CHAPTER 32

Two Domain Decomposition Techniques for Stokes Problems*
Joseph E. Pasciak®

Abstract. Iwill develop two domain decomposition techniques for Stokes problems
in this talk. The first uses a reformulation of the saddle point system developed in
[4] and reduces the derivation of domain decomposition algorithms for Stokes to the
definition of domain decomposition preconditioners for second order problems. The
second applies domain decomposition directly to Stokes and gives rise to a saddle
point system for the velocity nodes on the subdomain boundaries and the mean
values of the pressure on the subdomains. This system is solved iteratively.

1. Introduction. In this talk, I will discuss two domain decomposition tech-
niques for the iterative solution of the discrete systems which arise in finite element
approximation to Stokes problems. Specifically, we consider the velocity-pressure
formulation of the Stokes equations where the divergence constraint is treated by a
Lagrange multiplier technique and the pressure variable corresponds to the multi-
plier. The discrete systems which arise are of the saddle point type.

In Section 2, we review some properties of saddle point systems and discuss a re-
formulation of the saddle point system developed in [4]. This reformulation provides
a framework for the development of iterative methods for saddle point problems.
The rate of convergence of the resulting iterative methods can be estimated in terms
of a corresponding ‘inf-sup’ condition. Moreover, preconditioning can be incorpo-
rated into the scheme.
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Section 3 defines the model Stokes problem and gives the corresponding weak
formulation. The finite element approximation is then defined in terms of the weak
formulation.

Section 4 defines the first domain decomposition technique for Stokes. Using the
reformulation of Section 2, the task of developing rapidly convergent algorithms for
the full saddle point problem is reduced to the development of effective precondi-
tioners for second order problems. Domain decomposition algorithms for Stokes
result from the use of standard domain decomposition preconditioners developed
earlier in, for example, [5,6,7,8,9].

In Section 5, we develop iterative algorithms for Stokes problems by directly
applying domain decomposition to the discrete Stokes systems. We develop iterative
algorithms for the solution of the original Stokes system which require the solution
of discrete Stokes problems on subdomains at each iterative step. The work in [11]
provided insight for the development of this technique.

To present the ideas most clearly, I will only consider the simplest applications and
approximation techniques. Many generalizations are possible and will be addressed
elsewhere.

2. Iterative methods for saddle-point systems. We consider two techniques
used to develop iterative methods for saddle point systems in this section. The
first technique is well known and the second was developed in [4]. We include this
discussion for completeness and continuity of exposition since the techniques will
be used extensively in later sections of this paper.

Let H! and H? be Hilbert spaces and consider the problem

“(9)-()

where X, f € H! and Y,g € H2. We study operators M of the form,

(2.2) M=(§‘* g).

We assume that A is a positive definite, symmetric operator on H! with a bounded
inverse and that B and B* are adjoints with respect to the inner products in H'.
and HZ. We further assume that A—'B and B*A~!B are bounded. We shall use
the notation (-,-) and ||-|| to denote the inner products and norms on H*! and H2.

Saddle point problems of the form (2.1) arise in many applications. For example,
such systems must be solved for finite element Lagrange multiplier approximations
to Dirichlet and interface problems [2,3], velocity-pressure formulations of the equa-
tions of Stokes and elasticity [10], and mixed finite element methods [15].

Applying block Gaussian elimination to (2.1) implies that the solution of (2.1)
satisfies

(2.3) (3 B*f—ls) ()15) - (B*A“{f—g)'
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Thus, (2.1) is solvable if and only if B*A~1B is invertible (A, B and B* need not
be bounded). But B*A~1B is symmetric and non-negative. Hence, B*A~!B is
solvable if and only if it is definite. A straightforward computation gives °

Bu,0)?
2.4 B*A~'Bu,u) = su (Bu,0)”
(24) ( )= su “a00)

and hence solvability of (2.1) will follow if we can verify

(B“’o)2 2
5 >
(2.5) :Eupl (40,0) = co ||ull

holds for some positive constant co. Inequality (2.5) is equivalent to the classical
L-B-B (Ladyzhenskaya-Babuska-Brezzi) condition. In addition to being a sufficient
condition for the solvability of (2.1), the constant ¢o in (2.5) will be an ingredi-
ent in determining convergence rates for the iterative methods to be subsequently
discussed.

