CHAPTER 20

Wavefront Elimination and Renormalization®
\Wei Pai Tang®

Abstract. Recently, a new class of opiimal fast solver for the model problem ~wavefront elimina-
tion (Wg )-has been developed using template operators. The complexity of this type of new algorithms
is only one fraction of the cost of the multigrid method applied to the same problem. These algorithms
have potential for an efficient parallel implementation and also as preconditioning operators for general
elliptic problems.

A more interesting fact is that this algorithm shows some conceptual connection with two new
theories — renormalization in physics and fractals in mathematics. In this paper, we will demonstrate
these rather interesting relations between the wavefront elimination, the renormalization theory and
fractals.

Key Words. Wavefront elimination (W), renormalization, fractal, template operator (70), fast
solver.

1. Introduction. The study of fast solvers is always an important part of re-
search in domain decomposition [5]. Using template operator (70) - a new structure
of the linear operator in finite dimensional space [6] - some optimal fast solvers are pre-
sented here. This result has answered an open question, namely, can a direct approach
for solving the model problem achieve an optimal complexity? In particular, the com-
plexity of our new algorithm, called wavefront elimination (W), is even better than
the complexity of the multi-grid method for solving the same problem. Different from
a traditional approach, there is more than one discrete T0 which is used on the same
grid point. The combination of these different T0’s makes the sparsity of the conse-
quent T0’s during the W process on the same grid point possible. A more interesting
fact is that this new algorithm exhibits some amusing conceptual relationships with
two new important theories - renormalization in physics and fractals in mathematics.
Renormalization theory was discovered by K.G. Wilson at Cornell[7]. The basic idea
of this theory can be understood as a successive thinning out of the degree of freedom
in the partition function. The N-particle problem is transformed into an N'-particle
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problem with N' < N, whereby the temperature T and the magnetic field H may also
have to be renormalized. The wavefront elimination process can be viewed as a renor-
malization process from different scales. During the elimination process, the template
operators display a sequence of self-similar structure on the different scales. In the
backward solution process of the W¢ , we see a procedure surprisingly similar to the
recursively detailing a fractal. These interesting facts contribute another convincing
example of a fundamental principle which organizes a whole universe. As we know this
principle has been fascinatingly demonstrated by fractal geometry and renormalization
theory. As we will see in this paper this principle has also provided us with guidance
for designing a whole new class of algorithm, for the numerical solution of P.D.E’s.

2. Template Operators. In [6] the template operator was first introduced for
identifying the problems for which the Schwarz Splittings are most suitable. In the
same paper it was also successfully applied to obtain a “good” splitting when the
Schwarz approach is used. The unique features of this structure are as follows. First,
in a template operator the artificial sequential constraints in the matrix structure are
removed. The original topological frame of the continuous problem from which the
discrete operator is derived is well preserved. Second, in particular, the locality of the
operator and the proximity of the variables are also maintained in this new structure.
Therefore, many physical phenomena which are related to the topology of the solution
region can be easily presented in this form. That is the key to the successful application
of T0 in the study of Schwarz Splittings. A more important feature is that the To
provides us a “graphical structure” to think in pictures.

In graphical representation, natural processes can be comprehended
in their full complexity by intuition. New ideas and associations are
stimulated, and the creative potential of all those who think in pictures
s awakened.
—The Beauty of Fractals
In this paper, we will show how the TQ can provide us a “graphical” structure for
designing a new class of fast solver.

In [6] the template operator is presented as a structure which is mathematically
equivalent to the matrix form, in other words, we can find a one-to-one mapping be-
tween a template operator and a matrix. Here a similar idea is used, but the formality
is different though we can present the following algorithm in terms of the form we used
in [6] or even in terms of matrices. In order to display the interesting connection be-
tween our fast algorithm and its physical interpretations, we will adapt the definition
of the template operator in this paper for this new context!.

Consider the Dirichlet problem

{ Au(z,y) = f(z,y)
u(m: y)lrn = g(:!:, y)

where (2 is a unit square in the (z, y) plane. Let us lay an equally spaced mesh on this
square and let the mesh size be h = # . Here we always assume n = 2L — 1. The
following figure shows a grid with n = 23 — 1.

