CHAPTER 8

Remarks on Spectral Equivalence of Certain Discrete
Operators

Wlodzimierz Proskurowski*

Abstract We consider the Neumann-Dirichlet preconditioner for the discrete Laplacian in
the unit square. We show that the capacitance matrix C is equal to the identity even for
problems with discontinuous coefficients. In the case of many Neumann-Dirichlet strips
this is no longer true if the strips are extremely thin. The conditioning of C in this case is
significantly better when the Neumann strips correspond to regions with larger
coefficients.

1. Introduction It is well known that all uniformly elliptic operators L defined on Q
with the same boundary conditions are spectrally equivalent [5]:

c1L1xx) £ (Lox,x) < cp(Lix.x),
where c1, cp are positive constants, and (x,y) is a proper inner product. Similar relations
hold for the descretized form of these operators:

aleAx <xIBx < aszAx, Vxe RN, Vn,
where A, B are nxn symmetric positive definite matrices, and aq, ap are positive
constants independent of n. These inequalities imply that the ratio of extreme eigenvalues
of AB-1 is bounded by ap/ay, called the spectral equivalence bound [1]. Thus, we could
use one discrete elliptic operator as an efficient preconditioner for another one. In
particular, the discrete Laplacian would be an excellent candidate for such a preconditioner.
Let us have a closer look at some questions that can be posed: How large is the bound for
k(AB-1)? What is the effect of changing the boundary conditions? And finally, how all

this relates to domain decomposition?
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1.1 Changing boundary conditions Let us consider two nxn matrices, A and B, that
represent the one dimensional -Laplacian on Q = [0,1] with the Dirichlet and Neumann
boundary condition at the left end of the interval, and with the Dirichlet condition at the
other end, respectively. They differ only in the (1,1) element:

(2 -1 \ /1 -1 \
-1 2 -1 -1 2 -1

-1 2 -1 -1 2 -1
\ -1 2 ) -1 2 )

It has been shown by Hald, see [7, p.457], that AB-1 is a rank one modification of an
identity, AB-1 =1+ uvT, where uT=(1,O,...,0) and vT=(n,n—1,...,1). Moreover, only
two singular values of AB-1 differ from 1. These two coincide with the eigenvalues of
Inp + (v+ocu,u)T(u,v+ au), where o = vIv/2 ~=n3/6. Its characteristic polynomial is
A2-2(1+a+)A+(1+ 12+27)=0, where y=uTv=n. Thus, the smallest singular value of AB-1
is equal to about G,;;, = 3/n, the largest G, = n3/3, and x(AB-1) =V 6., / 6,3, = n2/3.

Consequently, A and B are far from being spectrally equivalent, although they represent
the same operator (-Laplacian), albeit with different boundary conditions.

2. Neumann-Dirichlet preconditioner (two subdomains) Let us now consider
the same - Laplacian on Q = [0,1] with the Dirichlet boundary conditions at both end
points, represented by the nxn matrix A. Let us impose artificial inner boundary conditions
at x=0.5 such that we have the Dirichlet condition to the left of it, and the Neumann
condition to the right. The resulting matrix B has the form:

(2 -1 3\
-1 2 -1
B = 0 2 -2
-1 2 -1
-1 2

Using the same technique as above, we can show that AB-1 = I + uvT, where
uT=(0,...,0,1,0,...,0), i.e., u; = 8jj, v = 1/k (-1,..-(k-1),0,k-1,...,1), and k = (n+1)/2.
Since now y = uly = 0, the characteristic polynomial of In + (v+0cu,u)T(u,v+ ou) is
simplified to A2 - 2(1+0)A + 1 = 0. Here, the new o =vIv/2 ~n/3. Thus, G, = 3/n,
similarly as before, but 6,,,, =~ n/3. As a result, we obtain a much more favorable ratio,
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and ©(AB-1) =V 6., / Oy = 2(0+1) = n/3. Yet again, A and B fail to be spectrally
equivalent. Numerical experiments confirm this analysis, see Table 1.