By (2.3), we see that the solution of (2.1) can be computed by by first solving

(2.6) B*A™'BY =B*A™'f ¢

and then back solving (2.3) for X, i.e. X = A~(f — BY). For our applications,
B* A~1B is a full matrix and expensive to compute. One alternative is to iteratively
solve (2.6), e.g. apply conjugate gradient iteration. The rate of convergence for
this iteration is related to the condition number K of B*A~!B. From the above
discussion, we clearly have that K < ¢1/co where ¢o satisfies (2.5) and ¢; satisfies
the reverse inequality,

(Bu,0)?
2.7 sup ~——+
(2.7) e (A0,0)

One gets a rapidly convergent algorithm for the computation of Y if the condition
number K is not too large. This is the first iterative technique for solving (2.1) to
be considered. .

One problem with the iterative technique just developed is that it requires the
evaluation of the action of A~! at each step in the iteration. In many applicat10n§,
the action of A~! is more expensive to compute than that of a suitable pIECO{idl-
tioner. The next technique was developed and analysed in [4] and le-ac-ls to a rapxd}:,lr
convergent algorithm for solving (2.1) which utilizes the preconditioner for A
without requiring the computation of the action of A7L )

Let Ag be a good preconditioner for A~1. This means that the evalua.titfn of
the action of A5! is much more economical than that of A™! and that Ap satisfies
inequalities of the form

<erllulf®.

ao(Av,v) < (Aov,v) < a1(Adv,v)  for allve H!
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with a1/ap not too large. By scaling A1, we may assume that a; < 1. Again,
applying block matrix manipulations to (2.1) gives

0.8 AGLA AjlB X\ _ ALf
(2.8) B*AFYA—A;) B*A;'BJ)\Y ) T\ B*A3'f -g¢

which we rewrite
-~ (X .
(2.9) i ( Y) =7

with the obvious definitions of M and f . It is straightforward to see that Misa
symmetric operator in the inner product

(2.10) [(g) , (V)‘;)] — (A - AQ)U,W) + (V, X).

Moreover, it was shown in [4] that Mis positive definite in this inner product and
is well conditioned provided that ¢1/co and oy /ao are not too large. The second
iterative technique for solving (2.1) applies conjugate gradient in the [-,:] inner
product to the reformulated (well conditioned) problem (2.8).

3. The model Stokes problem. In this section, we describe the model Stokes
problem and its finite element discretization. Let (! be a domain in N dimensional
Euclidean space for N = 2 or N = 3. The velocity-pressure formulation of the
steady-state Stokes problem is: Find u and P satisfying

—Au—-VP=Fin(Q,
V:u=0in1{],
(3.1) u =0on o0,

| P-o.
Q

Here, u is a vector valued function defined on {1 and P is a scale valued function
defined on ). The first equation is, of course, a vector equality at each z € (? and
A denotes the componentwise Laplace operator.

We restrict ourselves to the model problem (3.1) for simplicity. Applications to
problems with variable coefficients and the equations of linear elasticity are similar.

We consider a weak formulation of problem (3.1). Let (-,-) denote the LZ((2)
inner product and ||-|| the denote the corresponding norm applied either to scalar
or vector functions. Let H}(Q) be the Sobolev space of functions defined on Q which
vanish (in an appropriate sense) on 81} and which along with their first derivatives
are square integrable on (1. Define H = Hg(Q) x Hj () and let ||-]|, denote the
corresponding norm. Let II = L%(f1) and I1/1 denote the functions in II with zero
mean value on {1. Multiplying (3.1) by functions in H and IT and integrating by
parts when appropriate, it is easy to see that the solution (u, P) satisfies

D(u,v)+ (P,V:-v)=(F,v) forallveH,

3.2
(3.2) (V-u,q)=0 forallgeII/1.
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Here, D is the Dirichlet form defined by

N
D(w,v) = Z/;ZVw,- - Vv;dz.
i=1

Clearly, (3.2) is of the form of (2.1). The corresponding operator A is unbounded
but has a bounded inverse. Moreover, it is well known that the corresponding
inf-sup condition:

(p,v . 9)

2
(3.3) sup > CollplI? for all p € II/1

ocH A(0,0)

holds for some positive constant Cy. It then follows that there is a unique solution
(o, P) in H x II/1 to (3.2).