! Since we are mainly discussing the Dirichlet problem of the 2-dimensional Poisson equation on
a unif square region in this paper, the pictures of templates are mostly demonstrated on a square
region with equally spaced mesh. But the same idea can be directly applied to any irregular region
and irregular mesh such as finite element triangulations (see [6]).
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The traditional numerical technique for this problem is first to discretize the dif-
ferential operator on every interior node, then to form a matrix equation and finally
to solve this matrix equation by some efficient algorithm. Here a different approach
is used. There is no explicit system of linear equations involved. Each node can have
as many operators as needed. These operators all represent some local physical prin-
ciples under some conditions. In order to preserve the locality of these operators and
the topological relations of the variables, a new structure of the discrete operators is
introduced as follows: we define a template T as:

bo,o bo,1 bo,2 vee bom bo,n+1
bigo O11 O12 -+ O1n  bingp
b2,0 Oz1 Oz2 -+ Ozn  bani1

bn,O on,l On,2 st On,n bn,n+1
br+1,0 Bnr11 bnerz v bpiin bptimsr

where b;; represent the boundary nodes while O;; represent the interior nodes. A
template vector

90,0 go,1 go,2 *** gon go,n+1
g1,0 z11 x1,2 Tt Tin 91,n+1

gno Tn,1 Ip,2 et Tpn Inn+l
Irn+1,0 Intil In+12 *°° Gntln Inilntl

can be defined on this template, where g;; are the boundary values on the boundary
nodes b;;, which are known, and z;; are the values of the unknown u(z,y) of the
continuous problem at node O;; 2,
Given a finite difference approximation, for example a five-point stencil, a template
operator Ay for node O;; can be defined as: .
J
rQ .- 0 O O --- 07

L]0 0 -1 0 ---0
Ay=350 -1 4 -1 --- 0
0 --- 0 -1 0 --- 0

0 .- 0 0 O ---0

2 For simplicity, we only define one function value on each node. There is no difficulty in generalizing
this definition to include the cases where both the function value and its derivatives are needed on each
node. In [6], for a generalized version of T0 even a state vector can be defined on each node.

We will also only discuss the finite difference approximation in this paper for the same reason.
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wherei=1,-- n; §=1,--- n and 4 is located in position (1, 7). Note that the values
of z;; in the template vector U are sampled from the true solution of the continuous
Poisson equation.

The operation of A;; on U is to multiply the elements of A;; with the corresponding
elements of U/, and the summation of these products is the result of this operation. Thus
we have

1
Aijo U = ggl=mi-1j = Tt = Tij-1 = Tigsr + 42i]-

The Poisson operator at O;; can be written in terms of the T0

(1) Ayjo U= fij + mij,

where f;; = f(ih,jh) and r; is the truncation term for the five-point stencil. It is
known that 7;; ~ O(k?).

Since most of the elements in A;; are zeros, a compact notation for A;; is conve-
nient. Let

1 1 0 -1 ©
A(l',j,l,—i)= 2 -1 4 -1
k k 0 -1 O

1,1

denote A;;, where 4, j is the center position of the template operator; 1 denotes the
increment of the indices and ;5 is the constant factor of the operator. Then (1) can be
rewritten as:

0 -1 0

. . 1
A, 4,1,5%) U =m|-1 4 -1 olU
0 -1 o0]..
£,4,1
1
= Zi'(““"'d.:' = Tig1,j — Tij-1 — Tij+1 + 4zi5)
= fij + 7ij

The compact form for the template operator derived from a skewed five point stencil
at node Oyj is:

. . 1 1 -1 0 -1
Ay = AL, 4, 1,——) = 0 4 0 .
2h2 2h?
-1 0 -1

14,1
Then the same Poisson operator at O;; can also be expressed by 5,-,— as:

1
= 57 (~Ti14-1 = Tirri1 — Tio141 ~ Tiragen + daij)

= fij + %

&,‘jOU

where 7;; is the truncation term for the skewed five point stencil at node O;;. Similarly,
we have the template operators derived from a nine-point and a skewed nine-point
stencil at node O;;:

, 1 1 -1 -4 -1
A;j = A’(S,J, l,gﬁ) = gﬁ -4 20 -4
-1 -4 -1

£,5,1
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60 0-1 0 O
0 -4 0 -4 O
20 0 -1
-4 0 -4 O