# points 5 15 25 35 45
k(AB-1)in1.1  11.08  79.49 214.50 416.16 684.50
k(AB-1)in 2. 2.75 6.21 9.59 12.94 16.29

Table 1. Condition numbers k(AB-1) as a function of the number of grid points.

In a two dimensional analog of our example, n2x n2 matrix A, represents the - Laplacian
on a unit square, Q=[0,1]x[0,1] with the Dirichlet boundary conditions at 0Q, and B
represents the same operator with added Neumann-Dirichlet conditions at the artificial
interface (x;y=0.5):

(T -1 4 -1 \
-1 T ~I -1 4 -1
A= - . T= S (1)
-1 T -I -1 4 -1
-1 T ) \ -1 4 )
(T -1 )
-1 T -1
B= 0 T -2 a
-1 T -I
\ -1 T )

Here, AB-1 =1+ UVT, where the rectangular n2xn matrices U and V have the form
UT=(0,1,,0), VI=(-XT,0,XT), and mxn matrix X will be defined further, m=n(n-1)/2.

As an example, for the simplest case, n=3, we have

15 4 1
X =1/56| 4 16 4
1 4 15

As before, we can conclude that there are only 2n singular values of A B-1 thar differ
from 1.
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N=n2 Anin Amax cond #
9 .76 1.31 1.72
25 .66 1.51 2.28
49 .60 1.68 2.82
81 .55 1.83 3.35

Table 2. Extreme eigenvalues and the condition number of AB-lin 2D,

Table 2 demonstrates the results of numerical experiments. Here, the condition number
grows linearly with N (approximately as \JN/4+1), yet, once more, A and B fail to be
spectrally equivalent.

Tt should be noted, that application of a special symmetrizer to B, see [8], results in a
matrix B that is spectrally equivalent to A. More precisely, only n eigenvalues of AB-1

are equal to 2, while all the rest are 1.

3. Capacitance matrix The method of domain decomposition often can be considered
as a process in a subspace, see [6]. This amounts to performing the main iteration with the
capacitance matrix C of the form C = STAB-1S, where ST is a restriction operator
ST=(IP,0), and p is the number of grid points on the separator, p<<n. Note, that for
our one dimensional examples in sections 1.1 and 2., p equals to 1 and the capacitance
C=ST@ +uTS isequal to n+1 and 1, respectively.

In general, we can write matrices A and B in a 2 by 2 block form:

Ay A12 A A
A= B= (2)
Ay Ay Ay Ay,
It has been shown, see [3] and also [4], that if A1 is invertible then A B-! has the form:
-1 190
AB = (3)
ZC

where C=C1Cy 1, C1=@STAS)y1=Ayy-Ar1 A 171 A,

Cor= STBS)1= Boy -Bgj Al A1p, andZ =(Ap1 - CBaA117 L.

C1 and Cy are called Schur complements of A and B, respectively, and thus it is
appropriate to call C the Schur complement of A B-1-

Marrix B defined by (1") can be used efficiently as the so-called Neumann-Dirichlet

preconditioner for A, see [2]. We want to show not only that A and B are spectrally
equivalent in a subspace :
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aleSTA Sx < xTsTB sx < aszSTA Sx, Vxe R, Vn
but also find the proportionality constants ay, an.
When we reorder A and B from (1) into the block form (2) we obtain:

( T -1 0
-1 T -1 0
-1 T -1 0
-1 T -1
A= T -1 -1
-1 T -1 0
-1 T -1 O
-1 T 0O
. 0 0 0 0-I-I 0 O 0 0 T )

where matrix A11 is (n2-n)x(n2-n), A22=T is nxn, and A1p=As1T is (n2n)xn.
Matrix B differs from A only in the (21) block as By = Ay =T:

Ba1= (0 0 0 0 0 21 o 0 0 0).
A11 is a 2x2 block diagonal matrix with two identical diagonal blocks. As a consequence,
so is its inverse. Let us denote Ar 1'1 = diag(G,G), where the mxm matrix G represents
the discrete Green's function for Ay, on a half of the unit square with Dirichlet boundary
conditions. The action of Ap1 on A11-1A15 is identical to that of ByjonAj1-1Ayp and
is equal to 28TGS, where the mxn matrix § is defined by ST = (0,...,0,)T. Therefore,
C1= C2=T-2STGS, and finally we get C=C;Cp-l =1
We have thus shown that C, the Schur complement of AB-Ifor the case of the Neumann-
Dirichlet preconditioner, is equal to the identity. Consequently, in a subspace, B is an
excellent preconditioner for A.
Additional item.  Matrix Z = (A1 - CB21)A11°1 = (0....,0,-1,1,0....,0) diag(G,G) =
(X.-X), where the nxm matrix X =-STG. Thus, AB-! =1+ §ZT.

4. Many Neumann-Dirichlet strips In the case of many Neumann-Dirichlet strips

the situation is somewhat different: the capacitance C is not equal to the unity matrix any
more. Actually, it is not even symmetric. Nevertheless, since C1 and Cp remain

symmetric, all eigenvalues of C are real, as the following argument shows.

Co=C1Cylop=29, Cp12C1Cx12¢=0p, where Cy12p=¢.
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Table 3 demonstrates the dependence of the number of grid points across and along each
strip on the condition number of C in the case of four strips. For very narrow strips, k(C)
is not independent of the grid size h. In the extreme case of only one inner grid point
across the strip, ¥(C) grows roughly linearly with the number of grids in the other
direction, i.e., with the inverse of the grid size, 1/h. On the other hand, when the number
of grid points across the strip grows even slightly, ¥(C) rapidly decays to one.

k=1 k=2 k=3 k=4 k=5 k=T k=0 k=11
m=1 1.226 1.520 1926 2431 3.030 4.510 6.375 8.631
m=2 1.056 1.171 1.353 1.590 1.874 2570 - -
m=3 1.015 1.062 1.153 1.283 1.446 -
m=4 1.004 1.023 1.070 1..145 -

Table 3. Condition number of the capacitance matrix in the case of four strips, d=4. Here, k
and m are the number of inner grid points along and across the strip, respectively.

In the simplest example with four strips, when m=k=1, we have

14 -1 0 14 -2 0
c,=1/4| -1 14 -1 c,=1/4] -2 14 0
0 -1 14 0 o0 14
97 7 0
Cc=C,C;'=1/96| 7 97 -48/7
-1 -7 9

with the eigenvalues equal to 1.1130, 1.0000 and 0.9078, which results in x(C)=1.226.
‘We note that out of total k(d-1) eigenvalues of C only k of them are exactly equal to 1, the
rest are unequally clustered around the value of 1. For example, for k=5 and m=3 we have
Amax=1.22, A;,=0.85, and the remaining 13 eigenvalues are between 0.97 and 1.03.

d=8 d=16
k=1 k=2 k=3 k=4 k=5 k=1 k=2
m=1 1.305 1.723 2331 3.117 4.076 1.326 1.780
m=2 1.074 1229 1483 - - 1.078 -

m=3 1.019 1.082 - - - - -
m=4 1.005 1.031 - - - - -

Table 4. Condition number of the capacitance matrix in the case of d=8 and d=16 strips.
Here, k and m are the number of inner grid points along and across the strip, respectively.
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In the case of eight strips, see Table 4, the values of k(C) do not change much. A further
subdivision to 16 strips produces an increase in k(C) of only a few percent even for the
extreme case of only one inner grid point across the strip.

5. Discontinuous coefficients Let us now, instead of the Laplace equation consider
problems with self-adjoint operators div(k(x)gradu) in Q and Dirichlet boundary
conditions at 0. Here, the diffusion function k(x) is discontinuous at the interface across
Q, and constant in each of the subdomains. As before, we impose the Neumann-Dirichlet
condition at this interface.
Let us consider one dimensional problems with self-adjoint operators:

- div(k(x)gradu) =f(x) on Q =[0,1],
with Dirichlet boundary conditions at 9. We shall use a standard uniform staggered grid
approximation that gives rise to a symmetric matrix representation of A:

- Kis1p0i-1 + ki1 + K120 - Kit120i+1 = h2fi for i=1,...n.