To approximately solve (3.2), we introduce a collection of pairs of approximation
subspaces Hy C H and II; C II indexed by h in the interval 0 < A < 1. We will
assume that the inf-sup condition holds for the pair of spaces; i.e. we assume that
there is a constant ¢g which does not depend upon h such that

,V -6)?
(3.4) Sli]_; Qf(ﬁ))_ > o |l for all p € II,/1.
151 = 8 ?

Many subspace pairs satisfying (3.4) have been studied and their approximation
properties are well known [10,14,16].

The approximations to the functions (u, P) are defined by replacing the spaces
in (3.2) by their discrete counterparts. Specifically, the approximations are defined
as the functions u;, € Hy, and P, € I, /1 satisfying

D(up,v) + (P, V-v) = (F,v) forallveH,,
(35) (V-up,q)=0  forallgelln/l.

Existence and uniqueness for the solution of (3.5) follows from (3.4) and the discus-
sion in Section 2.

We conclude this section with an example of a pair of approximation subspaces.
For simplicity of exposition, we shall only describe these spaces when {1 is the unit
square. Generalizations to certain more complex domains are possible.

Let » > 0 be given. We start by breaking the square into 2n X 2n subsquares
and define h = 1/2n (see Figure 3.1). Let z; =th and y; = jhfori,j=1,...,2n.
We partition the subsquares into pairs of triangles using one of the subsquares
diagonals (for example, the diagonal going from the bottom right corner to izhe
upper left corner of the subsquare). Let Hj be the collection of functions which
vanish on the boundary of the square and are piecewise linear and continuous on
this triangulation. The subspace Hj, is defined to be Hy X Hp.
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Figure 3.1: The triangular mesh.

To define the space I}, we first consider the space f[h which is defined to be the
space of functions which are piecewise constant on the subsquares (see Figure 3.2).
It is interesting to note [12] that the subspace pair {Hp,1I5/1} is not stable in L2,
i.e. the inf-sup condition fails to hold for the subspace pair. To get a stable pair,
we shall consider a somewhat smaller subspace of fIh. Let 0y for k0 =1,...,2n
be the function which is one on the subsquare [zx_1, 7] X [y1—1,¥1] and vanishes

elsewhere. We define the functions ¢; ; € I}, for 4,5 = 1,... ,n, by (see also, Figure
3.2)

(3.6) Gij = 02i—1,2j—1 — 02i,2j—1 — O2i_1,25 + 02i 25.

We then define II;, by

Iy, = {Q € Mx|(Q, ¢i;) =0 for i, = 1,... ,n}.

An estimate of the form of (3.4) holds with ¢o independent of h for the subspace
pair {Hp, 11} [12]. Furthermore, the exclusion of the functions of the form (3.6)
does not result in a change in the order of approximation for the space (we obviously
still have the subspace of constants on the mesh of size 2h).

REMARK: The exclusion of functions of the form (3.6) poses no difficulty in prac-
tice. In fact, it only affects the definition of the corresponding B* in a trivial way.
By definition, B*v = Q where Q € I, solves

(@,R)=(V:v,R) forall ReIl;/1.

It is easy to see that Q is the L? orthogonal projection (into IT; /1) of the function
@ € I, satisfying

(3.7) (Q,R)=(V-v,R) forall Re€ll,.
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Figure 3.2. The rectangular mesh used for ﬁh;
the support (shaded) and values for a typical ¢;;.

This projection is a trivial local operation since the supports of the functions {¢:;}

are disjoint. Furthermore, the computation of é is straightforward since the gram
matrix for (3.7) is diagonal (with the obvious choice of basis).

