u = 20sin(zy)x(1-r). To study the effect
of smoothness of the solution on the rate of convergence, we executed the
same problem as in Table 1, this time with a solution randomly generated. The
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number of iterations have increased by an average of 24% (with maximum
deviation of 11%) . The results are in Table 2. This increase is by no means
significantly large, and therefore all the rest of the experiments were
carried out for the smooth solution.

ITERATION NUMBER OF SMOOTH AND RANDOM SOLUTION
Number of Iteration Number of
Mesh S it — Increment
. Boxes moo andom (in %)
Points o% solution Solution
322 42 7 9 29
g2 8 9 13
482 42 8 9 13
6% 9 12 32
132 g 2 3
162 ? 8 14
642 42 8 9 13
82 9 11 22
162 7 9 29
962 42 8 10 25
62 10 12 20
82 9 12 33
12 9 11 22
16 8 10 25
1282 42 8
9
9

Table 2

We group the computations into three categories: computation for solving
systems with B, computations for other repeated steps, and computation for
those steps that occur only once. We show the execution time for each
category (in %) in Table 3; columns 3, 4 and 35, respectively. As Table 3 shows,
up to 87% (and an average of 80%) of CPU time is spent for solving the
systems with B. We can conclude that the computation for these systems play
a dominant role, and the rest is relatively small. We, therefore, apply
parallelism only to solve the systems with B.

Let p be the number of nodes of the hypercube that are used in a parallel
execution. And let, as before, n and ng be the number of mesh points and
boxes along each side of the rectangular domain, respectively. We let these
three factors vary. The only restrictions are that n be divisible by np and
n02/ 2 be divisible by p. The first restriction is obvious. The second restriction
allows us to assign an equal number of boxes to each processor (ng2is the
total number of boxes, half of them Dirichlet, the other half Neumann boxes).
We executed the parallel version for all combinations of the sequential
version, for p = 2, 3, 4, 6, 8, 9, 12, 16. We measured the execution times for all
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different runs and compared them against the execution time of the
sequential version. The results are in Table 4. The elements in this table are
the ratios of the sequential time over the parallel execution time.

PARALLELIZABILITY
Number of CPU time (in %) fer solving
Mesh Boxes B-systems Small One-time
Points Steps steps

322 4% 80 10 10

8 74 20 6

482 43 82 8 10

65 82 10 8

85 79 15 6

122 73 20 ?

16 64 20 16

642 4% 83 5 11

85 82 5 12

16 1 12 16

962 5% 86 7 ;

82 85 5 9

12 82 8 10

162 79 12 9

1282 82 87 6 6

162 82 10 10

Table 3

From Table 4, one can observe that the speed-up factors are small in the
upper right portion of the table. The speed-up improves as we move to the
bottom parts of the table. The standard definition of parallel efficiency, E, is
given as the ratio of the speed-up over the number of nodes, E=sp/p, where
sp represents speed-up. Table 5 shows these efficiency factors (in %) based
on the data from Table 4.

There are three factors that affect the size of the entries in Tables 4 and 5:
the number of mesh points, the number of boxes, and the number of
processors, denoted by n, ng, and p, respectively. Below we discuss the effects
n and ng on speed-up and efficiency. We study the influence of each one
while the other two variables are kept fixed. The dependence of speed-up and
efficiency as functions of p is discussed in [2] (see also [4]).

First, we study the efficiency as a function of n while keeping ng and p
constant. We find that the efficiency is an increasing function on n. This can
be explained as following. In the complexity count the highest order term,
m 3, is connected with the cost of B-solvers. Other parts of the algorithm (an
overhead) are of lower order. Thus, for fixed ng, as n (and consequently m)
increases, the share of the B-solver is increased. This is confirmed by the
experimental data in Table 3. The portions of the algorithm connected with B-
solvers are implemented in parallel, hence higher speed-up and efficiency
are achieved as n grows. Moreover, let us define r, as the ratio of
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communication-time over execution-time for the portion of the algorithm
which is implemented in parallel. We analyze the influence of n on r. The
cost of solving a subsystem on a box (using SPBSL of LINPACK) is
proportional to m 3, and the communication exchange is proportional to the
size of the right hand side, namely m 2. Therefore, r is proportional to
1/m=ng/n (as m=n/ng). For a fixed ng, as n increases, r decreases and,
thercfore, the speed-up and efficiency improve. Figure 5 shows the speed-up
as a function of n for fixed ng and p.

