CHAPTER 10

A Variation of the Schwarz Alternating Method: The
Domain Decomposition Reduction Method

Craig C. Douglas*

Abstract. Domain decomposition methods are highly parallel methods for solving elliptic partial
differential equations. In many domain decomposition variants, the domain is partitioned into a
number of (possibly overlapping) subdomains before computation begins. In contrast, the domain
reduction method folds the domain into a number of smaller domains covering only a small portion
of the entire domain. The solution over the entire domain is recovered by unfolding the solutions on
the subdomains and summing them. The cost of the folding and unfolding is negligible. All steps
of the algorithm are embarrassingly parallel.

1. Introduction. In this paper, the solution to an elliptic boundary value
problem is approximated using a combination of domain decomposition, multigrid,
and projection method techniques (see [1], [2], [4], [7], [13], [14], [16], and [17]).

Consider problems of the following form.

Lu =f inQcRY d >0,

(1.1)
u = 0 on 9%.

More complicated boundary conditions are discussed in [3) and [8]. That (1.1) is
well posed and will be discretized by a finite element, volume, or difference scheme is
assumed throughout this paper. Typically,

- 5 2 (st ) + ol

1,5=1

The domain reduction method uses properties of a partial differential equation to
split the problem into several subproblems. Each subproblem should be solved in
parallel using the fastest known solution method appropriate.
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The basic method was first derived in [9] as a parallel multilevel method for
linear systems of equations where smoothing was unnecessary. The applicability to
shared or distributed memory, coarse or fine grained parallel computers was discussed
informally in [10]. The elliptic partial differential equation case (with an emphasis on
one and two dimensions) was analyzed in [11], and a technique for doubling the basic
parallelism was introduced in [3]. This was extended to three dimensional problems
in [8]. In the general case, or when the subproblems are solved only approximately,
the method becomes an iterative method or can be used as a preconditioner. Bounds
on the resulting convergence factors and condition numbers are given in [8].

In §2, the method is defined as it pertains to this paper in a very abstract manner.
In §3, a simple 2¢ way domain reduction is defined when Q = (=1,1)%. In §4, more
complicated domain reductions are defined. In §5, the algorithm is advocated as the
inner part of a standard domain decomposition algorithm.

2. The Method. In this section, the domain reduction method is defined
in three algorithms. The first two are special cases of the quite general third.
Some theorems that pertain to the convergence of these algorithms are stated with
references to where the proofs can be found.

A variational formulation of (1.1) is

(2.1) find w € V such that a(u,v) = f(v), YveV.

Typically, V = V() is the appropriate Sobolev space, and

a(u,v) :'/QaVuVU + aouvdz and f(v) = /vad:z:.

The method may be formulated quite abstractly.
ALGORITHM 1. To solve (2.1), subspaces V1, Va, ..., Vo are found such that

V = @Vi and V; LV, 147,

=1

in the a(-,-) inner product. Then the solution is

u o=y ug,
t=1
where u; is the solution of the subproblem
(2.2) find u; € V; such that a(u;,v) = f(v), Yv € Vi

In reality, the cost of solving (2.2) by direct methods is often unreasonable. A more
realistic definition of the method can be formulated.
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ALGORITHM 2. For an approzimate solution u™ of (2.1), form the subproblems
(2.3) find w; € Vi ¢ a(wi,vi) = f(v) — a(u™, v), Yo, € Vj,

and find approzimate solutions w; € V; such that

(2.4) . [0 — wil| < ellwi,
where || - || is the energy norm and € <1 is a constant. Then set
K3
™ttt = ™ Zﬁ)i.
=1

Note that step (2.4) can be realized by solving (2.3) by an iterative method with
convergence factor at worst ¢ in the energy norm, starting from an initial guess of
zero. If more than one iterative method is used, then e is the maximum of the
convergence factors. If the subproblems are solved exactly, the method is related to
the well-known Schwarz alternating method [21].

In implementation, full-rank restriction and prolongation operators are used to
transfer information between the subspaces and V:

Ri: V=V, and P,;:V, = V.

