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Complex Aerodynamic Configurations™
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ABSTRACT. An application of domain decomposition to the analysis
of aerodynamic configurations is presented. An aerodynamic configura-
tion is discussed which consists of approximately 40 interacting
meshes, modeling an aircraft fuselage, an attached wing, pylons
attached to the wing and fuselage, stores attached to the pylons, and
inlet walls. The method used to analyze this configuration employs two
computer codes. The first calculates interpolation information among
interacting meshes; the second solves the Euler equations for the
entire configuration, using the interpolation information generated by
the first code. Issues related to mesh interactions, modeling complex
geometries, and computational accuracy are discussed.

1.0 INTRODUCTION. The Arnold Engineering Development Center
(AEDC) performs wind tunnel testing on a wide range of military air-
craft. The aircraft configurations, an example of which is depicted in
Fig. 1, often include stores suspended from pylons attached to both
the wings and fuselage. In addition, the test configurations often
include active engine inlets.

Computational fluid dynamics (CFD) calculations in support of
aircraft ground testing are an important aspect of the AEDC mission.
Aerodynamic problems related to wind tunnel testing present two
important challenges to CFD: 1) the requirement to produce timely
solutions in response to testing requirements, and 2) the solution of
problems related to complex three-dimensional configurations in a
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Engineering Development Center (AEDC), Air Force Systems Command.
Work and analysis for this research were done by personnel of
Calspan Corporation/AEDC Operations, operating contractor for the
AEDC aerospace flight dynamics facilities. Further reproduction is
authorized to satisfy needs of the U. S Government.
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Fig. 1. Complex aerodynamic configuration.

transonic flow regime, The main obstacle to overcoming these
challenges is the difficulty of generating computational meshes. Mesh
generation 1is time-consuming, even for relatively simpie three-
dimensional configurations. Generating a single mesh for the
configurations often encountered in tunnel testing may be impractical
or topologically impossible. In addition, a single mesh which is fine
enough to resolve the desired aerodynamic features of a complex flow
field may be too large for available computer memory.

To address these problems, Benek, et al. (Refs. 1-4) have developed
a method of domain decomposition called chimera, which allows a system
of relatively simple grids, each describing a component of a complex
aerodynamic configuration, to be combined into a composite grid to
yield solutions to complex flow fields. The chimera scheme is general
in that it allows solid surfaces in a mesh to be embedded within the
computational domains of other meshes. In addition, overlapping mesh
outer boundaries are allowed. The chimera scheme is presently used
with both Euler and thin-layer Navier-Stokes flow soivers to obtain
flow field calculations about highly complex three-dimensional air-
craft configurations, and has been applied to transonic store separa-
tion problems (Ref. 5), cavity flows (Ref. 6), and transonic tunnel
wall interference calculations (Ref. 7).

1.1 GENERAL CONCEPT. The concept behind the chimera scheme is
illustrated in Fig. 2, which depicts two independently generated
meshes modeling ‘a flapped airfoil. The flap mesh is embedded within
the airfoil mesh. Clearly, the flap mesh outer boundary can receive
flow field information interpolated from appropriate mesh elements of
the airfoil mesh. However, a reverse process must occur as well; the
flap mesh must communicate flow field information to the airfoil mesh.
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Since the airfoil mesh has no boundary through which flow field
information can be obtained from the flap mesh, an artificial boundary
must be defined within the airfoil mesh. Mesh points on the artificial
boundary which are defined within the airfoil mesh and which are fully
contained within the computational region of the flap mesh can be
updated by interpolation from the appropriate mesh elements of the
flap mesh. Generally, any mesh can receive information from other
meshes through outer boundary and artificial boundary points.

AIRFOIL
MESH —

—ARTIFICIAL BOUNDARY
IN AIRFOIL MESH

— EMBEDDED
FLAP MESH

Fig. 2. Mesh-to-mesh communication.

The interpolation process is further illustrated in Fig. 3, which
depicts a portion of the overlap region between the airfoil and flap.
Airfoil mesh points which are within a certain regicn surrounding the
flap are excluded from the computational domain of the airfoil mesh
(in chimera terminology they are "hole" points). This is accomplished
by defining a hole creation boundary within the flap mesh which will
define a region within which all airfoil mesh points are to be
blanked. The points in the airfoil mesh surrounding the blanked points
are hole boundary points which receive flow-field information
interpolated from mesh elements within the flap mesh, while points on
the outer boundary of the flap mesh receive flow-field information
interpolated from mesh elements within the airfoil mesh.