0o 0 -1 0O

.. 1 1
Aty = A5 L ) = g
5,1

The last two operators have an accuracy of O(h*). Note, if the template operator
derived from the five-point stencil at node O;; uses mesh size 2h, it can be written as

1 ;[ o-1 o
A(,5,2,=5)0U=55 | -1 4 -1
ah @w| o

")j)z

.. 1
A(4,5,2,55)0U = m(“xi—z,j — Titaj — Tij-2 — Tij+2 + 4%i5)
(2) = fij + O[(2h)"]

As we mentioned above, in a traditional approach, only one template operator at
each node is used. But in our wavefront elimination process, more than one, even
several different template operators at each node are used simultaneously. This is one
key difference between the We¢ and conventional methods.

3. Wavefront Eliminations. The influencing and influenced wavefronts for each
node in a template operator are introduced in [6]. These concepts characterize the
propagation of the influences between nodes. Here the concept of wavefronts is used in
a different context, namely to characterize the change of the non-zero pattern during
the elimination process.

The first wavefront of any node O;; in a template operator is defined here as the
set of nodes where the elements of the template operator A;; are non-zero except the
node O;; itself. Since we will use two or even more different template operators at
each node O;;, the wavefront will certainly be referred to the corresponding template
operator at O;;. For example, the first wavefront W;; for Ay is

Wi; 1= {04,j-1,0i+1, Ois1,4; Oi-1,5}5
while the first wavefront ﬁ/‘,-j for Z,',- is

~
Wi = {0i-1,-1,0i-1,j+1, Oit15-1, Oiy1j+1}-

Similarly denote W/; as the wavefront for Al; and W]} for Aj;, where

W'-'J- = W,'j @) ﬁ;,'j,
and
Wl := Wij U {Oi-2,4, Oi+2.,3> Oij+2, Oi-2}-

There are many ways of performing wavefront eliminations. It is actually a whole
class of direct approaches for the numerical solution of elliptic P.D.E’s. To illustrate
the basic idea of the wavefront eliminations let us introduce the simplest version of
wavefront eliminations below. It is easy to see from the following description of the
new algorithms: if we change the combination of the template operators and chose
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the different wavefronts, we may obtain many different algorithms. They all have an
optimal complexity though the constants for each approach will be slightly different.
The simplest case of a wavefront elimination only uses two kinds of template operators
at each node O;;, namely A;; and Ay;.

Let us define the addition A;+A; of two template operators Ay and Az to be a new
template operator such that the elements of A; + Ay are the sum of the corresponding
elements of A; and Aj. Likewise, define the scalar product A be a new template
operator such that the elements of oA are the products of a with the corresponding
elements of A.

One step of the wavefront elimination is to eliminate the non-zero elements of a
template operator, say A;;, by the template operators at the nodes of its first wavefront.
Let

® Aij oU = fij +1j,

4 Ai1j oU = fi1j+ 71y,
(5) Aiy1; o U = figr + fitrys
(8) Ajjr o U =fija+m,
(1 Ajjr1 o U = fiji1 + 741,

where 73,711 ;,¢ - - are the truncation terms.

It is known that 7; ~ O(h%),i,5 = 1,---,n. Then one step of the wavefront
elimination for A;; can be written as

1
Agj +Z(A.'—1,5 + Airri+ Agjo1+ Aijr1)

0 o -1 0 O
1 0 -2 0 -2 O
=m -1 0 12 0 -1
0 -2 0 -2 o

] 0 -1 0 0],.

1,7,1

To simplify the notation, let
1
Wilyi) = w5 + Z(0-15 + thrrg + g1+ vi1),
1
Wolyi;) =wis + Z(ye—1,5-1 + Yitni—1 + Yirni1 + Yic1541)

where y;; is defined on node O;;. Note that y can be a template operator or a grid
function. Denote

6 0 -1 0 o
L 1 0 -2 0 -2 o0
A(°-5)(£,j,1,m)=m -1 0 12 0 -1
0 -2 0 -2 0

0 0 -1 0 0

Then we have

.. 1
Wi(Ay) = AL, 4,1, m)
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If the wavefront elimination is carried out on the equations (3) — (7 ) we will have
wl(A.-,-) olU = W1(f,‘j) + WI(Tij)-

