CHAPTER 12

Augmented Lagrangian Interpretation of the
Nonoverlapping Schwarz Alternating Method*

R. Glowinskit
P Le Tallec**

Abstract.  We present below an interpretation of the nonoverlapping Schwarz alternating method
proposed by P. L. Lions. In an augmented Lagrangian framework, we can interpret such an algorithm
either as a classical saddle-point algorithm or as a time integration scheme of Peaceman-Rachford type.
It is hoped that such a point of view can give insight on the choice of the algorithm parameters and on

its extension to nonlinear situations.

1. INTRODUCTION OF A SADDLE - POINT FORMULATION AND ALGORITHM

We first formally introduce this formulation on the following model problem

“Au =1 in Q,
u=0 on 89,

the domain € being decomposed in two subdomains as indicated in the figure below, the interface

being denoted by 5 = 715 = 794-
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Ql S Q2

Figure 1

Obviously such a problem can be rewritten as

Min Liovi? — fv)dx |,
M M(zl 2 -1 J

that is
Min / (% [Vv,]? — fv1>dx + / (3 le2|2wfv2)dx
v, €HY (D) Q Q,

v; =0 on 0, vi=v, on §

Adding the extra variable q=v, =vyon S, we finally get the following constrained

minimisation problem

2
Minimize > {/ (% [ Vv, | — fvi)dx + %/[viqudS}
i=1 ' s

V£€H1(Qi), Qz
v;=0 on 9Q

under the linear constraints v, =q and v =q.
s 2lg

Introducing the Lagrange multipliers A; of these linear constraints and the corresponding Lagrangian

2
L(viqip)= Z {/ (%]vvilz"f"i)dx—}'%/ |Vi“QI2dS+/ Ili(Vi“Q)ds}
s 8

=1 Vg

(3

our original problem takes the final form:

FIND A SADDLE-PQINT ((ui, p)9)‘i> OF £ OVER A WELL CHOSEN PRODUCT SPACE.

Such a saddle point formulation is particularly interesting because of the many algorithms that
are available for its solution. For example one can use the following algorithm (denoted by

ALG3 in references [2] and [3]):

2 and q"—1 given. Then for n>0, A} and p® 7! being given, solve successively
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From the definition of £, this algorithm takes the form

n
Ou;

on,

K

{-Au-n =f in Q,,
1

ult=0 on 8Q, +rul = pt Tt - A on S,

1
n-+3
A E=AT o x(ul - ™),

1 1
n-+3 ntz
2rpnzr(u1f‘ + u121)+)\1 2 Ay 2

1
. n-+3
/\Il “‘1:Az 2+I‘(U? o pl’l).

1

Therefore we have

n-+1
AV
L1
n-+-5
= 2rpn~—-)\i 2 ru?

1 1
n-+5 n+s
rluly 40 24 2 =

?

fi

1
n-+-3
- 2
tuy + /\j

= 2rul;-l + /\§-l — rphT?



AUGUMENTED LAGRANGIAN INTERPRETATION 227

In other words, after elimination of A; and q, our algorithm writes

~Aul =f imnQ

7%

n-1
6“? n 6uj n—1
5—;}; + oy = — o + Ty, on S.

J
This is precisely the nonoverlapping Schwarz alternating method proposed by P. L. Lions [1],

that we have recovered by a mathematical programming approach.

2. ABSTRACT FRAMEWORK.
2.1 The original problem.

We take the notations of P. L. Lions [1]. Thus Q is a bounded, smooth open set of

R™, decomposed into
Q =0 U.UQLUE,
Y o= U ”
1Si¢jsm71p
On 2, we want to solve the elliptic variational problem below
. p
3 {ai(u, v) — Li(v)}zo, VveHy (@; RP), ueH} (9 RP),
[E=31 .
under the notations
a;(u, v) = / AVu : Vvdx,
Q;
L;{v) = / f-vdx.
Q;
Above A is a symmetric definite tensor, possibly depending on x, and f belongs to Lz(Q; Rp).