Frequently, each prolongation operator is the adjoint of one of the restriction
operators. Writing the problem (2.2) as Lu = f, the corresponding operators for
the subproblems are then defined in the Galerkin sense:

L; = RLP;.

The operator £ is discretized into a matrix A. The subproblems, A;, are defined in the
Galerkin sense, as well. Examples of several choices of restriction and prolongation
operators, and the resulting £; and A;, are given in [11].

The complete discrete algorithm is defined in a two level (multigrid-like)
formulation.

ALGORITEM 3. The domain reduction method is
Smooth s times on u to get u°

Doj=1,,m{
Compute residual 77 = f — Auf~?
Solve in parallel, 1 =1, ,n:
Aici = Rﬂ‘j
Set ¢ = u/~! + 0, Pict
Smooth s times on ¢ to get u?

}

Set u = u™

The parallel solve step in Algorithm 3 can be another execution of Algorithm 3,
producing a tree struction of subproblems. More typically, it is a direct solver (cf.,



194 ‘ Douglas

Algorithm 1) or an iterative solver (cf., Algorithm 2). Algorithm 3 is related to
algorithms analyzed in [5], [6], [12], [15], [18], [19], and [20].
The convergence of Algorithms 1 and 3 is guaranteed by the following theorem.

THEOREM 1. Let s =0 in Algorithm 3, I1; = P;R;, and

I, = I

n
=1

Then Algorithms 1 and 3 converge to the ezact solution if [Il;; Al =0 for all 1,
1< <n.
An immediate corollary is the following.

CoRrOLLARY 1. Theorem 1 remains true for Algorithm 1 if the condition
[II;, A] = 0 is replaced by I A(IL; — I) =0 for all 1,1 <1 < n.
The proofs to Theorem 1 and Corollary 1 can be found in [9].

Suppose there is a set of internal interfaces

{Fi}g=17
where each I'; divides ) into two equal sized subdomains, and a set of n = 27
restriction operators
(2.5) {R{ﬂ}}, 1=1,+++,0,
where
S 1, when even functions are annihilated about T';,
! 0, when odd functions are annihilated about T%;.

An operator £ preserves even/odd functions about T’y if L applied to any even
(odd) function about T’y is a even (odd) function about I'x. For example, the A
operator preserves even and odd functions. Similarly, an operator £ reverses even/odd
functions about I'y if £ applied to any even (odd) function about I'x is an odd (even)
function about I'y. Each prolongation operator is the adjoint of the correct restriction
operator

(2.6) Py = Ry
where
o T, when L preserves even/odd functions about I';,
o = 1 -7, when £ reverses even/odd functions about I';.

If we renumber the restriction and prolongation operators as
{Pi, Ri}izo,

then the following convergence result holds.
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THEOREM 2. Suppose L either preserves or reverses even and odd functions
about each of the internal interfaces I';, i = 1,-++,0. Suppose the n restriction and
prolongation operators are defined as in (2.5) and (2.6) with

d
SRR =1

g=1

satisfied. Then Algorithm PMG converges to the exact solution in one iteration
without smoothing if the subspace problems are solved exactly.
The proof to Theorem 2 can be found in [11].

The convergence of Algorithm 2 is guaranteed by the following theorem.

THEOREM 3. Let Py, be the orthogonal projection onto Vi, and Apas and Apin
be the mazimal and the minimal eigenvalues, respectively, of 3%, Py,

Amaz = maxa(z PV,.>, Amin = maxa(z ]3‘4).
i=x1 7=1
Then the iterates produced by Algorithm 2 satisfy the error bound
(2.7) fumtt = ull < (max{Amas = 1,1 = Ain} + EAmaz ) 0™ = ul.
An immediate corollary is the following.

COROLLARY 2. Using the same assumptions as in Theorem 3, if, in addition,
Vi LV, for all i,j, then Apas = Amin = 1 and (2.7) reduces to

m-1

@™ = uf] < eflu™ — .