Comparing the non-zero pattern of Wi(A;;) with ﬁ.-j, it is easy to see that in one
more step of elimination the non-zero elements of W;(A;;) at position (i + 1,7+ 1),
({+1,7-1), (6 —1,7+1), ({ — 1,5 — 1) can be annihilated as follows:

[ 00 -1 0 O
. 1 00 00 O
(8) AL (G, 5,1, L) — Ay =gF|-10 40 -1
00 00 O
| 00 -1 0 i
1 [ 0 -1 0
® w4
I - §,4)2
. . 1
(10) = A(i,],z,w)

To summarize the above steps, we have

~ .. 1
Wi(Ay) — Ay = A(hb%w)-

Let 1
Ag) = A, j,2,W),
fl(Jl) = fl'j;
};(.11) = f;ja
Ti(jl) = Tijs
1
@ =) - 17,
iD= Wilmy) - 7.
We have
) 1 0 -1 0
ij (2h)? o -1 o s
1
= m(_zi—z,j = Ziya,j — Tij-2 — Tij+2 + 43:‘.3.)

2 2
— fx‘(j )4 Ti(j)'
Applying a similar procedure to 5;:;, we will have

5,(? = Wy(&ij) — AE?)

Y1
:A(17.712>W)
1.0 -1
=Ll o4 of ,
8% 1 1 0 -1

4.5,2
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and

where

}}.J?) = Wy( jg}) -2

ij

;’:‘(jﬂ") =W, (T'?)) - rs_g?).

This is one complete step of a wavefront elimination. Here a new set of template
operators at node O;; is obtained:

@ 1 o1 0 @, (2
A oU =o—of -1 4 -1 olU=fi? 4.8
2 1) 7
N @2 0 1 o
$,7,2
@ I #2) |, ~2)
AP ou =gE| 04 0O oU=fB+7.
10 -1 .,

The increment of the index in these operators is 2 now. If we recursively proceed with
this process we will obtain

0 -1 o0

Hog =1 — ) ()
ASJ olU —W —1 4 -1 OU_'-fij -]-1‘.-’-,
0 -1 0].. 1
£,7,2
X(8) 1 o 7B 4 ob)
AoV =gmEmE| 04 0 oU=fiy’ +%5.
-1 0 —-11.. ke
1,7,2

Here a sequence of self-similar template operators is generated for the same node
at different stages of the elimination. If we call them W-template operators 3, they
look exactly the same as an ordinary template operator which is derived from a large
mesh size. The key difference here is the right hand side of the equation derived from
wavefront elimination - it is derived from a renormalization process which we will
discuss in the next section. The right hand side of the traditional template operator
is simply the function value of the source term at the given node. Notice that we
have always kept the truncation term with the template operator during the above
discussion. The motivation is to let both template operators Agf) and Zf: ) operate on
the same U. Furthermore, the analysis of the error propagation during the elimination
process can be easily shown by the growth of r,-’; and ?",-(‘,;‘). So far the rigorous error
analysis has not been completed but the following informal discussion provides us with

a very rough picture. From the definition of the wavefront elimination process, we have
the recurrence relations

Tg‘) =W (Tg;-l)) - '1‘-;.(;“1),

H = Dy ),

® W - stands for wavefront
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Because the numbers of the elements in T(:') and "'g‘) are reduced by a factor of 4 at
each step, we can not apply some traditional techniques for the recurrence relations to
this problem. But from this relation we may observe a rough estimate of the growth

factor of '1""-(]-) and '1'"( ). As we know that the eigenvalues of the operator W, are:

1 ir T
(11) A,‘j =1 + E(COS 2L_—-k + cos 2L_—k)’
(12) i=1,2,--., (2% -1),
(13) ji= 1)2,"'3(2L_k— 1)'

Thus the max1mum growth factor for Wy(7:;) is less than 2. After subtracting % ”(k 1)
from w‘( k-1) ), the rough estimate of the growth factor of 7, ( ) is less than 1 or close

to 1. We may obtain a similar rough estimate for 7 "'( ). Prehmmary numerical tests
agree with this estimate but the result is by no means concrete.

