CHAPTER 13

An Additive Schwarz Algorithm for Nonselfadjoint
Elliptic Equations*
Xiao-Chuan Caif

Abstract

In this paper, we consider the solution of linear systems of algebraic equations
that arise from elliptic finite element problems. We study- the additive Schwarz
method for general, not necessarily selfadjoint, linear, second order, elliptic partial
differential equations in R? and R3. We use the GMRES method to solve the
resulting linear system of equations. We show that the algorithm is optimal in the
sense that the rate of convergence does not depend on the mesh size, nor on the
number of substructures.

1 Introduction

Domain decomposition techniques are very powerful iterative methods for solving lin-
ear systems of equations that arise from finite element problems. In each step of an
iteration, a number of smaller linear systems, which correspond to the restriction of
the original problem to subregions, are solved instead of the large original system.
The number of subproblems can be potentially large and these methods therefore are
promising for parallel computation. They are divide and conquer methods and the
central mathematical question is to obtain a bound on the rate of convergence of the
iteration. Borrowing a term from structural engineering computations, the subregions
are often called substructures. We thus have two partitions of the region into substruc-
tures, which sometimes defines a coarse, global model, and the elements of the finite
element model.

The iterative methods, most commonly used, are the conjugate gradient method
for the symmetric, positive definite case and generalized conjugate residual methods
for the general, nonsymmetric case. If the symmetric part of the operator is positive
definite, with respect to a suitable inner product, convergence can be guaranteed. In
this paper, the rate of convergence of a domain decomposition algorithm is estimated.
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We show that the additive Schwarz algorithm is optimal for elliptic problems in both
R? and R® in the sense that the rate of convergence is independent of both the coarse
mesh size, defined by the substructures, and the fine mesh size. All theorems and
lemmas are stated without proof. For details, see [5]. For related works, see (3] [4] [2]
(6] [12] [15] [13]. |

This paper is organized as follows. We first briefly introduce the GMRES method,
which is our main iterative method for solving our linear system of equations. Then, we
develop an abstract theory for the additive Schwarz method, which unifies a number of
separate results developed for some different domain decomposition algorithms in recent
years. Then, we apply our abstract theory to study the additive Schwarz method (AgM)
for the stationary convection-diffusion problems in R? and R®. Finally, we present some
results of our numerical experiments.

2 The GMRES method

In Eisenstat, Elman and Schultz [9], the conjugate gradient method was generalized
to solve nonsymmetric linear system of equations. In particular they considered the
so called generalized minimum residual method, GMRES, which has been shown in
practice to be very powerful for a large class of problems. In their paper, the GMRES
method and the corresponding theory in L2(Q) space were given, but in fact this
algorithm and the theory can be extended easily to any Hilbert spaces. We shall
describe the algorithm and state the theory without proof.

Let P be an linear operator on the finite dimensional space R™ with the inner
product [-,-] and norm || - || = /[,"], which are chosen to take advantage of some
special properties of P. In our applications, P is not symmetric but positive definite
with respect to [-,-].

We are interested in using GMRES method to solve the following linear system of
equations on R™:

where b is given in R™.

The method begins with an initial approximate solution 2o € R™ and an initial
residual 7o = b — Pazg. At the m® iteration, a correction vector Zm is computed in
the Krylov subspace

Km(ro) = span{rg, Prg,-- ~,Pm”1r0},

which minimizes the residual MiNeK,(no) || & — P(xo+ 2) || . The m? iterate is then
Tm = To+ 2.

It can be shown that if we perform exact arithmetic operations then the solution
would be reached in no more than n iterations.

According to the theory of Eisenstat, Elman and Schultz, the rate of convergence
of the GMRES method can be characterized by the ratio of the minimal eigenvalue of
the symmetric part of the operator and the norm of the operator. Those two quantities
are defined as follows:

| Pe |

. .z, P2]
¢, = inf and C, = sup ~——--.
P o [2,7] P el

We have the following theorem for the rate of convergence. In the case that [,] =
(*,+), the proof is given in [9].
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Theorem 1 If ¢, > 0, then the GMRES method converges and at the m** iteration,
the residual is bounded as

9 m/2

lrm < (1 - 5%‘) ol -

3 The abstract theory for the additive Schwarz method

Let V be a Hilbert space consisting of real functions defined on @ ¢ R¢, where d is the
dimension, with an inner product (u,v)y and a corresponding norm ||u|ly. Let w be a
subdomain of §; we define (u, v)y(y,) to be the inner product for functions obtained by
restricting on w.