"The problem to solve therefore corresponds to the partial differential equation

{—div (AVw) =f  inQ,

u=20 on 0Q.
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2.2 Notations

Let us introduce

m
V= 1 849,
i=1
L
H = I1 H 2075,
1<ii<m

L
(- y -);j=scalar product on H 2('yij),

i L
n:; = n;; = Riesz map from H2(7“) into H 2('y,.j) associated to the scalar product (+,-);;,
B : V- H
(ui)i ey (nij tr uil'fij)ij’
E {q eH, qij:qji} = B(HL(Q)),
F = Indp = indicator functional of E in H,

G : V =R

(u;); - i / (%AVui: Vuin—ﬂui)dx.
i=1"q.

An alternative choice of notation would be to introduce positive numbers 7, and to set

(Bu)ij = mi; tmihi,"

('y')ij ::T']"l;;(a) 1
2
D)

This last choice is the strict equivalent to what is done in P. L. Lions [1] (with A;;= r7,;), and
leads to a much easier numerical implementation. But then, BB is not an isomorphism on H,

which will translate in more fragile convergence properties of the algorithm to come.
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2.3 Lagrangian Formulation.

In the above notations, our elliptic problem takes the abstract form (see §1)

(P)  Min, {pv) + G(v)}.

Such problems have been extensively studied in nonlinear programming (see Fortin-Glowinski

[2] Glowinski-LeTallec [3]). After introduction of the augmented Lagrangian
Le(vs @i p) = F(q) + G(v) + 5(Bv—q, Bv—q) + (g, Bv—q)
it reduces to the saddle-point problem
Lr(w, pi 1) < L2 (0, p3 A) < Lp(v, @3 A),
V (v, q; p) € VxHxH, (u, p; ) € VxHxH,
which can be solved by the algorithm ALG3 of §1
X and p""1 known

then for n>0, A" and pn"1 known, solve successively

As in §1, this algorithm is the nonoverlapping Schwarz alternating method proposed in [1].

2.4 Dual evolution problem.

As seen in [3], the analysis of the above augmented Lagrangian algorithm is best

done by introducing the equivalent dual formulation
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0 € o7~ (\)—BaG—1(—Bb).

In our case, we have

OF(a) = ET ifq € E,
=0 if not,
thus
oF~ 1)) =Eif ) e BL
= { if not.

Similarly, a direct computation characterizes BG"l(—BtA) as the solutions (u;) of
the problems
—div(AVuy,) = 0 in

[}

i = ’\ij on 74 54-

Thus mB@G“l(——BtA) is the generalized Steklov-Poincaré operator which transforms the

normal derivative of an harmonic function into its trace.

Then, the dual problem has the following form

{

To this dual problem, we associate the evolution equation

Buec E (continuity of the function at the interfaces),

A€ gt (continuity of the normal derivatives at the interfaces).

D 1 o=l -BoGTI(—BM) =0,

which we solve by the Peaceman-Rachford algorithm

n+i

1
A 2.0 lany pan—1 nty 23
A7 + 8F TN —BIGTH(=B'A ?) =0,

)\n+1 _ A““‘%

41
KA+ ar—1"th _ Bag—1(—BtA"" 2)=.
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As proved in [3], this algorithm is identical to the algorithm ALG3 of §2.3 and therefore to the
method of [1].

Moreover, under this last form, we can prove linear convergence of this algorithm
(independently of any discretisation step h) as soon as BB' is an isomorphism on H (Lions-

Mercier [4]).

3. CONCLUSIONS

The alternating method of [1] has been rewritten first as a saddle point algorithm,
second as a Peaceman-Rachford time integration scheme. Such interpretations guarantee linear
convergence (for a proper choice of ), j =, j), and simplify its numerical implementation
and its extension to nonlinear situations. But as it is the case for most augmented Lagrangian
algorithms, this emphasizes the key importance of a proper choice of 17;; on the algorithm’s

convergence properties. An automatic efficient strategy for choosing ry, 5 is still to find.
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