The proofs to Theorem 3 and Corollary 2 can be found in [8].
3. An Example. In this section, a simple example is described where the

domain reduction method uses symmetries in (1.1) to split the problem into several
subproblems. For ¢ = (z1,...,24) € Q = (~1,1)%, define

Ry iy = ((—l)i‘xl,...,(~—1)idxd), (il,...,id) € {O,I}d.
The subspaces V. ;, C V are defined by
Vioia = {u€V twoRy iy = u}, (51,...,04) € {0,1}%

It is immediate that the subspaces are mutually orthogonal in the a(-, ) inner product
as well as cover the entire solution space V. Therefore, (2.1) may be split into 2¢
subproblems:

(3.1)  find wyy,..i, € Vi, such that a(ui,..ipv) = f(v), Yo € Vi s

and recover the solution of (2.1) as

1

u = Z Uiq,igr

11 3000yt g==0
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Let ) = (0,1)%.  For a function ¥ on 0, define prolongation operators
pil,...,idy(ila' . '7id) € {07 1}d) by

(Piy,igd)(z) = (,—-l)ili;+"'+idifit~))(%) forz = Ri,.0.
Then, (3.1) can be formulated as a problem on the domain € of the form

(3.2)  find dy,,.;, € V.0, such that a(f,,.,,,5) = f(8), Vo€V

S P
where
‘Z],...,‘id = Wl,...,id n V(Q)>
‘/i;[,...,id = ,Pil,...,idml,...,id7
f(ﬁ) = f(pil,...,idf)))
&(ﬁ’ﬁ) = a(,])ilw'ﬂ-dﬂ”,Pilw-wédﬁ)’
and

Uiy oy = Py oigliy,iye

Actually, (3.2) is discretized on a uniform mesh, V is the space of finite element
functions associated with the mesh (or the vector space associated with a finite
difference discretization), and V;, . i, are then subspaces of it. The problems (3.2)
can be then written as discretized boundary value problems on the reduced domain
Q.

To visualize the domain reduction process, consider the following example, which
illustrates that the method is applicable to a wider range of problems than just elliptic
problems with constant coefficients. Let

d

Lu= =3 (as(e)ug,),, — (ar(x)u),, + ag(z)u = f in Q= (-1,1)
(3.3) i=1

u =0 on dQ,

where az and ag are even functions about the axes, and a; is an odd function about
the axes. For example,

ax(z) = fISin(mUj): a(z) = fICOS(WCUj), and  ao(z) = BER

are suitable choices.
By definition of w4, (3.2) can be written as

ﬁ/&i],...,id = fi1,...,id in §
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with boundary conditions

@iy, .iq = 0 onthedsideszy = 1, ..., and zq = 1,
(3.4) Uiyig = 0 onsidew;, = 0ifi = 1, bk = 1,...,d, .
é%’l’i,'l,,m,‘d = 0 on side Ty = 0if ik == 0, ko= ],,...,d.

Note that when (3.3) is discretized on a uniform mesh with a central difference scheme,
2¢ systems of equations must be solved. By suitable choices of ag, a1, and ag, the
resulting systems can be nonsymmetric, indefinite.

Since the subspaces are orthogonal, Corollary 2 applies. Hence, the correct way
to monitor the error over the entire domain is to monitor the error of each of the
subproblems: the largest subproblem error is the largest error on the entire domain.
Running times on both shared and distributed memory parallel computers (Encore
and Intel) are contained in [8].

4. Many Way Reduction. In this section, a more subtle approach to domain
reduction is described. A careful examination of (3.4) shows that a purely Dirichlet
problem has been converted into a collection of similar subproblems with Dirichlet
and Neumann boundaries.

Lu =f inQCRY, d > 0,

(4.1) u

i

0 on d0p, where 02 = 90p U 8Oy,
and O0p N AN = ¢,
-%u = 0 on d0y.

By folding the subproblem domains so that boundary conditions match, a higher
degree of parallelism can be attained.

In the case of a square, an eight way domain reduction is possible. Starting from
Q = (—1,1)?, four subproblems are solved on subdomains (0,1)* with Dirichlet (D)
and Neumann (N) boundary conditions given as follows.

D (11 D (L1 D (1LY D (1LY

N D D D N D D D

(0,07 D (0,007 N (0,07 N (0,07 D

The subdomain with two Neumann boundary sides can be folded across the diagonal
to produce two new subproblems on triangles.