Suppose that B(-,-) is a bilinear form on V x V and F(-) a linear functional on V
such that

(i) B(-,-) is continuous, i.e. there exists a constant C' > 0 such that
| Blu,v) |< Cllully@yllvllviw, Yu,veV,

where w = {supp u} N {supp v}.
(it) B(-,-) is V-elliptic, i.e. there exists a constant ¢ > 0 such that

B(u,u) > cllull}y, VueV.
(iii) F(-) is continuous, i.e. there exists a constant C > 0 such that
| F(u) < Cllully, VueV.

We define
A(u,v) = 1/2(B(u, v) + B(v,u)),

which will be called the symmetric part of B(-,-), and
N(u,v) = 1/2(B(u,v) — B(v,u)),

which will be called the skewsymmetric part of B(:, ).
Of course A(u, v) satisfies (i) and (ii), which implies that the norm corresponding
to A(+, ") is equivalent to the V-norm. In the following, we shall use (-,-)4 instead of

(_v’ ')V—
Our abstract variational equation reads as following: Find u € V, such that

B(u,v) = F(v), YveV. (1)

In order to define the additive Schwarz method, we assume that there exists a
decomposition of V. Let Vi, i =0,---, N, be subspaces of V, such that

N
V="V,
t=0
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i.e., for any » € V, there exist v; € V;, i = 0,4+, N such that
/ N

o= 0, (2)

1=0

Moreover, we assume that there exists a constant C¢ such that

N
2 lloill} iy < CRllolE, Vo eV, (3)
2==0
where w; is the support of V; defined as
wi = {z| € Q,Ju € V; such that u(z) # 0}.

Note that the constant CZ may depend on the number of subregions N and also some
other parameters of V', which may be introduced in specific applications.
We assume that there exists a constant ¢, > 0, such that

N
2ol < Cullol?y Vo e V. (4)
=0

In fact this constant C,, is the maximum number of w;s to which a point 2 € @ can
belong.
For each subspace Vi, 0 < i < N, we define a projection

PP =P8V —V,

with respect to the bilinear form B(+,.): For any u € V, PPu € V; is the solution of the
problem

B(PPu,v) = B(u,v), Yo €V,
We introduce a mapping PV — V as
PP =pPf+. ..+ PR

Let u be the solution of (1), and denote
‘ N
bB - ZPiBu,
i=0
where PPu can be obtained by solving

B(PPu,v) = F(v), YveV, (5)
for each . b® is thus the sum of the solutions, obtained in (5).
We now introduce a linear equation: Find u € V, such that
PPy = b%, (6)
We shall call this equation the projected equation with respect to the bilinear form
B(-,-) and the decomposition {w;}.
The following theorem can be established trivially if P is invertible.
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Theorem 2 The equations (1) and (6) have the same solution.

The additive Schwarz algorithm can be stated as

Additive Schwarz Algorithm (AgM): Find the the solution u of equation (1)
by solving equation (6).

In practice, the operator PB corresponds to the product of a large, sparse matrix
and the inverse of some other sparse matrices. The explicit matrix for P8 is not known
except in some special cases, however, the matrix vector multiply PPu can be computed
by solving one linear system for each subregion. Therefore iterative methods are natural
candidates for problem (6). The rate of convergence of any iterative methods depends
on the conditioning of the operator P8, The main results can be formulated as follows.

Theorem 3 (1) There exists a constant C > 0, such that
|PBull4 < CCLI\ulla, VueV.
(2) If there exists 0 < § < 1, such that | N(u, PBu) |< §B(u, PB4), Yu eV, then
(u,PBu)A > e(l— 6)00“2(24,1&),4, Yu € V,

where ¢y > 0 is independent of Co and &,

4 Application to the convection-diffusion problems

In this section, we apply the abstract theory for the AgMgiven in the previous section
to convection-diffusion problems.

4.1 A stationary convection-diffusion problem

Let © be an open bounded polygon in R? or R?, with boundary 9Q. d denotes the
dimension of the space; d = 2 or d = 3. Consider the homogenous Dirichlet boundary
value problem:

Iu = f in Q
{ v = 0 on 0%, (7)
where I is a strongly elliptic operator of the following form
d o d
0 Ju(w) - du(z)
Lul(z) = — e (ayi(@ bi(2) e " ,
o)== 3. (o (a) o + D) T e

where a;(z) = aji(«) for all ¢, j and 2 € Q.
Let L* denote the adjoint operator of L which satisfies