For k1(x)=1 in the Dirichlet strip and ky(x)=10 in the Neumann strip this approximation
results in the following matrices A and B:

(2 -1 2 ~1 \
-1 2 -1 -12 -1
A= -1 11 -10 B= 0 11 -1t
-10 20 -~10 -10 20 -10
\ -10 20° \ -10 20 J,

The resulting matrix AB-1 is better conditioned than in the case k1(x)=k(x) reported in
section 2 as the numerical data in Table 5 indicate. Here, x(AB~ 1) is about 1/6.

# points 5 15 25 35 45
K(AB-1) in 2, 275 6.21 9.59 12.94 16.29
¥(AB-l)in5. 208 396 571 743 914
Table 5. Condition numbers K(AB-1) as a function of the number of grid points.

In a two dimensional analog of our example, we use the following staggered grid scheme:
(ki 1/2,4-1/2Ki0 172,501/ 1,05 1/2,-1/2Kir1/2,-1/2090,5-1 K012, 4172455412, 5+ 1/2005,5+1

onZs.
065172, 1/2451/2,5+ 12091, 20K3-1/2,5-1/27 K5 12,5+ 172 K541 /2,512 Kir 12,541 /200,720 76

for ij=1,....,n
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The matrix A\ that arises from this discretization has a form similar to that in section 3.:
(T -1 0
~I T -1 0
-3 T -1 0
-1 T -1

A= ¢T -—¢l ~ ¢l
-¢l ¢ —¢l 0

-¢I T -l 0
~¢I  ¢T 0
. 0 0 0 0 -1 ~¢l 0 0 0 OsT;’

where the constant c=kp(x)/ k1(x) and s=(c+1)/2.
As before, matrix IB differs from A\ only in the (21) block :
By1= (0 O 0 0 0 251 O 0 0 0).

Theorem Let -div(k(x)gradu)=f in Q=(0,1)2 with Dirichlet boundary conditions at d€2.
Let the diffusion function k(x) be discontinuous at the interface across that halves , and
constant in each of the subdomains. Let the Neumann-Dirichlet conditions be imposed at

this interface. Then the capacitance matrix C is equal to the identity.
Proof We have Aj1-! = diag(G,1/G), where the mxm matrix G represents, as before,

the discrete Green's function for Ay, on the half of the unit square with Dirichlet boundary
conditions. Here, as before, S is defined by ST = (0,....0,DT. Then

inel S8 ) ()
712700 17¢6 Jles ) \os

GS
- T
Ay AT AL, =(S ,CST)( as )= € +1)s"Gs.

-1 . T.[ GS T
By A AL=(0(c+1)S) GS =(c+1)S GS.
Thus the action of Ap1 on Aj1-1A1; is identical to that of By1 on Aj1-1A 15 and is equal
to (c+1)STGS. Therefore, C1=Cy =sT-28TGS, and finally we get C=C1Cyl =1L
Thus, C is equal to the identity, even in the case of discontinuous coefficients, ’

In the case of many Neumann-Dirichlet strips the results are anti-intuitive: the conditioning
of the capacitance matrix C is significantly better for problems with discontinuous
coefficients than with continuous ones, as the following table indicates.
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k=1 k=2 k=3 k=4 k=5 k=7 k=% k=11
m=1 1.038 1.081 1.134 1.194 1.261 1420 1.612 1.842
m=2 1.010 1.029 1.057 1.090 1.127 1.210 - -
m=3 1.003 1.011 1.026 1.047 1.071 -
m=4 1.001 1.004 1.012 1.025 -

Table 6. Condition number of the capacitance matrix for the problem with discontinuous
coefficients (c=kp/k1=10) in the case of four strips, d=4. Here, k is the number of inner

grid points along the strip, and m is the number of grid points across the strip.

To gain some insight, let us examine the simplest example with four strips, when m=k=1.