1.2 FUNCTIONAL DESCRIPTION OF THE CHIMERA SCHEME. Application of
the chimera scheme requires two main steps: 1) a description of how
each mesh 1s to communicate flow-field information to other meshes,
and 2) execution of a flow solver which utilizes the communication
information generated in the previous step. Presently, two computer
programs, PEGSUS and XMER3D, perform steps 1 and 2, respectively. The
processes accomplished by PEGSUS include establishing which boundary
points in a mesh can be updated by interpolated flow variables from
other meshes, and calculating the required interpolation coefficients
for each mesh element sending information to a boundary point. The
relation of PEGSUS to the chimera domain decomposition scheme is
depicted schematically in Fig. 4. The individual meshes and user-
defined mesh connection data are input into PEGSUS, which produces 1)
a composite mesh, i.e., a single file consisting of the concatenation
of all meshes in the multiple mesh configuration, and 2) an
interpolation file, which is a table associating all boundary points
in the composite mesh with mesh elements which supply the boundary
points with interpolated flow-field parameters. The composite mesh and
interpolation file are finput into the XMER3D flow solver, which
calculates the flow field in the composite mesh configuration.
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Fig. 3. Overlap region between grids.
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Fig. 4. The Chimera scheme.

The 1input and output to PEGSUS is depicted in Fig. 5. PEGSUS
requires as input the individually generated meshes which define the
configuration, and a description of how the meshes interact with one
another. The output of PEGSUS, in addition to the composite mesh and
interpolation file, consists of a summary of connection information,
diagnostic maps which graphically depict mesh connections, and an
information file which 1ists every boundary point and its
corresponding interpoiation element in the composite mesh.

2.0 MESH, BOUNDARY, AND SURFACE INTERACTIONS. Mesh interactions
in PEGSUS are defined by three types of relationships:
- mesh-mesh
- mesh-boundary
- surface-boundary
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Fig. 5. PEGSUS input and output files.

Figure 6 depicts the type of information which is supplied in the
input to define mesh-mesh connections. Each mesh in the composite mesh
receives information from other meshes in one of two ways, either
through its outer boundary or through hole boundaries which have been
created by hole creation boundaries in other meshes, For convenience,
hole boundary and outer boundary linkages are referred to as HBLINKs
and OBLINKs, respectively. These linkages are priority 1lists which
indicate the order in which other meshes will be searched for
interpolation elements. Fig. 6 indicates that Mesh 1 will search Mesh
2, Mesh 3, and Mesh N, in that order, for interpolation elements which
can provide information to the hole boundary points of Mesh 1. Mesh 2
and Mesh 5 will be searched in a similar manner for interpolation
elements which can provide information to the outer boundary of Mesh
1, while Mesh 4 will not be searched at all. Each mesh in the
composite mesh will be related to the other meshes by similar
Tinkages. PEGSUS allows up to 30 outer boundary and 30 hole boundary
Tinkages to be defined for each mesh; more linkages can be added, if
necessary, with minimal programming effort.

Figure 7 depicts the relationship between meshes and boundaries.
Boundaries are defined as collections of level surfaces within meshes.
0B 1 is the outer boundary of Mesh 1, while HB 1 and HB 2 are hole
creation boundaries defined within Mesh 1. Since 0B 1 is defined in
terms of surfaces within Mesh 1, there exists a specific relationship
between OB 1 and Mesh 1. This relationship is designated ISPARTOF,
i.e., OBl "ISPARTOF" Mesh 1. The same ISPARTOF relation holds between
the hole creation boundaries and Mesh 1. Hole creation boundaries also
have relationships to other meshes, i.e., they cause holes in other
meshes. This relationship is denoted as "MHOLEIN" (Makes a HOLE IN)
in the present discussion. According to Fig. 7, HB 2 makes holes in
both Mesh 2 and Mesh 3, while HB 1 makes a hole in Mesh N. Meshes 4
and 5 are not affected by hole creation boundaries defined within Mesh
1. PEGSUS allows each mesh to create holes in up to 30 other meshes.