D (L) N (L)
N D N D

(0,0 (0,0
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The subdomains with one Neumann boundary side can be folded across the middle
of that boundary to produce two new subproblems on rectangles. For example,

D (5,1) D (5,1)

D D D N

(0,0)N (0,0)N

Finally, the subdomain which is isomorphic to the original domain can be reduced
onto two triangles, two rectangles, or recursively onto an eight way set of subproblems.
More details are contained in [3].

The three dimensional cube offers a real challenge. Starting from = (—1,1)3,
eight subproblems are solved on subdomains (0,1)® with Dirichlet (D) and Neumann
(N) boundary conditions given as in (3.4).

(1,1,1)

(0,0,0)

In this case, the subproblems have the following number of Neumann and Dirichlet
Neumann boundary faces.

Number of Number of faces Number of
subproblems | Neumann Dirichlet | new subproblems
1 0 6 8
3 1 ) 3x8
3 2 4 3x8
1 3 3 4 or 8
Total 60 or 64

The subdomain with no Neumann boundary face can be folded into the cube (.5,1)
similarly to (3.4). The subdomains with exactly one Neumann boundary face can be
folded into the following prism shaped domain.

(501 (1,1,1)

(1,1,5)

The subdomains with exactly one Neumann boundary face can be folded into the
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following wedge shaped domain.
(1,1,1)

(.5,.5,.5)
(1,5,.5)
In each of these new subdomains, all of the angles are either 90° or 45°. The

subdomain with exactly three Neumann boundary faces can be folded into the
following tetrahedra.

(5,11 (L1

(1,0,.5)
(1,1,0)

This is not a conveniently shaped domain for finite difference discretizations. A better
shaped one is as follows.

(0,1,1) (1,1,1)

(1,0,1)
(1,1,0)

Unfortunately, this domain has twice the volume of the previous one.

Normally, three dimensional grid generated problems should never be solved
directly since the cost is approximately ¢N°/3, ¢ € IR. Using a 64 way domain
reduction, the cost of solving each subproblem directly is at most

5/3 _ c 5/3

c(N/64) Toar N°T2,
Using exactly 64 processors results in an elapsed time speedup of a factor of 1024.
Switching to an iterative solver for each subproblem could be characterized as greedy.

5. Domain reduction and domain decomposition methods. In this sec-
tion, the domain reduction algorithm is advocated as the inner part of a standard
domain decomposition algorithm. The techniques of §§2—4 would be difficult to apply
easily to a problem on the following domain.

The obvious domain decomposition is the following.

\Ql QQ
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If possible, a domain reduction technique should be used to solve the problems
that arise by using a standard domain decomposition method on each of {}; and
2, instead of a preconditioned conjugate direction method or multigrid. Note that
the subproblems that naturally arise in the domain reduction method can be solved
by parallel variants of preconditioned conjugate direction methods or multigrid.

6. Conclusions. The domain reduction method offers an interesting mathemat-
ical preconditioning technique for solving real problems. When it is directly applicable
to a problem, it offers a way of producing a direct method which is embarrassingly
parallel. When the cost of solving the subproblems by a direct method is prohibitive,
iterative methods should be used, similar to domain decomposition methods. Finally,
all steps of the algorithm are embarassingly parallel, making this ideal for implemen-
tation on existing parallel computers.

REFERENCES

r-q
st
=y

. E. Bank anp C. C. DouaLas, Sharp estimates for multigrid rates of convergence with

general smoothing and acceleration, SIAM J. Numer. Anal., 22 (1985), pp. 617-633.

[2] A. BRrANDT, Multi-level adaptive solution to boundary-value problems, Math. Comp., 31 (1977),
pp. 333-390.

[3] F. Brezz1, C. C. DouaLas, aND L. D. MARINI, A parallel domain reduction method, Numer.
Meth. for PDE, 5 (1989), pp. 195-202.

[4] T. Cuan, R. Growinskl, G. A. MEURANT, J. PErRIAUX, AND O. WIDLUND, eds., Domain
Decomposition Methods for Partial Differential Equations II, Philadelphia, 1989, Society
for Industrial and Applied Mathematics.