4. The first domain decomposition technique for Stokes. We consider
the direct application of the second iterative technique of Section 2 to the saddle
point problem corresponding to the Stokes discretization. As we shall see, all that
is required is effective preconditioners for second order problems. Thus, domain
decomposition algorithms for Stokes result from standard domain decomposition
preconditioners for second order problems.

Let us introduce some operator notation. Let A : Hy — Hj, be defined by

(4.1) (Av,w) = D(v,w)  forallw € Hj.

Clearly, (4.1) defines a symmetric positive definite operator on Hjy. We define
B:1,/1— Hy by

(Bp,w) = (p,V - W) for all w € H,.
Its adjoint, B* : Hj, + 113 /1 is then defined by
(B*w,q) = (V-w,q) forall g€ lx/1,

and is nothing more than the divergence followed by L? projection into II; /1. The
discrete solution pair (uy, Py) satisfies (2.1).
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The operator A involves two componentwise operators corresponding to the stan-
dard discrete Dirichlet operator on Hj. Comnsequently, it can be preconditioned
componeniwise by domain decomposition preconditioners for the Dirichlet prob-
lem. Results concerning the development of domain decomposition preconditioners
for the general second order problems have been given in [5,6,7,8,9]. One example,
described in [6], develops a domain decomposition preconditioner for the second
order problem in R? and gives rise to a problem which, even though not well con-
ditioned, has a condition number growth bounded by ¢(1 + In®(d/h)). Here, d is
roughly the size of the subdomains. In this case, the condition number of (2.8) also
will grow like ¢(1 + In*(d/h)).

5. A direct domain decomposition approach. In this section, we shall directly
apply domain decomposition to the Stokes problem. We shall develop algorithms
for solving the discrete system (3.5), which only require the solution of smaller
discrete Stokes systems on the subdomains and some type of reduced system. In
this case, the reduced system will involve the values of 1 on the boundary of the
subdomains and the mean value of the pressure on the subdomains.

We assume that 2 has been partitioned into a number of subdomains & = U, ;.
We require that the boundary of the subdomains (I' = U2 ,80;) align with the mesh
in Hj and II;. We then define

(5.1) Hj, = {¢ € Hy|support(¢) C 0}
and
(5.2) i = {¢ € T |support(4) C Q;}.

We shall assume that the inf-sup condition holds for each subspace pair, i.e.

v.0)2 )
(5.3) sup % > ¢ “q“g' for all g € I} /1
OEH;‘ ( ’ )

and that the function which is one on {); and vanishes in the remainder of {1 is an
element in II,. Note that, since the functions in Hj, are continuous, the subspace
pair (Hj},II%) can be used to approximate the Stokes problem with zero boundary
conditions on the subdomains.

Because of (5.3), local Stokes problems on the subdomains are solvable. The first
step is to solve these local problems and reduce the problem to one which implicitly
involves fewer degrees of freedom. To do this, we let (v%, Q%) be the solution of

AV} W) + (@4, V-w) = (F,w)  forallw € HJ,

(5.4) . .
(V-vi,q) =0  forallgeI}/1.

We set v, = Y vi, Qn = 3 Q% and define wj, = up — v, and R, = P, — Qh.
Then, wj, and Rj, satisfy
A(wWp,v) + (Bs,V-v)=F(v) forallveH,,

(5.5) (V-Wh,q) =Glg) forall g€ II;/1.
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The functionals F and G vanish for functions in H}l and II}; /1 respectively. Thus,
the functions wj and Ry lie in a subspace of Hj, X II,/1 with significantly lower
dimension. We shall parameterize this subspace and then derive equations for the
parameters corresponding to the solution wj and Rj.

We shall parameterize the solution (wy, Ry) in terms of parameters o € H(T)
and A € Il where

H(r) = {¢II‘1¢ S Hh}

and
Iy = {¢ € I1/1 such that ¢ is constant on (1; for each i}.