(Lu,v) = (u, L"),

for all sufficiently smooth elements of H§(€2).
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We assume that f € L?(Q). The existence and uniqueness of the solution of equa-
tion (7), as well as its adjoint equation, are well understood. It is well known that if
the domain boundary is not smooth enough, for example if ) is a nonconvex polygon,
we cannot expect, in general, the solution to be in H2(Q). According to the elliptic
regularity theory on Lipschitz region, see [11], we make our regularity assumption as
follows: There exists a constant v € (0,1/2), which depends on the geometry of {2, such
that the adjoint equation has a unique solution v € H MHYQ)NHI(Q), and furthermore
there exists a constant C, such that

lull vy £ CllLull (g (8)
The weak form of equation (7) reads as: Find u such that
B(u,v) = F(v), Wve }16(9)7 (9)

where the bilinear form B(u,v) is defined as

d d .
Ju v - Ou
B(u,v) = E /Qa”'é*‘;;ggx—]d.’ﬂ - i:E - /(; b,-g;;;vdm + /chvdm

1,5=1

and the linear functional F'(v) = (f,v). By A(-,-) and N(-,-), we denote the symmetric
part and skewsymmetric part of B(-,-). With suitable assumptions on the coefficients
of L, B(+,-) and F(-) satisfy conditions (i), (ii) and (iii).

In addition, we assume that the bilinear form N(-,") is bounded, i.e. there exists a
constant C, such that

[ V(o) < C N wllmyall v lza),  Vu,v € HE(RQ).

This bound can be established if the coeficients by(z) and div(b) are bounded. We note
that the bounds for A(-,-) and N(-,-) are different. If we look at the integral formulas
for A(:,-) and N(.,-), it is obvious that the terms in N (-, *) are one order lower than
the terms in A(-,-). This is a key factor that makes our analysis possible.

4.2 The Galerkin finite element method

We solve equation (9) by the Galerkin conformal finite element method. For simplicity,
we use piecewise linear triangular elements in R? and the corresponding tetrahedral
elements in R®. In the following, we first introduce a two level triangulation of Q € R?
and the corresponding finite element spaces. We then give the Galerkin approximation.

1. Two level triangulation

For a given polygonal region Q@ € R?, in the first step, we define {€;} to be a regular
finite element triangulation of § where {$%:} is a set of non-overlapping d-dimensional
simplices, i.e. triangles if d = 2 and tetrahedron if d = 3, such that no vertex of one
simplex lies on the edge or face of another simplex and

N
Qc

7=z
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Let H; be the diameter of ; and H; the diameter of the largest inscribed ball in
;. We assume that the ratio H;/ H; is uniformly bounded from above, i.e. that the
triangulation is shape regular.

We introduce the mesh parameter

H = max{Hy, -+, Hn}.

We call Q; a substructure and {Q;} the coarse mesh or H-level subdivision of Q.

In our qecond step, we further divide each substructure Q; into smaller simplices,
denoted as 7/, j = 1,---. We assume that U; ]7'] form a shape regular finite element
subdivision in the same sense as above. Let hf be the diameter of 7} and introduce the
fine mesh parameter by ‘

h = max(h})
6]

We call {7} the fine mesh or h-level subdivision of § .

We define the piecewise linear finite element function spaces over both the H-level
and the h-level subdivision of €.

VH = {v" | continuous on 2, and v |, is linear on Q;, v = 0 on 9}

VP = {v" | continuous on Q, and v" |, is linear on 77, o" = 0 on 80}
3

It is obvious that VH C V%,

2. Galerkin finite element approximation

The Galerkin approximation of equation (9) reads as follows: Find " € V4, such
that

B(ut, o) = F(o"), Yo' e vV (10)

The existence and uniqueness of u* has been extensively studied in the literature,
see [1]. By using the nodal base functions, equation (10) can be transformed into a
linear system of equations, which is large, sparse and relatively ill-conditioned.

4.3 An algorithm and the main results

The additive variant of the Schwarz alternating method was originally proposed by
M. Dryja and O. Widlund [8] and S. Nepomnyaschikh [16] for the selfadjoint elliptic
problems. In this section, we generalize this method to the nonselfadjoint elliptic cases.

We first form a basic decomposition of the domain € and we then define the pro-
jections which define our additive Schwarz algorithm.

In the previous section, we introduced the H-level subdivision {Q;} of . Since the
Schwarz type domain decomposition methods use overlapping subregions, we extend
each subregion €; to a larger region Q; such that Q; C Q; Moreover, we assume that
there exists a constant a > 0 such that

distance(aQ;,f)Qi) > aH;, Vi

To simplify the notation, we denote Ql) = Q.
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We suppose that 9Q; does not cut through any h-level elements. We make the
same constructions for the subregions that meet the boundary except that we cut off
the parts that are outside 2.