[5] H. C. CHEN, The SAS domain decomposition method for structural analysis, PhD thesis,
University of Illinois at Urbana-Champaign, Urbana, Illinois, 1988.

[6] H. C. CueEN AND A. H. SAMEH, A matriz decomposition method for orthotropic elasticity
problems, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 39-64.

[7] C. C. DouGLAs, Multi-grid algorithms with applications to elliptic boundary-value problems,
SIAM J. Numer. Anal., 21 (1984), pp. 236-254.

[8] C. C. DouGLas aND J. MANDEL, The domain reduction method: high way reduction in three
dimensions and convergence wilh inezact solvers, in Fourth Copper Mountain conference on
multigrid methods, J. Mandel, S. F. McCormick, J. E. Dendy, C. Farhat, G. Lonsdale, 8. V.
Parter, J. W. Ruge, and K. Stiiben, eds., Society for Industrial and Applied Mathematics,
Philadelphia, 1989, pp. 149-160.

[9] C. C. DouaLas AND W. L. MIRANKER, Constructive interference in parallel algorithms,
SIAM J. Numer. Anal., 25 (1988), pp. 376-398.

[10] ——m, Some nontelescoping parallel algorithms based on serial multigrid/aggregation/disaggre-
gation techniques, in Multigrid Methods: Theory, Applications, and Supercomputing, S. F.
McCormick, ed., Marcel Dekker, New York, 1988, pp. 167-176.

[t1] C. C.DoucLas aND B. F. SMITH, Using symmetries and antisymmetries to analyze a parallel
multigrid algorithm, SIAM J. Numer. Anal., 26 (1989), pp. 1439-1461.

[12] P. FrepericksoN aND O. MoBRYaN, Parallel superconvergent multigrid, in Multigrid
Methods: Theory, Applications, and Supercomputing, 5. F. McCormick, ed., Marcel
Dekker, New York, 1988, pp. 195-210.

[13] R. Growinski, G. H. Gorus, G. A. MEURANT, AND J. PERIAUX, eds., On the Schwarz
alternating method I, Philadelphia, 1988, Society for Industrial and Applied Mathematics.

[14] W. HacKBUSCH, Muitigrid methods and applications, Springer-Verlag, Berlin, 1985.

, A new approach to robust multi-grid solvers, in ICIAM’87: Proceedings of the First

International Conference on Industrial and Applied Mathematics, Society for Industrial

and Applied Mathematics, Philadelphia, 1988, pp. 114-126.




DOMAIN REDUCTION METHOD 201

[16] P. L. Lions, On the Schwarz alternating method I, in Domain Decomposition Methods for
Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and J. Périaux,
eds., Society for Industrial and Applied Mathematics, Philadelphia, 1988, pp. 1-42.

, On the Schwarz alternating method II, in Domain Decomposition Methods for Partial
Differential Equations II, T. Chan, R. Glowinski, G. A, Meurant, J. Périaux, and
0. Widlund, eds., Society for Industrial and Applied Mathematics, Philadelphia, 1989,
pp. 47-70.

[18] J. ManDEL AND S. F. McCORMICK, Iterative solution of elliptic equations with refinement:
the model multi-level case, in Domain Decomposition Methods for Partial Differential
Equations II, T. Chan, R. Glowinski, G. A. Meurant, J. Périaux, and O. Widlund, eds.,
Society for Industrial and Applied Mathematics, Philadelphia, 1989, pp. 93-102.

[19] S. F. McCORMICK, Fast adapiive composite grid (FAC) methods, in Defect correction methods,
K. Bohmer and H. J. Stetter, eds., Springer-Verlag, Vienna, 1984, pp. 1156-121.

[20] S. F. McCormick aND J. Tuomas, The fast adaplive composite grid (FAC) method for
elliptic equations, Math. Comp., 46 (1986), pp. 439--456.

[21] H. A. Scuwarz, Uber einige Abbildungsaufgaben, Ges. Math. Abh., 11 (1869), pp. 65-83.

[17]






