CHAPTER 1

Variational Formulation and Algorithm for Trace Operator in
Domain Decomposition Calculations

J. F. Bourgat*
Roland Glowinski®
Patrick Le Tallectt
Marina Vidrascu*

Abstract. A new preconditioning strategy is proposed
for solving elliptic problems via domain decomposition
techniques. This preconditioner acts on the Steklov-
Poincare’s operator (represented after discretization by
the so-called Schur complement matrix) through the addition
of a trace averaging and of the solution of a Neumann prob-
lem per subdomain. Such a strategy can operate on arbitrary
geometries and unstructured meshes, gives the same role to
each subdomain and can be written in a variational form.
Two or three-dimensional numerical results are given to
illustrate the efficiency of this strategy.

1. Introduction. The idea of reducing the solution of
an elliptic problem set on a domain Q to the parallel solu-
tion of problems of same type set on subdomains Q, of Q is
ancient ([1],[21,[3]), but it gets new attention with the
present development of parallel computers.

These domain decomposition methods are based on simple
and intuitive ideas. Nevertheless, their numerical efficien-
cy is very sensitive to the choice of the computational
variables, that is to preconditioning. The approach propo-
sed in this paper uses an H'norm on each subdomain (§3). On
the product of the associated spaces, the problem takes a
classical variational form and is associated to an operator
which involves on each subdomain the successive solution of
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a Dirichlet and of a Neumann problem (§4). This formulation
is then solved by a conjugate gradient algorithm (§5).

Numerical results will assert the efficiency of our
approach (§6): on significative two dimensional situations
(irregular mesh, discontinuous coefficients, crossed inter-
faces), the algorithm has converged in very few iterations.
Similarly, convergence occured in 14 iterations in the so-
lution of a Poisson problem set on a complex three-dimen-
sional geometry.

It should be also observed that the present approach
is the equivalent in a standard variational form (and using
standard discretization techniques) of the mixed variatio-
nal approach described in [4] within a mixed finite element
framework.

2. A Simplified Model Problem. We first describe our
approach on the following model problem:

{ - AOu = f on Q,

u =0 on 30 ,

the domain Q being decomposed as indicated in the figure
below.

Our goal is to solve the above problem only on the subdo-
mains Q.. If we knew the value A of the solution u on the
interface S, then the parallel solution of

- &u; = f on @,
u; = A on 8,
u; =00naQﬂaﬂi,

1

on Q, and 2, will achieve this goal. The problem is thus

ﬂs

p 51 Q,

Figure 1: the model problem
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reduced to the computation of X which can be done by the
fol%owing gradient algorithm operating on the trace space
Hl/2 (S5):

00

data: XA given in H}$2(S):

computation of the solution: for any i, solve the Dirichlet
problem:

- Ay; = f on Ry,
u; =X on S,

u, = 0 on 9Q N 8Q; ;

computation of the gradient: for any i, solve the Neumann
problem (preconditioner)

- Ay, = 0 on Q,

1

awi 1 {9y ou,
— == |z=— + =—| on s,
an‘. 2 an1 8n2

Yy, =0 on 3q N agi;

updating: set X = X - p( ¥, + ¥,) and reiterate .

The domain decomposition method that we will now introduce
is simply a generalization of this algorithm.

3. The Original Problem. Consider the domain £, parti-
tioned into subdomains @, as indicated on Figure 2.

3]
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Figure 2: definition of the subdomains and boundaries.
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Let us introduce the boundaries (see Figure 2)

aQ = 8, U aq,,
r, =49, N oo ,
s; = 8Q; - I';- interior( 89, N 0%;),

together with the spaces

v {v € HI(Q ;RP), Vv

I

0 on 890},

v, = {v € H' (2, ;RP), v

1

I

0 on Fi},
Vo;= {v € H' (2;RP), v = 0 on I}V S; }-

As in [1], the pairing gi(u,v) will denote a given scalar
product on V;, X will be the product of the spaces V; and Y
will represent the space of traces on S of functions of V.
In addition, Tr;‘(A) will represent any element 2z of V,
whose trace on S; is equal to A. Finally, we introduce the
elliptic form