Finally, Fig. 8 illustrates the relationship between surfaces and
boundaries. Boundaries are comprised of collections of surfaces, and
therefore surfaces have ISPARTOF relationships to boundaries in much
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Fig. 6. Mesh-mesh connections.
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Fig. 8. Surface-boundary relations. -

the same way as boundaries do to meshes. There is no Timit in PEGSUS
to the number of surfaces which may comprise a boundary.

The relationships between meshes, boundaries, and surfaces for
the airfoil/flap configuration depicted in Figs. 1 and 2 is iliu-
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strated in Fig. 9. The flap outer boundary receives interpolated
information from the airfoil mesh; therefore, an OBLINK is defined
from the airfoil mesh to the flap mesh. The HBLINK to the airfoil mesh
from the flap mesh indicates that the airfoil hole boundary receives
interpolated information from the flap wmesh. Two boundaries are
specified within the flap mesh: a hole creation boundary, and the flap
mesh outer boundary. The hole creation boundary makes a hole in the
airfoil mesh; accordingly, an MHOLEIN 1ink exists between the hole
creation boundary and the airfoil mesh. Assuming an O-mesh topology
for the flap mesh with computational coordinates of J, K, and L, with
the flap surface occurring at L = 1, a single surface suffices to
define the hole creation boundary (e.g., L = 5) and the flap outer
boundary (maximum L, or LMAX).

OBLINK

AIRFOIL g B FLAP
MESH MESH

ISPARTOF
MHOLEIN ™
FLAP HOLE FLAP OUTER
CREATION BOUNDARY BOUNDARY
ISPARTOF ISPARTOF
L=5 L=LMAX
SURFACE SURFACE
Fig. 9. Mesh, boundary, and surface relationships for airfoil/flap

configuration.

The relationships illustrated in Fig. 9 will not change if the
angle of attack of the flap is varied, as long as the airfoil surface
does not impinge on the outer boundary of the flap mesh. (In that

‘case, the airfoil should make a hole in the flap mesh.) In addition,
if the topology of the flap mesh is altered (e.g., to a C-mesh
topology), the only changes required in the relationships depicted in
Fig. 9 will be the surface definitions which comprise the hole
creation and outer boundaries of the flap mesh. The flexibility of the
surface and boundary descriptions allow relationships to be described
between meshes, boundaries, and surfaces regardless of mesh topology.

3.0 PEGSUS. PEGSUS performs four main processes: hole Tlocation,
generation of hole boundary points, hole boundary point interpolation,
and outer boundary point interpolation. The four functions are
performed 1in the order indicated, and only after all previous
functions have been completed on the entire composite mesh. This
modularity allows PEGSUS to be executed incrementally, i.e., the
functions of hole and outer boundary point interpolation can be
performed by ‘"restarting" from output generated from previous
functions. As a result, errors in input or mesh configuration can be
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identified and corrected at each stage before continuing to the next
function,

3.1 HOLE LOCATION. Identifying hole points requires determining
whether a mesh point is inside or outside a hole creation boundary
defined in another mesh. A mesh point is considered to be inside a
hole creation boundary of another mesh if it is inside all surfaces
which define the boundary. Figure 10 illustrates the method used to
determine whether a point is inside or outside a surface. A mesh point
is considered to be inside a surface if the dot product between the
vector from the closest point on the surface to the field point (shgwn
as R), and the normal vector on the surface at the closest point (N),
is negative or zero. (Note that the normal vector N must be defined as
being directed outward from the hole region). If the dot product is
positive, the mesh point is considered to be outside the surface.

N

NORMAL
VECTOR P

=y

" QUTSIDE POINT

INSIDE POINT

SURFACE
Fig., 10. "Inside" and "outside" a surface.

Figure 11 1illustrates the hole Tlocation process for a hole
creation boundary consisting of the three surfaces S1, $2, and S3.
PEGSUS first puts the indices of all points of the mesh in which the
hole is to be created into a 1ist. Then, all points which are outside
the first surface are eliminated from the index list. The process is
then repeated; all points which are contained in the shovrtened list
and which are outside the second surface are eliminated, shortening
the index 1ist further. When the process is repeated for the third
surface, the points remaining in the 1list are the hole points of the
mesh in which the hole is created.