Since the increment of the index is doubled at each step of the elimination, the
number of the nodes involved in the elimination process is reduced by a factor of 4. A
compact description of the above discussion is as follows:

1. Let k=1

1 =~ Dk, G- 1)R)

“(1) = f(({ — 1)k, (7 - 1)h)

i=1,.-,2L -1

j=1,2"-1
2. For nodes p = 2*i, ¢ = 2¥j where i = 1,-.-,2L7F -1, j=1,-.-,2k 1,
D~y (£iBy - fi8)

PQ’

FED = yp(FB) — g+,

3. k=k+1, if k < L go to step 2.

This is a forward elimination process. After L — 1 steps of wavefront eliminations,

the template operator A,(f' ~1) for the center node O;; where 1 = 28~1 — 1 has reached

. . - . L-1}
the boundary of the solution region, namely, the increment of the index in Ags- ) is
2L-1,

) gp=__ 1 _ __(1) _Z __(1) ol = f(L 1)
Ay e TRERE | L 1 o

4,5,20-1

Since the boundary values are known, we can obtain the result of z;; directly from this
operator. Then a backwards solutlon process can be started. The complexity of the
forward process is 2N where N =n? = (2t -1)2.

The backward process has the same complexity as the forward process. We will
need another 3N operations to obtain the value of z;; at the finest level. Therefore the
complexity of the whole process is approximately 10N . As we mentioned above, for
each node O;; there are many different template operators with different accuracies.
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Due to the symmetry of these operators, many combinations of these operators can
be chosen to perform the wavefront elimination. A more detailed discussion will be
presented in a future report. The other algorithms also have an optimal complexity but
the constants will be slightly bigger. The idea of using this algorithm as a preconditioner
for a general elliptic equation is also considered. We are also studying the possibility of
directly generalizing these algorithms to more general problems. Another interesting
application of this algorithm is in combination with other efficient algorithms. For
example, three or four steps of wavefront elimination are first executed then an other
efficient algorithm is applied to solve the reduced system. This strategy can be used
in case the truncation term grows during the elimination. If three steps of wavefront
elimination are applied, the size of the reduced system is only glzth of the original one.
A great saving in computational cost can be achieved.

Some other generalizations can also be derived from this algorithm. First, the
application of the ¥ to problems on an irregular solution region is considered. Suppose
a solution of the Dirichlet problem on an irregular region 01 is wanted:

{Amaw=ﬂ%w
U(:L', y)ll'n = g(n:, y)

We can enclose {2 by a larger rectangular region ' and let

’ z, if (=, Q
f(""y)={ c];( v iffz,f,;inv..n

The wavefront elimination can be applied to the problem

{gmnw=fmm
Uz, 9)lra =0

Then apply an optimal algorithm due to Greengard and Rakhlin (1], [4] to the Dirichlet
probiem of the Laplace equation

{ Ab(z,y)=0
U(z,9)lro = 9(z, ) — U(z,y).

It is easy to verify that T — U is the solution of the original problem and the com-
plexity of this procedure is also optimal. The generalization of this idea to a three
dimensional problem is also considered. Unfortunately, there is no optimal algorithm
in analogy with the two-dimensional version. The best result we can obtain so far has
a complexity of O(N logn), where N = n®. How to find a renormalization mapping for
three dimensional problems is a challenging open problem.

From the above discussion, we can see that the study of the new algorithms does
create a challenging new direction of research for fast solvers. It is more important
than the optimum of the complexity per se.

4. Renormalization Theory and Wavefront Eliminations. In the last sec-
tion a new class of algorithm W¢ was introduced. During the elimination process a
sequence of self-similar W-template operators is derived on the same node. Let’s see
how the process can be interpreted in terms of physics. Imagine the solution U to be
temperature, therefore the right hand side of the Poisson equation ought to be the heat
source. Tt is not difficult to see that A;; or z'i,-j can be interpreted as a conservation
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relation between heat source and heat flux around the small cell where node Oy; is
located. After one step of wavefront elimination, a new W-template operator

0 -1 0
APoU=|-1 4 -1| oU=fD
0 -1 01..
£,5,2
where
(149) 1 =P - 1P,
is obtained.