SPEED-UP FACTORS
Number of Number of processors
Mesh Boxes 2 4 8 16
Points
322 42 1.48 2.07 2.07 —
82 1.35 1.72 1.72 1.29
2 2
43 4 1.59 2.22 2.68 —
82 151 2:11 2.58 2.16
16 1.29 1.58 1.78 1.61
642 42 1.65 2.36 3.00
82 1.59 2.32 2.93
16 1.38 1.82 214
962 a% 1.66 2.38 3.08
16 152 2.14 2.71
1282 g2 _— 2.56 3.54
16 2 — 2335 310
- TABLE 4 :

Next, we fix n and p and discuss the affect of ng on efficiency. Here we see
that as ng increases, the efficiency becomes smaller. Again, examining Table
3, we see that as ng increases, the percentage of CPU time required to solve B
systems decreases, therefore the time percentage of parallel parts becomes
smaller and thus efficiency decreases. Additionally, r, the communication
overhead, is proportional to ng/n. Thus, r increases together with ng and, as a
consequence, efficiency deteriorates.

Thus, we conclude that speed-up and efficiency are increasing functions of n
and decreasing functions of 'ng. Here, a few comments are in place. One may
get a wrong impression that having a large number of boxes is a
disadvantage. This is not the case. In fact, from the point of view of the
overall CPU time the opposite is true. The total execution time decreases as the
number of boxes increases. This is true for all sizes of our problem in the
sequential version and also in the parallel version (except when n is small,
and ng and p are simultaneously approaching their extreme values). In all,
increasing ng reduces the execution time and this reduction is substantial for
large B and small p. Moreover, a large ng, and consequently small m, reduces
the storage requirements needed to solve subsystems on the boxes. And
finally, for large values of p, one must have at least as many boxes as
processors. Figure 6 shows speed-up as a function of ng for fixed n and p.
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PARALLEL EFFICIENCY, in %
Number of Number of processors
Mesh Boxes 2 4 8 16
Points
322 42 74 52 26 —_—
8 68 43 22 8
482 4% 80 56 34 -
162 &8 3 33 13
642 4% 83 59 38 —
82 80 58 37 19
16 69 46 27 13
962 g2 83 60 39 24
162 76 54 34 18
1282 g2 — 64 44 28
162 — 59

Table 5

Number of Processors p=4, Number of boxes n0=4,8,1 6
2.6
4

Speed-up

T

1.4 - T T T T T T T T T
32 48 84 80 96 112 128

n, Number of mesh points in each direction

Figure 5
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Number of Processors = 2, Number of Mesh Points = 48,64,96
2.0

1.8

' T n=96
16 %n_ﬂ \,\

a
=
]
b
3 n=48
3 1.4 4 p
1.2 1
1.0 . . . . .
4 8 12 16

Number of boxtes on each direction
Figure 6

Efficiency substantially decreases with p. The decrease is even sharper for
small problems (see [2]).

To summarize our discussion: The efficiency improves as n increases, and
deteriorates as ng and p become larger. On the other hand, the total execution
time decreases as these three factors increase, except when ng and p
approach simultaneously their extreme values while n is relatively small. We
should note that the given problem defines the value of n, and one needs only
to choose the values of ng and p that minimize the execution time.

7. Conclusions. The results obtained using the sequential version (Table
1) are consistent with the similar results in [1].

The main conclusions obtained are:

1. The problem is well suited for parallel processing (Table 3). The speed-up
factor for two processors is as high as 1.65, and the speed-up is larger than
{I;, in most cases, where p is the number of processors (Table 4) .

2. Efficiency is an increasing function on n and a decreasing function of ng
and p (Table 5).

3. For a given problem of size n, the total execution time reduces as ng and p
increase, unless n is relatively smalland ng together with p have their
extreme values.
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