This approach to hole generation requires that the hole creation
boundary be completely closed. For instance, it is clear that leaving
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Fig. 11. Hole location.

off any one of the boundaries in Fig. 11 will result in many points
being incorrectly designated as hole points. The requirement of closed
hole creation boundaries often cannot be satisfied adequately with
certain types of configurations (e.g., some wing meshes). However,
techniques have been developed to satisfy the closed-boundary
requirement for these cases, and will be discussed in Sec. 5.1.

The method used in PEGSUS to find hole points has another
important restriction, which is illustrated in Fig. 12. In Fig. 12a, a
hole creation boundary is defined. The candidate boundary point will
be considered to be outside surface 1, and therefore will be
considered to be outside the entire hole boundary. As a result, the
point will not be identified as a hole point. Generally, hole creation
boundaries (as viewed from the outside) must be convex to obtain
correct results. However, PEGSUS allows multiple holes to be defined
within a mesh. Any hole creation boundary which contains concavities
can be divided into one or more entirely convex regions, each of which
can create holes in one or more other meshes. If the hole creation
boundary is redefined as two separate convex boundaries, as in Fig.
12b, the candidate point will be inside one of the hole creation
boundaries, and will therefore be correctly identified as a hole
point. The candidate points within the two boundaries will all be
labeled as hole points and will therefore effectively merge into a
single hole.

3.2 HOLE BOUNDARY (FRINGE) POINT GENERATION. Once all holes in
all meshes are correctly located, mesh points surrounding holes (i.e.,
hole boundary points, also called fringe points in chimera
terminology) must be identified. The identification of hole boundary
points (in two dimensions) is illustrated in Fig. 13. Hole boundary
points are, by definition, always adjacent to hole points. Each hole
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Fig. 12. Restrictions on hole creation boundaries.

point has six adjacent points 1in three dimensions {(in PEGSUS
nomenclature, a hole point and its adjacent points comprise a seven-
point stencil). Any adjacent point which is not itself a hole point is
identified as a candidate hole boundary point. The final result is the
generation of a 1ist of candidate hole boundary points which are to
receive interpolated flow-field information from other meshes.

3.3 HOLE BOUNDARY INTERPOLATION. Hole boundary finterpolation is
performed after all hole points and candidate hole boundary (i.e.,
fringe) points in the composite mesh have been identified. At this
point PEGSUS searches other meshes in the composite mesh for mesh
elements which may be used to interpolate flow field information to
the hole boundary points.
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Fig. 13. Hole boundary generation (2-D).

3.3.1 HOLE BOUNDARY PRIORITY LIST. The HBLINK definitions for
each mesh (Sec. 2.0) comprise a priority list containing the names of
other meshes which are to be searched for interpolation elements which
can provide information to hole boundary points. The meshes in the
priority 1list are searched in the order in which they appear in the
input. If an interpolation element s found, the interpolation
information for the point is stored in a set of arrays. If the hole
boundary points cannot be interpolated by mesh elements in the first
mesh in the priority 1ist, the second mesh is searched for interpola-
tion elements. The process continues until either dinterpolation
elements for all hole boundary points have heen found, or the mesh
priority list is exhausted. Any hole boundary points which remain
after the mesh priority 1list is exhausted are termed "orphans."
Orphaned hole boundary points will be treated as hole points and hence
will not be updated by the flow solver.

Since hole location and hole boundary point interpolation occur
as two separate functions, a mesh which causes a hole in another mesh
does not necessarily have to be the mesh which provides interpolated
information to the resultant hole boundary points. This allows meshes
to be used for no other function than to generate holes in other
meshes; this feature is used extensively in certain instances, such as
the modeling of 'a fuselage and attached wing (Sec. 5.1).

3.3.2 VALID AND INVALID INTERPOLATIONS. Finding a mesh element
which can supply interpolated information to a hole boundary point is
a necessary but not sufficient condition for an interpolation to be
considered satisfactory. For instance, a mesh element which is to
supply interpolated information to a boundary point may itself be com-
prised of mesh boundary points which are updated through interpola-
tion. As a result, most of the information used to update the original
boundary point will come from interpolation, rather than the solution
of the flow field. This close coupling of boundary points often
results in poor global convergence. The strategy used in PEGSUS is to
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simply not allow boundary points to be updated by mesh elements which
are themselves comprised of boundary points.

