CHAPTER 11

Some Remarks on the Hierarchical Basis Multigrid Method

Randolph E. Bank*
Harry Yserentantt

L. Introduction. Originally, multigrid methods were developed for elliptic par-
tial differential equations discretized by difference methods on sequences of uniform
and uniformly refined meshes. For most of these problems, multigrid methods are
extremely fast solvers for the resulting discrete equations. On the other hand, for
many problems of practical interest, uniform meshes are far from optimal. In such
cases, finite element methods based on adaptively refined, strongly nonuniform grids
are much more appropriate.

It is not obvious how the multigrid method can be effectively applied to problems
discretized on nonuniform grids of this type. For many simple decompositions of
the final mesh into meshes of different levels, the number of operations per iteration
may not be proportional to the number of unknowns in the finest mesh. Indeed,
to keep the operation count of optimal order, it is necessary that the number of
nodes increase by a constant factor larger than one from one level to the next. As the
experience with adaptive local mesh refinement packages like PLTMG [1] [2] shows, this
condition is not satisfied for many examples. Often only a few nodes are added at each
refinement level. It is therefore necessary to reduce the number of levels artificially
in such situations. This can be justified by practical experience [1]. Nevertheless, a
complete and sufficiently general theoretical analysis of the convergence behavior in
such situations has not yet been given.

The hierarchical basis multigrid method [4] has been developed to overcome these
difficulties. In section 2, we formulate the method for general second order boundary
value problems in two space dimensions, which are not necessarily self-adjoint and
positive definite. We survey some of the properties of the method in sections 3 to
5. In section 6, we present some numerical illustrations using the new version of the

package PLTMG [2], which employs the hierarchical basis multigrid method as its linear
equation solver.

2. The Hierarchical Basis Multigrid Method. Mathematically, the hierar-
chical basis multigrid method is a classical block symmetric Gauss-Seidel iteration
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A

FIG. 1. Regular refinement (left, center) and irregular refinement(right)

for solving the discrete boundary value problem, not with respect to the usual nodal
basis of the finite element space, but rather with respect to its hierarchical basis. It
is closely related to the two-level methods of [3] [7], and the Jacobi-like hierarchical
basis method of [9]

In this section we describe the hierarchical basis multigrid method applied to the
finite element spaces used in PLTMG [2], but it is straightforward to extend the method
to other finite elements, other refinement schemes, and to higher degree polynomial
spaces.

Assume that 77 is an intentionally coarse initial triangulation of a given polygonal
domain Q C R2. This triangulation is refined several times, yielding a family of nested
triangulations 73,75, 73 . . .. A triangle of T34 is either a triangle of 7} or is generated
by dividing a triangle in 73 into two or four triangles as illustrated in Figure 1.

Refinement into four triangles is called regular refinement. If the triangle in
question has an obtuse angle, it is Tefined as in the figure above center; otherwise, it
is refined as in the figure above left. Refinement into two triangles is called irregular
refinement. Irregularly refined elements may not be refined further. This insures that
the interior angles of all refined triangles remain bounded away from zero.

The triangles of the initial triangulation 77 are called level 1 elements and the
triangles obtained by the refinement of a level k—1 element are called level & elements.
In creating the ;41 from 7z, we allow only the refinement of triangles of level k; this
uniquely defines the sequence 7, 1 < k < j. This sequence of meshes does not usually
correspond to the actual sequence of meshes generated by an adaptive refinement
process like that used in PLTMG, where unrefined triangles of all levels are considered
for refinement in every adaptive step. Nonetheless, each fine mesh 7; generated by
such a dynamic process can be uniquely decomposed a posteriori into a sequence of
triangulations of the type described here. The vertices of the level 1 elements are
called level 1 nodes, and the vertices created by the refinement of level £ — 1 elements
are called level % nodes. With the definition of 7; given above, the level k vertices
are those generated by the refinement of Tp_;.

The triangulations 71,72, T3, ... correspond to a sequence $; C S2 C 83 C ... of
finite element spaces consisting of piecewise linear polynomials. The space Sz41 can
be written as the direct sum

(1) Sk+1 = Sk ® Vigs

where Vg1 is the subspace of Sg41 containing those functions which are zero at all
of the nodes of 7x; that is, the vertices of level £ for 1 < £ < k. This decomposition
leads to the definition of the hierarchical basis for the space Sx. The hierarchical basis
for the space &; is just the usual nodal basis for 8;. The hierarchical basis for Si41
consists of the union of the hierarchical basis for S; and the nodal basis for Vi1 (the
nodal basis functions associated with the level &+ 1 nodes).