The assumption on the existence of such a constant « is important. We shall see
that the larger the « is the fewer the total number of iterations will be needed. However
if we increase the overlap, the size of the subproblems will also be increased, therefore,
the cost for solving the subproblems in each iteration will be increased. To balance the
total number of iterations and the cost of solving subproblems is an important practical
issue.

For each Q;», there is a regular finite element subdivision which is naturally induced
from the h-level subdivision of Q. The corresponding finite element function space,
denoted as V}*, is defined as

VE =V HYSD),

which can be regarded as a subspace of V" if we extend each function by zero to the
complement of Q. It is known that this extension is continuous. We also use the
subspace

Vg =VH
It can be seen easily that our finite element function space V" can be represented
as the sum of the N + 1 subspaces, i.e.

V= V4 V) VR

Let P‘Ifh = PiB denote the projection from the finite element space VP to the

subspace Vih with respect to the bilinear form B(-,.), fori = 0, ..., N, and denote
PB = pB 4 PP +4... 4+ PE. Then, the projected equation with respect to B(-,")
and the decomposition {Q;} is

PByt = 1B, (11)

By Theorem 2, the equation (11) is equivalent to the Galerkin equation (10). How-
ever, the conditioning is improved as shown in the following theorem.

We make use of the following convention. All the constants, denoted by C, ¢, ¢p, Cp
etc., are positive and independent of the mesh parameters H and h.

Theorem 4 The operator PP is uniformly well conditioned. i.e.,
(1) There exists a constant C,, such that

I PPu o < Cpll w” [la, Vu € VR

(2) There ezists a constant Hy > 0, independent of H and h, and a constant c,( Hy),
such that for H < Hy,

(", PBulyy > ep(u,uM)a, VUl e VR
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Remarks: (a) The operator P is very important. It provides for global informa-
tion transportation. All the other PPBs are local mappings. Without using P8, in each
iteration the information can tlavel from one substructure only to its next neighbors.
Therefore, it takes at least O(1/H) iterations for the information to move across the
region. ‘

(b) In the case that B(-,-) is symmetric, this additive Schwarz algorithm is identical
to the one proposed by M. Dryja and 0. Widlund.

(¢) Theorem 4 part (2) shows that if the coarse mesh size is fine enough the sym-
metric part is positive definite, which guarantees that the GMRES method converges.
Since both the constants ¢, and C), are independent of the mesh parameters H and
h, according to Theorem 1, the convergence rate of the GMRES method does not
dependent on the size of the discrete problems, nor the number of substructures.

(d) The constant Hg is important, since it determines the size of coarse mesh
problem. Ho depends on the problem. In general, Ho decreases if we increase the
coefficients of the nonselfadjoint terms, while it increases if we use larger overlap. It
also depends on the shape of the domain Q. We do not have an explicit formula for
Ho. However, we will give some idea about how to determine this constant numerically
later.

(e) If the skewsymmetric part of the elliptic operator vanishes, then Hg = +o0,
and we have no restrictions on the coarse mesh size H.

4.4 'The condition number estimates

In order to prove Theorem 4, we need only to show that all the assumptmns for Theo-
rem 3 hold. Since {Q } is a finite covering of 2, the maximum number of Qs to which

any point in © can possibly belong is finite, and denoted as Cy. It is easy to verify
that

Z, 1w ey < Coll Wt 1% V€ VA, (12)
i.e. assumption (4) hold,s.
Lemma 1 For any u* € V!, there exist u} € VI(Y), such that

N
b= Yk

1=0
Moreover, there exists a constant Co, such that

N

2 2
PR la@y < C3ll v 14
1=20

In order to prove part (2), we need the following estimates for the skewsymmetric
part.

Lemma 2 There exists a constant C, such that

| N(uP, PPuty | < CHYB(u?, PPY), Vol € VR
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5 Numerical results

1. The model problems
We consider the following problem defined on £ = [0,1] % [0,1] C R?.

. 0, .0u d , Ou ou ou
Ly = -“5;(6“8‘“;) - 55(?7‘527) + 01-5':;‘}“ ﬁé":&"+7uw 1

with the homogenous Dirichlet boundary condition. f is so defined that the solution
has the form u = ze®¥sin(wz)sin(ry). The coefficients are specified as follows.