Figure 14 illustrates the difference between valid and invalid
interpolations, as defined within PEGSUS. In Fig. 14, the outer
boundary of a mesh (dotted 1lines) 1is to receive interpolated
information from another mesh (solid lines). (We will refer to the
first mesh as the "recipient" mesh, and the second mesh as the
"donor" of interpolated information). An interpolation is valid if an
interpolation element can be found in the donor mesh for which none of
the corner points of the element are hole or boundary points, or if a
boundary point is coincident with a corner of an interpolation element
in the donor mesh, and the corner point itself is not a hole or
boundary point. The hole boundary point in Fig. 14 comprises a corner
of two mesh elements which contain points A and B: as a result, points
A and B cannot receive interpolated information from the donor mesh.
Point C is coincident with a corner point of the donor mesh. Since the
corner point is not 1itself a boundary or hole point, point C can
receive information from the donor mesh. None of the corner points of
the mesh element containing point D is a boundary or hole point;
therefore, point D will be permitted to receive interpolated
information from the donor mesh. In Fig. 14, points A and B will be
orphans uniless the recipient mesh has an outer boundary link to
another mesh which can provide valid interpolation elements.

HOLE POINT

— HOLE BOUNDARY
POINT

VALID
INTERPOLATIONS

e INVALID N ~
‘ /WRPOLAHONS S
, ; B " C 2
[N Y o e o e e e () s e o s e s e @
Z{;;H “ /

OUTER
BOUNDARY

Fig. 14. Vaiid and invalid interpolations.

3.3.3 SEARCHING FOR INTERPOLATION ELEMENTS. Identifying mesh
elements which can be used for supplying interpolated information to
boundary points requires some sort of searching procedure. An exhaus-
tive search of mesh elements will always find a permissible mesh ele-
ment if one exists; however, exhaustive searches are computationally
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intensive. PEGSUS uses a heuristic search mechanism which can find an
interpolation element in relatively few steps.

The interpolation algorithm used in PEGSUS 1is a trilinear
interpolation scheme, and is fully documented in Ref. 3. The trilinear
interpolation algorithm yields interpolation coefficients for a point
either inside or outside the element (the latter case is actually an
extrapolation). The interpolation coefficients will all be between 0.0
and 1.0 if the point is inside the element; a point outside the
element will cause at least one coefficient to be greater than 1.0.
The interpolation element in effect defines a local coordinate system,
while the interpolation coefficients define the location of the point
in the local system. In PEGSUS, the interpolation coefficients are
used to determine the direction (in computational coordinates) in
which the search should proceed in order to eventually find an element
which surrounds the point. For instance, a given boundary point and a
mesh element with its lowest-indexed corner point at J, K, and L may
yield interpolation coefficients of 5.2, 7.8, and 2.3. PEGSUS will
then move to the mesh element corresponding to the point J + 5, K+ 7,
and L + 2. The new mesh element will usually be closer to the boundary
point. The procedure is repeated until all interpolation coefficients
are between 0.0 and 1.0. Indices of candidate mesh elements are
allowed to jump as much as a third of the distance (in computational
coordinates) across a mesh. In general, the search will succeed in
three or four steps, even if the initial starting point is far from
the final interpolation mesh element. Although this searching mecha-
nism can in principle fail in certain cases (e.g., highly curved or
distorted meshes), in practice the searching procedure is highly
reliable.

3.4 OUTER BOUNDARY INTERPOLATION. The interpolation of outer
boundary points is accomplished in almost exactly the same way as hole
boundary interpolation, except that outer boundary points comprise the
set of candidate boundary points, and a different priority list (i.e.,
the OBLINK 1ist, see Sec. 2.0) from the one used for hole boundary
processing is used. The criteria for permissible interpolations and
the searching algorithm are identical to those used for hole boundary
processing. In PEGSUS, only outer boundary surfaces which are to be
interpolated are defined in the input. As a result, free-stream outer
boundaries do not have to be specified.