For convenience, we fix a finite element space § = S;. Formally, the discrete
boundary value problem corresponding to § can be formulated with respect to the
hierarchical basis of &. Assume that the hierarchical basis functions are ordered



142 Bank and Yserentant

according to level; that is, corresponding to the decomposition
® S=85®V:d---DVY;

Then the stiffness matrix A corresponding to the hierarchical basis has a block struc-
ture given by

A Az oo Ay
Azr Az Az
®) A= | ] L
Ajy Ajp e Ay

where Ay corresponds to the inner products of basis functions in V.
We split A into the sum

(4) A=L+D+U

where L is block lIower triangular, D is block diagonal, and U is block upper triangular.
Our basic scheme for the solution of the discrete boundary value problem

) Az =10
is the block symmetric Gauss-Seidel iteration given by

(6) 22 = O 4 (D +U) (b — AzD)

') 20+ — p(i+1/2) +(L+ D)-—l(b - Am(‘i+1/2))

To avoid the expensive direct solution of the 2j linear systems involving the diagonal
blocks of A, we use inner iterations, and modify (6)~(7) to

(8) YD = o) 4 (D4 U) (b — Az®)

9 20+ — p(+1/2) +(L+ D)—l(b _ Ax(i—!—l/z))

The block diagonal matrices D and D correspond to the situation where only the
systems involving A;; are solved directly, whereas the systems involving the coefficient
matrices Agg for k£ > 1 are solved approximately by a fixed number of inner iteration
steps. The theory developed in [4] allows:
e a single backward Gauss-Seidel step for each diagonal system in (8) and a
single forward Gauss-Seidel step for each system in (9) (except those involving
An).
e an arbitrary fixed number of symmetric Gauss-Seidel steps for all systems
(except those involving A;1) arising in both half steps (8)-(9).
In PLTMG [2], one symmetric Gauss-Seidel is used for the inner iteration for self-
adjoint problems. For strongly nonsymmetric problems, it is desirable to damp the
inner symmetric Gauss-Seidel iteration. The resulting iteration is like SSOR except
that the relaxation parameter w is less than one.

3. Convergence Results. A complete convergence theory for this process in the
case of self-adjoint, positive definite, second order elliptic boundary value problems in
two space dimensions has been given in [4]. In this case, U = L}, D = D¥, D = D¢,
and the iteration (8)-(9) can be written as

(10) 26 = 2O 4 B1(h — 4:1))

with a symmetric and positive definite matrix B given by
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(11) B =(L+D)(D+D*-D)"Y(L+ D)

The optimal estimate for the speed of convergence of this iteration with respect
to the energy norm induced by the matrix 4 is

(12) leCG+D) — )| < (1 — k7)|]2® - ]

In (12), = denotes the exact solution of the linear system (5), ||z||* = Az is the
energy norm, and & is the spectral condition number of the preconditioned matrix

(13) B-24B-1/2

Using only very weak assumptions, which are almost always satisfied in practice,
we were able to show that

(14) k = 0(j?)

where j is the number of refinement levels. In particular, we assume shape regularity
of the finite elements, but do not require that the global mesh be quasiuniform. No
global regularity of the problem is used (beyond the H! regularity necessary to define
the weak form), and only local ellipticity constants enter into the proofs.

This result means that only O(j?|loge|) iterations are required to reduce the en-
ergy norm of the error by a factor of ¢. This can be improved to

(15) O(yloge)

iteration steps by using a conjugate gradient or minimum residual acceleration scheme
in conjunction with the basic iteration.

4. Implementation. Algorithmically, the hierarchical basis stiffness matrix (3)
should not be assembled and stored explicitly. As we have shown in [4], and have
implemented in PLTMG [2], the iteration (8)-(9) can be realized in a fashion similar
to a standard multigrid V-cycle [5] using a point symmetric Gauss-Seidel {(or SSOR)
smoother. The difference is that, on a given level k, for the hierarchical basis method
only those unknowns corrresponding to the space Vj, are smoothed, as opposed to the
unknowns associated with all the vertices in 7, as in the standard multigrid method.

Therefore only the (sparse) diagonal blocks Ayt for 1 < k < 7 need to be stored,
along with certain entries allowing one to generate the product Ay for 7 # k. The
details of this scheme are described in [4]. In any event, the total number of floating
point numbers required for this implicit representation of the stiffness matrix is 9N +
O(1) for the nonsymmetric case, and 5N + O(1) for the symmetric case, where N
is the dimension of §. This should be compared with 7N + O(1) and 4N + O(1),
respectively, for the standard nodal stiffness matrix.

In the same fashion, one can show that the number of operations necessary to
perform one iteration is O(N), regardless of the distribution of the nodes among the
levels. In view of the results cited in section 3, at least for symmetric, positive definite
problems, a total of

(16) O(j Nloge)

operations are required to reduce the energy norm of the error by a factor of e.
Practically, this represents a logarithmic-like growth in the number of operations
as a function of the number of unknowns. This estimate is slightly suboptimal when
compared to standard multigrid methods applied to sufficiently regular problems with
geometrically increasing subspace dimensions, where the corresponding work estimate
would be

1n O{Nloge)

Unlike the usnal multigrid methods, however, (16) requires only the weak assumptions
of sections 2 and 3 for the continuous problem and for the sequence of meshes.
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5. A Counterexample. Both astandard multigrid V-cycle, using a point Gauss-
Seidel smoother, and a cycle of the hierarchical basis multigrid method can be inter-
preted as a sequence of one-dimensional corrections. Compared with the standard
multigrid method, in the hierarchical basis multigrid method certain directions are
skipped. As a curiousity, we present a simple example that this does not necessarily
mean slower convergence.

