CHAPTER 9

Convergence Estimates for Some Multigrid Algorithms*
Jinchao Xut

Abstract

This work is devoted to the theoretical analysis of the multigrid algorithm ap-
plied to three different problems in finite elements. First of all, a piecewise linear
nonconforming element is studied. By choosing the conforming elements as coarser
spaces, we propose a multigrid algorithm whose convergence properties are similar
to conforming elements. Secondly, for the 2nd order elliptic boundary problems with
strongly discontinuous coefficients, we prove that the convergence rate of the multi-
grid method (with the natural weighted norms) is independent of the jumps of the
discontinuous coefficients. Finally, we design a multigrid algorithm for arbitrarily
refined meshes in any dimension and then prove that the algorithm has the uniform
contraction property. Similar results are also obtained for interface problems with
refined meshes. The theory is currently established under the condition that the
number of levels is fixed.

Introduction

In this paper, we shall first propose and study a multigrid algorithm for some nonconform-
ing element. In the family of nonconforming finite element spaces, the Crouzeix-Raviart
(c.f. [6]) piecewise linear nonconforming element perhaps is the simplest one, but its multi-
grid analysis was still not well-developed. The difficulties lie in the nonnested multilevel
spaces and the unnatural prolongation operators. Attentions has largely been paid to the
construction of appropriate prolongations and some convergence results have been estab-
lished under the condition that the number of smoothings is sufficiently large. For the work
in this direction, we refer to Brenner [5] and Braess and Verfiirth [1]. In this paper, the -
approach we will take for this kind of nonconforming element is different from that in [5] or
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[1]. Our focus here is on the choice of coarse level spaces. In the context of the Crouzeix—
Raviart element, there seems to be no reason why we still have to use the nonconforming
P1 element on the coarse levels where instead we use the conforming P, element. This
is the main point in our approach. It turns out that the resulting sequence of spaces are
nested and the behavior between any two coarse levels is exactly same as the conforming
element and hence there is nothing new in its analysis. The only problem is the transition
from the finest space to the next coarser space which is chosen to be the conforming P,
on the same triangulation on which the finest space is defined. We are able to show that
the uniform contraction property is still valid between these two grids. Therefore a theory
similar to the conforming element can be established, in particular the resulted algorithm
is uniformly convergent with only one smoothing step.

The second problem we are interested in is the multigrid analysis for interface prob-
lems. What we mean by interface problem is that the coefficients appearing in the paritial
differential equations may possess discontinuous jumps and specifically these jumps may
be extremely large. Since the usual multigrid estimates for this problem depend on such
jumps, the multigrid convergence rate could be deteriorated as the jumps get large and
- therefore the algorithm may no longer be efficient. In practical computations, one can
use some properly weighted discrete L? products for improvement. It is observed numeri-
cally the convergence rate of the corresponding multigrid algorithm is independent of the
jumps. This phenomenon will be justified in this paper for two level or fixed number of
level schemes.

Multigrid algorithm for nonquasiuniform meshes is another problem to be studied in
this paper. There are many situations where local mesh refinements are important in
the finite element approximation. A typical example is the case where the solution of the
partial differential equation possesses singularities near the corner of a non-convex domain,
singularity also occurs in the interface problem mentioned above. Near a singularity, the
mesh should be refined in order to maintain the accuracy. In this way, nonquasiuniform
triangulations arise. It is quite natural to try the multigrid method for the refined meshes.
As a matter of fact, much attention has been paid to this problem in the literature. Some
numerical examples actually demonstrate the efficiency of the algorithm. However, the
theoretical aspect of the algorithm gets much more complicated and it seems that very little
was done in this direction. In [12] and [13], Yserentant presented some results for some
systematically refined meshes, but it is not clear how to get a sequence of nested meshes
that still satisfy the required conditions. In this paper, we shall design an algorithm for
some quite general nonquasiuniform grids and show an optimal convergence result under
the condition that the number of levels is fixed. An important point in our analysis is to
make the right choice of the discrete L? product.

In the usual multigrid analysis, one of the main ingredient is the so—called elliptic
regularity and the resulting approximation estimate (cf. [14]). The difficult in the analysis
of the problems mentioned above is that it is very hard to get the right approximation
estimates by using the elliptic regularity. Our strategy is somehow to skirt the elliptic
regularity. Although we have not reached the optimal result for all the problems considered,
at least our theory provides a rigorous theoretical justification for some special cases and
further research for more general cases is under development.
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As is done by the author in [14], we are going to use the following notation:
<y, fzg and uxv

which mean that 4
t<Cy , f>cg and ew<u<sCv

where C and ¢, are positive constants independent of the variables appearing in the in-
equalities and any other parameters related to meshes, spaces etc.

The remainder of this paper is organized as follows. In Section 2, we will describe an
abstract multigrid algorithm with applications to a second order elliptic boundary value
problem with finite element discretizations. Section 3 contains a major technical lemma
that is used throughout this paper. Section 4 is devoted to the study of the Crouzeix and
Raviart nonconforming element. In Section 3, interface problems, mesh refinement and
interface problem with mesh refinements are discussed. Section 6 is a special remark on a
forthcoming new result related to the current paper.

2 Multigrid Algorithm and Model Problem

In this section, we shall give a brief description for a multigrid algorithm and its applica-
tions to a model elliptic boundary value problem with finite element discretizations. The
multigrid algorithm will be presented in an abstract fashion in the first subsection. In the
second subsection, we will state the model problem with finite element discretizations and
indicate how the multigrid algorithm may be applied.

2.1 A Multigrid Algorithm

Assume we are given a hierarchy of real finite dimensional spaces as follows:
My CMzC...CMj.