aum avk

a; (u,v) =JQiAmnkl(X) ox, 0w

Under these notations, the problem to solve writes

Find u € V such that

2: a; (u,v) =<f,v>, VvEV,
i

4. Domain Decomposition of the Original Problem.
4.1 Introduction of an operator of Steklov-Poincaré’s type.
We first define a trace operator «o; from V, into ¥
satisfying

(c) 22 o, (V) =VTr(v), YV v € V.
i

For example, at the continuous level, we can set o, (v) =
Tr(v)/2. A different definition should be used at the fini-
te element level in order for condition (C) to be still

satisfied after discretization. A possible choice will be
described in §6.

For w = {w;} € X = IT V;, we then set
i
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A= %: o, (W),

solve the Dirichlet problems
a; (z;,v) =0, VvEYV,,

z, € V;, z;

b ; = A on 8;,

define the usual Steklov-Poincare’s operator by

< 82, A'> =Z a; (z;,Te;' (A1) , VY ArEY,

and solve the Neumann problens

a; (¥; ,v) =<8 , a;v> , VVvEY,

¥, €V, .

our final operator is now defined from X into itself by
f(w) = () .

Remark 4.1: In computing aj(zj,Tr}‘(A’)), the choice of the

representative element of 7r;'is of no importance since, by
construction, z; is orthogonal to any component of this
element in Ker(Tr;).

4.2 Analysis of #. Assuming a; to be symmetric positive on
V;, we introduce the operator K; defined on V; by

a; (¥;u,Kv) = a; (u,v) , Vuvev,

and the operator B defined on X by B{w;} = {K;2;} . By
construction, we have:

(#(w) ,w’)

i

Z a; (¥ ,w; ) =Z < 8x , o w; >
1

1
=< 8\ , X> = > a; (z; ,Tr;' (A7)
3

i

Z a; (z;,2;7) = (B(w),B(w")).
J

Therefore, # is a self-adjoint positive operator from X in-
to itself, and can be decomposed into the product # = B'B.
Iin particular, standard conjugate gradient algorithms
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operating on # will converge in Im(B') with rate

1 - cond(B)
1 + cond(B)

Moreover, from the above relations, we have
(Fw,w?) = < 88X , A'>.

In other words, # is a preconditioned version of the
Steklov-Poincare’s operator 8. Such operators have been
extensively studied in [5], [6], [7], [8]. Compared to
them, our operator # adds a Neumann problem associated to
the boundary condition

a‘l’i z sz
o, - %5 an,
ni j ]’1j

which sends the dual of X back in X. The introduction of
this preconditioner together with the averaging «; is the
main originality of the present approach.

Remark 4.2: The degrees of freedom in the definition of the
operator # are the choice of the trace averaging «; and of

the scalar product Si(u,v). The choice of «; has already
been discussed. As for the scalar product, the best possib-
le choice would be:

( K;= Id), because then the Neumann step corresponds to the
exact inverse of the Steklov-Poincaré’s operator introduced
in the Dirichlet part. With this choice we can expect # to
have a very small condition number. Unfortunately, if I, is
empty, a; (u,v) does not define a scalar product on V;. In
that situation, the best choice is then

K

Si(u,v) = a; (u,v) + 2: <u,v,, > <v,v,, >
k=1

with {vi} a sequence of elements of V; adequately chosen.
At the discrete level, this means adding positive diagonal
terms to the matrix associated to a; (u,v).