Imagine this process as the result of zooming our observation position a little fur-
ther away from the solution plane. This new equation can also be viewed as another
conservation relation for node O;; except the scale is different. In order to make the
conservation valid without changing the solution then the heat source has to be renor-
malized. The mapping (14) actually can be viewed as the renormalization transfor-
mation. If we compare this process with K.G. Wilson’s renormalization theory for the
magnet, there are surprising similarities between the two completely different subjects.
In his theory, the same magnet of given temperature, when viewed on different scales,
looks as if it were at different temperature 4. Consider a magnet of N atoms with
inter-atomic distance e and temperature T. On a coarse scale where the elementary
block is taken to have sidelength @' = b - @ and comprises b® atoms, the magnet locks
like one with N' = N/b® atoms but with another renormalized temperature 7'. The
relation T' = R, (T') is called renormalization transformation. In a recent development
of this theory, it can also be derived that the pattern of fluctuation at the critical value
of temperature is self-similar. This basic idea eventually led to quantitative results
and explained the physics of phase transitions in a satisfying way. L. P. Kadanoff first
discovered the scaling law in 1966 [2], but it was K. G. Wilson who finally surmounted
the difficulties and developed the method of renormalization into a technical instru-
ment that has proven its worth in innumerable applications. It is not surprising that
renormalization theory has recently led to fractal phase boundary. The book “The
Beauty of Fractals” [3] cites a dictum from V. F. Weisskopf,

There’s a fog of events and suddenly you see a connection. It
expresses a complex of human concern that goes deeply to you thai
connects things that were always in you that were never put together
before.

From the sequence of hierarchical self-similar W-template operators ® we can also sense
the principle which Mandelbrot discovered that organizes a whole universe of seli-
similar structure. If the forward process of the wave-front elimination is equivalent
to a renormalization of the heat source term, then the backward solution process is
surprisingly similar to recursively detailing the solution when our “camera” is zooming
into the fine scales. This interesting connection between wavefront elimination, renor-
malization theory and fractals has inspired us to generalize the wavefront elimination to

* In wavefront elimination, the same temperature were produced from a different heat source if the
temperature field is viewed from different scales
® 1t is also worth-while to mention that template operators provide us a right structure to exhibit
their self-similarity and renormalization relations?
It would be very difficult to observe this fact from the structure of a matrix
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other kinds of elliptic equations. Some preliminary study shows that this is a promising
new direction for research into fast algorithms.

Before we conclude this section, it is also very interesting to compare wavefront
elimination with the multi-grid method. It is not difficult to see that one basic idea
behind the two very different approaches is the same, namely, both are using the idea
of hierarchical computation in order to achieve the optimal complexity. But to achieve
the same goal, the approaches they use are two extreme examples. In the wavefront
elimination a renormalization of the source term, in other words the right hand side,
is used to march from the fine grid level to coarse while in multi-grid the error of the
solution is projected from a fine grid to a coarser one. In the wavefront elimination

case we are able to complete the solution process in one scan while the latter need a
few scans.

5. Conclusion. A whole new class of fast solvers is briefly discussed in this paper.
A great many interesting open problems remain to be studied in this area. In particular,
the discussion of the error analysis in section 3 is informal. Even though there appears
to be no instability problem in our preliminary numerical tests, more studies are needed
for a concrete result regarding the error analysis of the Yg.

Acknowledgment. The author wishes to thank G. Rodrigue and T. Chan, for
helpful discussion. Thanks are also due to Mrs. Z. Kaszas for her help in latexing my
paper.

REFERENCES

[1] L. GREENGARD, The rapid evaluation of potetial fields in particle systems, PhD thesis, Yale Univ.,
Computer Science Dept., Yale Univ., 1987.

[2] L. KADANOFF, Scaling laws for Ising models near t,, Physics, 2 (1966), pp. 263-272.

(3] H. O. PRITGEN AND P. RICHTER, The beauty of fractals, Springer-Verlag, New York, 1986.

[4] V. ROKHLIN, Rapid solution of integral equations of classical potential theory, Journal of Computa-
tional Physics, 60 (1983), pp. 187-207.

[5] P. N. SWARZTRAUBER, A direct method for the discrete solution of separable elliptic equations,
SIAM J. Numer. Anal., 11 (1974), pp. 1136-1150.

[6] W. TANG, Schwarz splitting and template operators, PhD thesis, Stanford University, Computer

Science Dept., Stanford, CA94305, 1987.

G. WILSON, Renormalization group and critical phenomena (i), (), Phys. Rev. B4, (1971),
PD. 3174-3183, 3184-3205.

[ K.