Example 1. £ =142+ 9y, n=e", a=5(z+y),f=1/(1+2z+y)and y=0.

Example 2. £ =0, p=0,a=1,8=1and vy = 1. o will be specified later.

Let us introduce some notations. ite denotes the total number of iterations required
for the GMRES algorithm. max err denotes the maximum error between the numerical
solution of the Galerkin’s equation and the exact solution of the continuous equation.
ovlp denotes the size of overlap. In our Fortran program, all the subproblems are solved
exactly by the band solver from LINPACK. The stopping criterion for the GMRES
method is || 7; [|a / || 7o l|la< 1074 The program is run in single precision on CONVEX
C-1 machine at NYU.

2. Test of the additive Schwarz method ,

Based on the 2-level subdivision of §, we introduce our basic substructure §2; ob-
tained by extending each triangle {; to a larger triangle such that each side is parallel
to its corresponding side, and does not cut through any h-level triangles. See the fol-
lowing picture. We assume the extension in each side of the Q; is uniform in the sense
that they all extended the same number of h-level triangles, which will be called the
size of overlap and denote by ovlp. Of course, we cut off anything which is cutside Q.

Y

4

(#,0) (1,0)

Figure 1. extended subregions

Example 1. In this example, we test the effectiveness of the algorithm and how it
depends on the mesh sizes h and H with a fixed overlapping factor a. But, since the
overlap must set to be an integer multiple of the fine mesh size h, it turns out that we
can not always use the same overlapping factor for all 2 and H. In the following table,
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if H = 1/3, we set the overlap to be approximately 0.4H, and if H = 1/5, to be 0.33H.

h H |ite || H |ite | max err
/15 [1/3 | 14 [11/5 ) 12 5.0 1073
1/30 | 1/3 114 || 1/5 | 14 1.3x 1073
1/45 11/3 115 |1 1/5 ] 15 5.8 x 107
1/60 | 1/3 1 15 || 1/5 | 156 |3.0X 10-4

With fixed H, the optimality in h can be seen clearly, i.e. ite changes very slowly
if we use finer h. However if we change H, the number of iteration required to achieve
the same accuracy does change . Note that the parameter 6 in Theorem 3 is increased
if the coarse mesh is further refined subject to the constraint H < Hy. This can be
seen more clearly if we solve problems with higher Reynold’s number as in the following
examples.

In the theory for the AgM , we assume that the distance between the interior bound-
ary of ; and the boundary of Q; is bounded from below by a constant a times the
coarse mesh size H. Now, in the following table we show how this constant affect the
number of iterations. We use the same model problem as above and set H = 1/5 and
h = 1/60. We run the same program for different size of overlap, which range from one
fine grid size to six grid size. The results are shown in the following table.

ovlp | A | 2h | 3h | 4h | 5h | 6K
ite [18]18 |16 |15 (14|13

Indeed, the increase of overlap can reduce the number of iterations. But we have
to note that this also increases the size of the subproblems and the cost per iteration
is increased also. Further studies on how to determine the optimal overlap so that
the parallel CPU time or the serial CPU time can be minimized are needed. Some
discussions about this issue for symmetric problems can be found in [10].

Example 2. (1) 0 = v/2/30.

We test the algorithm with a higher Reynold’s number. We take h = 1/45 and vary
the parameter H.

H 1/3 11/511/9(1/15
ite | +50 | 37 | 20 11
ovip | Bh | 3h | 2h | 1A

We believe that Ho is approximately 1/9 in this case.
Shown in Theorem 4, the observed parameter Ho is independent of h. This is
demonstrated in the following table.

H=1/10 [ h=1/80,0vlp=2h | h=1/100,0vlp=3h | h=1/120,0vlp=4h
ite 19 20 20
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(2) o =v2/100

In this example, we increase the Reynold’s number to 100. It can be seen that by
choosing a suitable H < Hy, we can still control the total number of iterations taken
to achieve a specified accuracy. By running the same example on a coarser fine mesh
space the approximate Ho can be obtained, which has been shown to be independent
of the fine mesh size. We then refine the mesh so that the required accuracy can be
achieved. According to Theorem 4 this further refinement of the fine mesh should not
increase the number of iterations. A further refinement of the coarse mesh reduces the
total number of iterations.

H=1/15 | h=1/45,0vlp=1h | h=1/60,0vlp=1h | h=1/75,0vip=2h
ite 23 23 23

H=1/20 | h=1/80,0vlp=1h | h=1/100,0vlp=2k | h=1/120,0vip=2h
ite 15 21 21
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