4 -1 A
40 -10 —-10
4 -1
B= 40 - 10
-11 22
-11 22
\ -11 -22J
while A is symmetric (A21=A127). In accordance with (3), we obtain
77 -10 O 77 -11 0
C,=1/4 -10 77 -1 C,=1/4/ -11 77 0
0 -1 77/, 0 0 77
529 7 0
c=C,C,'=1/528| 7 529 -48/7
-1 -7 528

with the 4;(C) equal to 1.0205, 1.0000 and 0.9832, which results in ¥(C)=1.038. Note
that matrix Cy is the same as the one for continuous coefficients, scaled by (c+1)/2=11/2.

Increasing the number of strips above 4 does not change much the conditioning of C:

k=1 k=2 k=3 k=4 k=5 k=1 k=2
m=1 1.050 1.108 1.182 1.271 1.374 1.053 1.115
m=2 1.013 1.038 1.076 - - - -

Table 7. Condition number of the capacitance matrix for the problem with discontinuous
coefficients (c=ko/k1=10) in the case of d=8 strips. Here, k and m are the number of inner

grid points along tand across the strip, respectively.
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Let us now investigate the influence of the ratio of the diffusion coefficients on the
condition number of matrix C.

c=ko/kq 0.001 001 0.1 0.3 1.0 3. 10. 100. 1000.
¥(C) (m=k=1) 1.502 1.497 1.448 1.368 1.226 1.107 1.038 1.004 1.0004
¥(C) (m=k=3) 1.329 1.326 1.295 1.245 1.153 1.074 1.026 1.003 1.0003

Table 8. Condition number of the capacitance matrix for the problem with discontinuous
coefficients ky and kj in the case of d=4 strips. Here, k and m are the number of inner

grid points along tand across the strip, respectively.

Results in Table 8 strongly indicate that as c, the ratio of the coefficients, grows, the
condition number approaches the value of 1.0, and k(C) approaches a somewhat larger
value as c decreases, see Fig.1. Coefficient k1 corresponds here to the Dirichlet and k7 to
the Neumann strips. Let us investigate the problem for the simplest case when k=m=1.
Using the formulas in (3) we arrive at the following representation

Tec +1) -c¢ 0 Te+D-¢c+1 O
_1l  _ - 1
c,=t -c¢ 7e+D -1 C,=ll-€+DTc+1 0
0 -1 7e+1) 0 -1 Tc+1)
1 7 0
C=C,C; =1+1/48(c+1R, where R=| 7 1 —-48/7
-1 -7 0
Fig.1

1.6

1.5
o .
£ 14
E .
o
o 1.3 4 4+ m=k=3
§ E - m=k=1
2 1.2+
O
(&) E

1.1+

1.0 T * r

-4 -2 0 2 4

log (ratio of coefficients)
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Thus the eigenvalues of C are A(C) = 1 + 1/48(c+1) A(R). It is easy to verify that the
eigenvalues of R are 0 (R is singular), and 1+ V97. Consequently, the condition number
of Cis k(C) = (48(c+1) + 1 + V97) / (48(c+1) + 1 - ¥97). This formula gives us
k(C)=1.226 for c=1, and k(C)=1.503 for ¢=0 (the limiting case).

Examining Cq1 and C) we see that for large values of ¢ these matrices are "similar", in
contrast to the situation when ¢ are small (in the limit, for c=0, the zeros appear in the
"wrong" positions). This strongly suggests that in the preconditioner IB the Neumann
strips should correspond to the regions with larger diffusion coefficients.

Finally, we investigate the influence of the number of inner grid points along the strip on
the condition number when the strips are wrongly placed, i.e., c<1.

k 1 2 3 4 5 7 9 11
x(C) 1.448 2.137 3.273 4950 7.278 14.33 2521 40.44

Table 9. Condition number of the capacitance matrix for the problem with discontinuous
coefficients (c=kp/k1=0.1) in the case of d=4 strips and m=1. Here, the k and m are the

number of inner grid points along tand across the strip, respectively.

Clearly, for ¢c<1, in this worst case of extremely thin strips (in=1), ¥(C) grows almost
quadratically with k, the number of inner grid points along the strip.
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