Unlike orphaned hole boundary points, orphaned outer boundary
points are not necessarily undesirable. For instance, two meshes may
have their outer boundaries only partially embedded within each others
if the entire outer boundary of each mesh is designated as a surface
to be interpolated, the points on the boundaries outside of any mesh
will be designated as orphans. Orphaned outer boundary points are not
blanked out, and can therefore have boundary conditions (usually free-
stream) imposed by the XMER3D flow solver.

3.5 GENERATION OF INTERPOLATION TABLE. Once the interpolation
coefficients are generated for the boundary points in the composite
mesh, the interpolation table is generated. The structure of the
interpolation table is illustrated in Fig. 15. The interpolation table
consists of a list of every boundary point in each mesh which receives
interpolated information from other meshes, a list of every mesh ele-
ment in each mesh which provides interpolated information to boundary
points, and pointers from boundary points to the mesh elements which
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provide the boundary points with interpolated flow-field data. In
addition, PEGSUS outputs a Tist of all points in the composite mesh
that are hole and boundary (i.e., "blanked") points. At this point, pro-
cessing by PEGSUS is complete; the interpolation table can now be used
by XMER3D to update boundary points during flow-field calculations.

LIST OF
INTERPOLATION
ELEMENTS
INTERPOLATION
INDICES COEFFICIENTS
° M=
LIST OF °- * ‘
BOUNDARY ° ° o M=2
POINTS . .
FOR M= 2
INDICES POINTERS v
o ° M:=3
R ./

Fig. 15. Data structure used in XMER3D.

4.0 XMER3D. The flow solver code, XMER3D, is a derivative of the
AIR3D code developed by Pulliam and Steger (Ref. 8). XMER3D solves the
3-D Euler or Navier-Stokes equations using the implicit approximate
factorization algorithm originally developed by Beam and Warming (Ref.
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9). Boundary condition imposition 1is explicit, and is therefore
ideally suited for applications using boundary conditions which are
interpolated from other meshes.

XMER3D differs from AIR3D in several aspects. AIR3D was designed
to work only with single meshes. XMER3D is designed to eliminate from
the implicit solution process all points in a mesh that have been iden-
tified as hole points or boundary points, and process multiple mesh
configurations, using interpolation files generated by PEGSUS. In
addition, XMER3D has been extensively vectorized for use on Cray-class
machines.

The exclusion of hole points from the solution process is
accomplished 1in a straightforward manner. The implicit algorithm
solves a system of equations which may be represented as

where A is a coefficient matrix, § is the vector of unknowns occurring
along a computational coordinate, and F is the known vector. The
values of 8§ correspond to corrections of the latest approximation @
of the flow variables. Therefore, & is added to the latest value of @
to obtain updated values of @: :

oMl = gn 4 5

However, in the case where some components of & occur at hole or
boundary points, it is required that the implicit algorithm calculate
correction values equal to zero. For instance, if & is a vector of
seven elements, then the implicit system has the form

. . : : C .. 3
all a;z 0 0 0 AR e Fl
: : 0
a2l a2 ;a3 O o 82 F2
0 az2 § a3z azd 0 E 0 0 53 Fa
o 0 5 a43 a44 a48 E 0 0 > 8g 9= Fa
0 0 . 0 a54 as5 + a56 0 85 F5
P 0 0 a65 : ag6 a6’ 86 F6
0 : :
L i 0 0 care a77 | (87 | | F7 |

If, for example, the third, fourth, and fifth elements of & occur
at hole or boundary points, corresponding rows of the coefficient
matrix A are modified. The off-diagonal elements of relevant rows of
the matrix A are set equal to zero, the diagonal elements are set
equal to one, and the corresponding elements of F are set equal to
zero. The system then takes the form
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In this system, the values of the corrections at hole point
locations will be zero, as required. In addition, the solutions of §i
and 82 are uncoupled from the solutions of 8 and 67. ®3 and &5are
values of the flow variables at hole boundary points and are therefore
determined by interpolation from other meshes. The corresponding
corrections are zero; therefore the finterpolated values of & are
preserved. The modifications of the coefficient matrix are accom-
plished by XMER3D during execution, using the 1list of marked or
"blanked" points generated by PEGSUS.