Consider the one-dimensional boundary value problem

(18) —-u" = f 0<e<l

19) uw(0) = uwl) =0

discretized by piecewise linear finite elements on the grids

(20) z; =27 i=0,...,%

for k=1,2,...,4. If we first smooth the unknowns associated with odd indices, and

then those with even indices, the standard V-cycle is not an exact solver. On the
other hand, the discretization matrix for this boundary value problem with respect to
the hierarchical basis is a diagonal matrix. Therefore, the hierarchical basis multigrid
method, smoothing only the unknowns associated with the odd indices on every level,
is an exact solver.

6. Numerical Results. As mentioned above, the hierarchical basis multigrid
method is the linear solver used in the new version of PLTMG [2]. This package was
used to solve the problems presented in this section.

The first example is the Helmholtz equation

(21) —Au—100u=1
on the unit square Q = [0, 1)2. The boundary conditions
(22) u=0

are imposed on 0. The eigenvalues of the differential operator associated with this
boundary value problem are

(23) Mee = (B2 + £2)7% — 100
for k,£=1,2,.... The corresponding eigenfunctions are
(29) ure(z, y) = sin(krz)sin(4ry)

This means that four eigenvalues are negative and the corresponding eigenfunctions
form a six-dimensional space. To obtain meaningful results, the triangunlation associ-
ated with the first level in the hierarchical basis multigrid method must be fine enough
to represent these eigenfunctions. We began with a uniform 9 x 9 grid. PLTMG was
used to adaptively refine this mesh, obtaining a fine mesh with 517 points distributed
among three levels. Both grids, together with the final solution, are shown in Figure
2.

In the table below we summarize the numerical results obtained using the hierar-
chical basis multigrid method in conjunction with conjugate gradient acceleration.

iteration 1 2 3 4 5 6 7 8 9
digits 0013 091 220 285 333 344 350 3.60 4.74

The number of correct digits is defined by

(25) digits = ~logso(lle® — zl|/ll«|l)

where the norm is the continuous H* norm of the functions represented by the given
coefficient vectors, and where z is the exact solution of the discrete equation. The
initial guess £(® was zero.

The average rate of convergence is approximately 0.3, which is not very different
from the rate of convergence observed in [4] for a boundary value problem involving the



HIERARCHICAL BASIS MULTIGRID METHOD 145

FIG. 2. The coarse mesk (top left), refined mesk (top right), and the solution (bottom) for (21)

Laplace operator. With coarser initial triangulations, the convergence rate decreases,
at least in the initial steps. For example, using the same fine grid, but using four
levels and a coarse 5 x 5 grid, the convergence rate is 0.5. For five levels, using a 3 x 3
coarse mesh, the convergence rate is 0.84. This behavior is typical of many multigrid
procedures, and is explained by poor approximation properties of the coarsest mesh.
The 3 x 3 mesh, for example, had only one interior point (one unknown), and therefore
could not hope to give a satisfactory approximation of the six-dimensional space
corresponding to the negative eigenvalues.
Our second example is the convection-diffusion problem

(26) —Au+fVu=1

with 8¢ = (100,100). The region Q2 is the unit square, and the boundary conditions
are the same as in the first example. This is a moderately difficult convection dom-
inated problem with sharp boundary layers. For problems like this, PLTMG uses a
stabilized version of the finite element method, the streamline diffusion method [6].
We started with the same coarse grid as in the first example, and ended with the
highly nonuniform final grid shown in Figure 3.

This grid has 502 vertices distributed among five levels. The discrete equations
have been solved using a generalized minimum residual acceleration procedure similar
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FIG. 3. The refined mesh (left) and the solution (vight) for (26)

to orthomin [8], starting from an initial guess of zero. The results are summarized
below:

iteration 1 2 3 4 5 6 7 8 9 10
digits 043 0.79 097 162 2.00 249 278 3.27 3.73 4.17

The average rate of convergence was approximately 0.38. These results demon-
strate that the hierarchical basis multigrid method is a reasonable solver for this class
of problems tco. As in the first example, there is sensitivity to the level of approx-
imation of the coarsest mesh. Solving the same problem using a 5 x 5 coarse mesh
and six levels led to a convergence rate of 0.76; the same rate was observed using a
3 x 3 coarse grid with seven levels.

The solver in PLTMG adaptively determines how many previous directions should
be used for orthogonalization in the acceleration procedure. The criterion is based
on the observed rate of reduction in the £2 norm of the residual. In solving the
problem using the 9 x 9 coarse grid, the minimum residual procedure orthogonalized
the current direction with respect to only one previous direction. The same was true
for the 5 x 5 case, except for one iteration where two previous directions were used.
For the 3 x 3 case, up to seven previous directions were used; four to six directions
were typical. Thus, although the convergence rate was nearly the same for the 5 x 5
and 3 x 3 cases, the acceleration procedure worked much harder to achieve that rate
in the latter case.
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