To do this, we define the operators S : H(T') s II; and T : H(T') — H), satisfying
the following:

(1) S(M)|a; € TM}/1,

@) T = _

(3) D(T(1),8) +(5(1),V-4) =0 forall ¢ € H},

(4) (V- T(n),q) =0 forallgell}/1.
It is not difficult to show that the above conditions uniquely define S and T. More-
over, if 0 = wy|r and A € Il is the function which has the same mean values on
the subdomains as Ry then

(5.8) wp, = T (o) and Ry, = S(o) + A

Thus, (5.6) gives a parameterization of w;, and R; in terms of the parameters
(0,2) in H(T') x Iy. Note that given a value of v, the evaluation of S(v) and T(v)
essentially only involves the solution of discrete Stokes problems on the subdomains.

We next give equations for the determination of o and A satisfying (5.6). To do
this, we define a quadratic form E : (H(T) x IIp)? — R! given by

(5 7) E((’Ylv‘sl)’ ('72’62)) = D(T('YI)’T(’h)) + (615V ' T(’h))
) + (V- T (1), 62).

It is not difficult to see that, given local bases, {¢:} for H(T) and {;} for Ilo, we

can compute the data F satisfying

(5.8) E((0, ), (61, %)) = F($i>%5)

from the functionals F and G in (5.5). This can be carried out only using a f-ew
local operations per basis function, without knowing o, A and without computing
T(¢:). o _

From the definition of E, it is clear that (5.8) givesrise o a symmetric indefinite
system of the form (2.1) which can be used to compute 0, A satisfying (5.6). The
form D(T(v1),T(7z)) corresponds to the operator A in (2.1). The form (-51,V. .
T{(~2)) corresponds to B, etc. Stability properties for the above system are given in
the following theorem which will be proven in a subsequent paper under reasonable
assumptions on the domain subdivision.
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THEOREM. There are positive constants 0o, 0,¢€0,¢1 , independent of d and h,
such that

69 DTE),TE) <Y i aon, < @ DITC)LTR),

i=1
and

, 6Y-TR)P _ o

where ||, /, 5, denotes the Sobolev semi-norm of order 1/2 on d%; (c.f. [13]).

Inequalities (5.10) imply that the ‘inf-sup’ condition corresponding to form F on
the subspace pair (H(T), Ily) is well conditioned independently of h. The boundary
form D(T'(v),T(~)) is not well conditioned but is equivalent to a sum of seminorms
on the boundaries of the subdomains. The corresponding form,

m
<< 71,72 12 Z < 71,72 >1/2,0Q;

=1

has been well studied in the development of domain decomposition preconditioners
for second order problems. In fact, each domain decomposition technique developed
in [1,5,6,7,8,9] gives rise to a computationally effective domain decomposition pre-
conditioner for << -, >>; /2- Thus, we can solve (5.8) by using the second jterative
technique of Section 2, with preconditioner Ao corresponding componentwise to the
boundary part of a second order method developed in [1,5,6,7,8,9]. For example,
we can use the technique presented in [6]. This means the preconditioner for the
boundary velocities will involve inverting the lé/ z operator on the edge segments
and the solution of a coarse grid problem with the number of unknowns equal to
the number of ‘cross-points’ in the subdomain subdivision. The resulting symmetric
positive definite reformulation of (5.8) will have a condition number bounded by
C(1 + In%(d/h)).

It is possible to implement the above technique in such a way that each Stokes
subdomain problem need be solved only once per step in the iterative algorithm for
the solution of 0, A\. Once these parameters are solved to satisfactory accuracy, wp,
and R" can be computed with one more set of subdomain solves.

6. Conclusion. We have provided two domain decomposition techniques for solv-
ing Stokes problems. The technique of Section 4 applies an algebraic reformulation
to the discrete Stokes equations and consequently can utilizes any available do-
main decomposition preconditioner for the second order problem. The technique of
Section 5 applies domain decomposition directly to the discrete Stokes equations.
Although the technique of Section 5 is theoretically interesting, we feel that the
one described in Section 4 will probably lead to the most flexible and computation-
ally effective algorithms. The first reason for this is that, with the second order
preconditioners, one has a much greater flexibility in the form of the subproblems
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which are to be solved. In contrast, since the method of Section 5 is a dimension
reduction technique, the given Stokes problem must be solved on the subdomains.
In addition, there are a large number of techniques available for developing ‘fast-
solvers’ for second order problems while there are few (if any) fast Stokes-solvers
available.
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