PEGSUS also blanks outer boundary points which are to receive
interpolated information from other meshes. The same process which
excludes hole and hole boundary points from being updated by the flow
solver is therefore applied in an identical manner to outer boundary
points.

The method by which XMER3D processes multiple meshes is depicted
in Fig. 16. The flow solver cycles through every mesh during each time
step. During a cycle, boundary conditions are updated and the solution
is advanced by two time steps for each mesh. Meshes that are processed
later in the cycle will receive updated boundary conditions from
meshes which were processed earlier in the cycle. Changes in flow
variables in the composite mesh are calculated during each cycle; when
the changes fall below a preset tolerance, the composite solution is
assumed to be converged to a steady-state solution.

5.0 APPLICATION OF CHIMERA TO A COMPLEX CONFIGURATION. The major
impetus behind the development of the chimera scheme was the
requirement to perform CFD calculations on compliex three-dimensional
configurations. Although chimera supplies the basic tools to model
general geometries, various aspects of complex configurations must be
treated carefully to obtain good results. In the course of applying
the chimera scheme, specific methods have been developed to model
wing/body junctures, inlets, pylons, and stores.

5.1 MODELING THE WING AND FUSELAGE. A common application of the
chimera scheme is the modeling of an aircraft fuselage and wing. This
is wusually accomplished by generating separate meshes about the
fuselage and wing and requiring the meshes to communicate
appropriately. A typical wing/body juncture is depicted in Fig. 17.
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Fig. 16. XMER3D flowchart.

The wing surface 1s embedded within the fuselage mesh; hence, a hole
surrounding the wing must be generated within the fuselage mesh.
However, for most wing mesh topologies, the hole creation boundary
within the wing mesh cannot be completely closed. As was indicated in
Sec. 3.1, a hole creation boundary which is not completely closed may
generate spurious hole points. It dis therefore almost always
necessary, when modeling wing/body Jjunctures, to treat the hole
generation process in a special manner.
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In Sec. 3.3.1, it was stated that a mesh which creates a hole in
another mesh does not have to be the mesh which supplies interpolated
flow-field information to the generated hole boundary points. It is
therefore possible to generate "fictitious" wmweshes whose sole
function is to create a satisfactory hole in another mesh, allowing a
third mesh to supply interpolated flow-field information to the
resultant hole boundary points. The use of a fictitious mesh to
properly model a wing/body juncture is illustrated in Fig. 17. In the
iTlustration, a boundary defined within the fictitious mesh completely
encloses the wing, and therefore generates a hole in the body mesh for
the wing; the wing mesh itself does not generate a hole at all.

Fictitious meshes have no other interaction with other meshes,
i.e., no hole or outer boundary links to other meshes are defined.
After processing by PEGSUS 1is completed, all fictitious meshes are
discarded and therefore are not in any way processed by XMER3D.

5.2 MODELING THE INLET AND FUSELAGE. Wind tunmel test articles
often include an active inlet which generally greatly affects the flow
field in the vicinity of the fuselage. As a result, the computational
methods employed for analysis must include the capability of modeling
the inlet face and walls up to the engine face. ,

An example of an inlet/fuselage configuration is shown in Fig.
18. The configuration consists of two meshes. The first mesh models
the fuselage; the second mesh models the inlet interior surfaces and a
region ahead of the inlet. The inlet mesh passes through the inlet
region of the fuselage mesh. The outer boundary of the inlet mesh
forward of the inlet face receives flow field information interpolated
from the appropriate mesh elements of the fuselage mesh. Solid wall
boundary conditions are imposed on the interior walls of the inlet aft
of the inlet' face, and outflow conditions are imposed at the
downstream boundary of the inlet mesh.

The surface of the fuselage mesh corresponding to the inlet face
receives flow-field information interpolated from the interior of the
inlet mesh. This is accomplished by defining the inlet face region as
a boundary with a boundary link to the inlet mesh. The flexibility of
PEGSUS allows any surface to be defined as an outer boundary.
Therefore, the surface of the fuselage in the vicinity of the
inlet/fuselage juncture is defined as an "outer" boundary with an
outer boundary link to the inlet mesh. No holes are created in either
mesh, since no solid surface from one mesh is embedded within the
other mesh.