4.3 Variational writing in X. To define the right hand side
of our new problem, we solve the Dirichlet problems

a; (2},v) = <£,v> , Vv EYV,,

0
z; € Voo
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and the Neumann problems

a, (¥?,v) = ?_. a; (23, Tr;'(o;v))=<£,Tx; (o, v)>, VYV VEY; ,
0

In that framework, the problem to solve can be written un-
der the equivalent form

(P) Solve #(w) = - {w?} in Im(8") ,

within the identification u = z; + z¢ on Q.

4.4 Equivalence proof. ILet w be the solution of problem
(P), solution which uniquely exists from Lax~-Milgram’s lem-
ma. Let u be the field given by

u=2z + 2! on@.
By construction the traces of z; and z? are compatible on
the interfaces S; and are equal to zero on the boundaries
I'; . Thus u belongs to V.

Now, 1let v be any element of V. On each subdomain, Vv
can be decomposed into

v=v; + Tr;' (Tr v) with v; = v - Tr; ' (Tr v) € Vy; .

Therefore, by construction of u, z; and z?, we have

2: aj(u,v)
J

il

0 -1
2: a; (z; + zj, v; + Tr; {(Tr v))

Z<fv>+Za (z; + 2}, Tr;' (Tr v))

= E: <E,v;> + 5: a; (z; + 29, Tr}’(g:aiv))
i

E: <f,v;> + E:E: a; (z; + z%, Tr}‘(aiv))
= EE <E,v;> + E: a; (b, + 4}, V)

+ ZZ <t, Trj'(;v)>

I

E: <f£,v, + Tr}‘(Tr v)> + > a, (v, + ¥?, v).
3 i
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But, by construction of w, we have V.= - w? and thus we
finally get

E: a; (u,v) = E: <f£,v;+ Tr}’(Tr v)> = <f,v> , ¥v € V,
J ]
In other words, the solution u that we have constructed is

the unique solution of our original problem.

5. BSolution Algorithm. The solution algorithm that we
propose is a standard conjugate gradient method ([9]) ap-
plied to the inversion of # on Im(B'). It writes

INITIALIZATION

For ) given in Y, solve the Dirichlet problems:

a; (v; o,v) = <f,v>, Vv EV,,
u o =X on §;,

u; € V1

compute L; (V) = 2:(aj(uj,Tr}1(aiv)) - <f,Tr31(aiv)>) ,
J
V v e N

solve the Neumann problens:

(P g0 V) =Ly (V), VVEV,

®i,0 €V i

- <
compute 4, =iz a; (P 4?5 o) =fa L (@5 )¢

1]
®
3

LOOP ON n: for n =0 until satisfied do

computation of Aw

compute A = E: o, W

i i,n’

solve the Dirichlet problems:

a; (z;,v) =0, VV‘EVOi,
z; =X on §;,

1
z; € Vi
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compute L; (V) = 2:(aj(zj,Tr}1(aiv))) , VVEV,;
J

solve the Neumann problems:

ai(‘l’ir V) =Li(V),VV€Vi,

Y. € V..
descent
set r, =.Z aj(wj ne¥;) = Z L; (Wj ,n
J J
set P, = dh/rh;
set:
[ ui,n-i-‘l =ui,n _pn 25
¢ = @, - P, ¥,

i,n+1 i.,n

lR;,,,H (v) = Ri,,,'(V) - p, L; (V).

computation of the new descent direction

compute d,, , =.Z 3 (05 1@, ne1) = SRy 0 (95 00)
J J
or alternatively 4 ,,=d - p_ ;: L (@ |+ @ neq)i
J
stop if |4,,,/d, < 10°%;
_ dn+1
set W; .4 T @ ,na1 3T ¥iLn -

n

Remark 5.1: Observe that the linear forms R; (v) and L; (v)
only operate on the traces on S; of the functions v. This
simplifies their computation. Moreover, this means that, in
the algorithm, we just have to compute and store the traces
on S; of the functions ¢, and w;.