5.3 MODELING PYLONS AND STORES. An example of a typical fuselage,
pylon, and store mesh configuration is depicted in Fig. 19. In this
configuration, two stores are attached to the fuselage with pylons.
The store and pylon solid surfaces are embedded within the fuselage
mesh, and each pylon solid surface is embedded within its respective
store mesh. Pylons are also attached to wing surfaces, but are not
depicted in Fig. 19.

From a modeling standpoint, the relationship between a pylon and
store (and between a pylon and fuselage or wing) is roughly equivalent
to that between a wing and fuselage; in effect, a pylon is a wing of
very small aspect ratio. As in the case of wing meshes, generating
holes about pylon surfaces may be difficult unless fictitious meshes
are employed. Typically, each pylon will have an associated fictitious
mesh which generates a hole in the surrounding store and fuselage
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(and/or wing) meshes. The resulting hole boundary points generated in
the store and fuselage meshes can then be updated by elements within
the pylon mesh. (The hole boundary points in the store mesh could also
be updated by the fuselage mesh, and vice versa, if appropriate hole
boundary Tinks are defined).

Section 4.0 described how blanked mesh points are excluded from
being updated by the XMER3D flow solver. Blanked points are usually
either updated through interpolation, as in the case of hole boundary
and outer boundary points, or are not updated at all, as in the case
of hole points. However, blanked points may be updated explicitly
through imposed boundary conditions. This allows XMER3D to accommodate
arbitrary boundary conditions which are imposed on internal mesh
points. In the case of store meshes, internal boundary conditions may
be imposed to model thin fins. This is accomplished by designating the
points carresponding to fin surface points as blanked points. Solid
surface boundary conditions are then imposed on the blanked points.
The flow solver will then automatically treat the blanked points as
boundary points.

5.4 TOTAL CONFIGURATION. The solid surfaces of the most complex
configuration modeled to date are depicted in Fig. 20. The
configuration consists of a fuselage, wing, inlet, six pylons, and
four stores. The complete configuration requires 50 meshes, of which
twelve are fictitious. The composite mesh consists of a total of 1.33
million mesh points.
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Fig. 20. Wing/body/store configuration,

a. Front view

5.5 SAMPLE CALCULATIONS. Euler equation solutions for the
configuration of Fig. 20 are compared against experimental data in
Fig. 21. Two plots of pressure coefficient are presented for a
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configuration angle-of-attack of 1.1 deg and free-stream Mach number
of 0.98. Experimental data were obtained for Tlongitudinal traverses
beneath two model configurations. The leftmost plot depicts pressure
coefficients for a configuration which included the fuselage, wing,
inlet, and pylons, but did not include any stores. The right piot
depicts pressure coefficients for the complete configuration depicted
in Fig. 20.

o EXPERMAENT ®

CALCULATION

WITH STORES

INLET POD NOSE

Fig. 21. Comparison of experimental and calculated pressure
coefficients.

Comparisons between experimental and calculated pressure
coefficients for the configuration which did not include stores were
generally very good. The expansions and compressions within the flow
field are shifted downstream somewhat, as is expected with inviscid
solutions. The inviscid solutions also result in sharper peaks and
valleys than are exhibited by the experimental data. The pressure
comparisons for the configuration including stores are good, but are
degraded somewhat in the wake region of the stores, as would be
expected with the inviscid flow assumptions. '

6.0 CONCLUSIONS. A computational scheme called chimera has been
developed and implemented at the Arnold Engineering Development Center
to provide the capability of performing computations on complex



450 Dietz et al

aerodynamic configurations. The chimera scheme consists of two codes,
PEGSUS and XMER3D. PEGSUS defines the communication among the meshes
which comprise the aerodynamic configuration; XMER3D solves the Euler
or Navier-Stokes equations for the multiple-mesh configuration.
Chimera is presently being applied to aerodynamic configurations which
include nearly complete aircraft definitions, including wings, inlets,
pylons, and stores. The accuracy of the flow-field calculations is
generally quite good, and validates the Euler solver used in
conjunction with the domain decomposition approach as a predictor of
flow fields about complex 3-D aerodynamic configurations. Future work
includes the development of moving-mesh capabilities, which will allow
the calculation of flow fields where solid bodies are moving relative
to each other.
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