Remark 5.2: The above algorithm is modular and, since it
does not involve any relaxation parameter, is completely
transparent +to the user. Moreover, it has a high degree of
parallelism: most of the CPU is devoted to the solution on
each subdomain of independent Dirichlet and Neumann prob-
lems. The only "rendez-vous" are the trace averaging opera-
tions which occur twice per iteration.
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Our numerical results deal with

Numerical Results.
the Laplace operator for which we have

6.

Q‘Bi Vu.Vv .

a; (u,v)
are approximated by finite elements of Pi1-

; are defined at each

The trace operators o,

spaces V;
node of the interface by the formula

Lagrange type.

The

)

j(ok,wk))} v (M,

<
)/ (&
J

a, (¢ ,9,

f
l

(@, (V) (M) =

a multielement, multi-

the weighting function associated to the
work.

The three-dimensional coding was done within the

MODULEF finite element 1library in
problem and multitasking frame

where ¢, denotes

node M .

Figure 3

first computed geometry is described on Fi

internal mesh
tices, the external

vertices.

gure 3.
1 and in 3 iterations

problem, the algorithm has

) had 1440 triangles and 780
iterations for B, =8,

2

(on Q,) had 1222 triangles and 669 ver-

mesh (on @
For the pure Dirichlet

The
converged in 4

The

for B1=0.1, B,=1.
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Figure 4: the T shaped domain

Figure 5: the "square cross" rectangle

The second test considers a pure Dirichlgt problem set
on the T-shaped domain treated in [10]. On this example, the
algorithm has converged in 2 iterations.

The domain for the third example is the rectangle
0=10,4[x]0,2{ which is divided in 4 subdomains with
crossing interfaces, as indicated on Figure 5. For both
choices g = =g =8, =1 and B,=1.,8,=10.,8,=0.1,8,=0.01, the
algorithm has converged in 5 iterations in the case of pure
Dirichlet boundary conditions.
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Figure 6: the "oblique cross" rectangle

“

>
rarar
e

”
=

Figure 7: the "checkaboard" domain
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The fourth domain that we have treated is the unit
square divided as indicated in Figure 6. Here both the pure
Dirichlet and the pure Neumann problem were considered,
with B,= 10°3 if ¥ - X, < 0and ;=1 if not . For the
Dirichlet (resp. Neumann) problem, convergence was reached
after 3 (resp. 8) iterations in the case of 4 subdomains
and after 6 (resp. 20) iterations in the case of 8 subdo-
mains. Taking 200 triangles per subdomain instead of 100
did not change the number of required iterations.

The next domain +that we have treated has 100 subdo-
mains, 20000 triangles and 10201 nodes. On this domain,
represented in Figure 7, we have treated both the pure
Dirichlet and the pure Neumann problem. For B;=1 everywhere
convergence was reached after 40 iterations for the
Dirichlet problem and after 74 iterations for the Neumann
problem. For g,=1 in the wide strips and B;= 1073 else-
where, the Dirichlet (resp. Neumann) problem did require 54
(resp. 173) iterations to converge. Observe that there were
1701 (resp. 1737) nodes on the interface for the Dirichlet
(resp. Neumann) problem.

Figure 8: three-dimensional geometry
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Our last numerical example deals with the complex
three-dimensional geometry of Figure 8. The domain here is
divided in 4, contains 937 nodes, with 83 nodes at the
interfaces. Dirichlet boundary conditions were imposed only
on the internal hole. Convergence occured after 14
iterations.

On all our numerical tests, we have observed that the
number of iterations before convergence was independent of:
(i) the initial wvalue of the trace A,

(ii) the values of the right hand-side,
(iii) the discretization step.

7. Conclusion. In conclusion, all these numerical
tests assess the validity of the conjugate gradient
algorithm when operating on the product of traces, at least
within the framework of a scalar elliptic operator and of a
moderate number of subdomains. Corners in the decomposition
can be handled easily provided that the averaging trace o,
be properly defined and be present in the Neumann step.
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