In addition, let A(:,-) and (-, )& be symmetric positive definite bilinear forms on M . We
shall develop multigrid algorithms for the solution of the following problem: Given f € M;;,
find u € M; satisfying

A(uv qS) = (fa ¢)J Vo e Mj'
To define the multigrid algorithms, we need to define some auxiliary operators. For
k=1,...,7, the operator Ay : M — M, is defined by

(Akw, ¢)k = A(w, ¢) Yw, ¢ € M.

Clearly the operator A is symmetric positive definite (in both the A(-,-) and (-, *)x inner
products). Operators Tt My = Mpa and Pp_q : My > My are defined by

(2.1) (Ifcw,¢)k—-1 = (w, (f))k Yw € My, ¢ € Mg,

and

(2.2) A(Piarw, @) = A(w, ¢) Vw € My, ¢ € M1
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In other words, Z} and Pi_; are the adjoints of the inclusion operators with the inner
products (+,-)x and A(,-) respectively. Z{ is often called restriction operator. Pj_, is just
the ordinary Galerkin projection.

With the framework and notation given above, we are now in a position to define our
multigrid algorithm and it will be characterized in terms of a sequence of recursively defined
- operators By, : My +— M. In the following, p,m; are given positive integers and Ay is
either equal to p(A) or an upper bound of p(Ax) such that Ay < p(Ay).

Algorithm S First of all, By = AT'. Now assume By_, is defined. Then By, is defined,
for g € Mi(Arw = g), by Brg = w¥™s+t with w?™+! being defined as follows:

1. Pre-smoothing on My:

wl =0
,wl __,,,wl-»l "{_)\ 1(g___Akwl-])
131,2,‘ s M.

2. Correction on My_1: w™H = w™ 4 g where P € My_y is defined as follows

H

q
¢ = ( k»-lAk«-l)ql"l + Br-1T{(g — Arw™)
[ =

3. Post-smoothing on My

wl o 'LUIMI +)\]-c—1(g____ Akwl-—l)
l:mk+2,---,2mk+1.

Denoting Ey = I — By Ay, by a direct calculation we can show that

(2.3) Ey = K (I = Pooy + Bl Poy) K™
and
(2.4) A(Egv,v) = A((1 — Pr-1)v,v) + A(E}_{ Peo1v, Pe_yv)

where v = K" v.

By induction, it is easy to see that Ej is symmetric positive definite under the inner
product A(:,-). To show the convergence of the algorithm, it suffices to establish the
estimate of the following type:

(2.5) NEll, < 8 <1

where A(E )
KU, U
El|, = max ———==,
B, = mex S0
Remark 2.1  If my(= m) are independent of k, the above algorithm is often called
V — —cycleif p=1or W — —cycle if p = 2. Otherwise (for p = 1), we may choose, for
example, my = 2~¥m, the algorithm is then called variable V-cycle. Unless otherwise
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specified, all the results in this paper will be for these three algorithms and moreover m is
any fixed positive integer.

Remark 2.2 For simplicity, we have chosen Richardson method as the smoother, but all
results in this paper hold for some other smoothers as well, e.g. Gauss—Seidel iteration, see

[14].

2.2 Finite Element Equations

We consider the the following model second order elliptic boundary value problem:

~ V- (aV)WU = F inQ,
(2.6) U = 0 ondQ

where a is a positive function ! with a positive lower bound on 0.
Correspondingly, we have the following bilinear form:

(2.7) Alv,w) = /s;aVv - Vwdz

This form is defined for all v and w in the Sobolev space H'(Q) that consists of square
integrable functions on £ with square integrable first derivatives. Clearly, U € H3({)
(functions in H'(f2) that have zero trace on 9) is the solution of

(2.8) AU, x) = (F,x), Vx € Hy(®),

where (F,x) = [o Fxdz.

The above problem often possess so—called elliptic regularity, namely there is a constant
a € (0,1] such that
(2.9) lullrva@) < CllfllHam1(0)-

The above regularity estimate often plays a crucial role in the usual multigrid analysis.
The analysis in this paper however does not directly depend on this regularity.

We will use the finite element method to discretize the above problem. To do this we
first need to discretize the underlying domain (2, namely, to construct a triangulation of ‘
). We assume this triangulation is constructed by a successive refinement. More precisely,
T = 7; (for some integer j) and T (for k < j) are a sequence of triangulations 7'y = {7}
of sunphces of size hy for k= 1,...,7 such that = U;r{ and the minimal interior angles
of all elements {r}} are umformly bounded below. These triangulations should be nested
in the sense that any simplex 7/_, can be written as a union of simplices of {ri}. The
triangulations are said to be quasiuniform if the ratios of the maximum mesh size to the
minimum ones on each level are uniformly bounded above. As an example for quasiuniform
triangulations in two dimensional case, the finer grid is obtained by connecting the mid-
points of the edges of the triangles of the coarser grid, starting with a given quasiuniform
triangulation 73.

Hence we can assume a triangulation 7; is given on Q. On this triangulation, finite
element spaces can be constructed. First, we consider the conforming elements, namely
the continuous piecewise linear polynomial space M; C Hj(2). Using this space, we can
formulate the finite element approximation of the problem (2.8) by

'Except for the interface problem, a is also assumed to be sufficiently smooth.
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Find u; € M; such that

(2.10) Aluj,v) = (f,v), Yve M,.

Another type of finite element space we will study is a nonconforming element [6],
denoted by M ; which is the space of piecewise linear polynomials that assume the same
value at the midpoint of each edge of any element and vanish at the midpoints of the edges
on dQ. With this space, the finite element approximation of (2.8) is given by

Find u; € M; such that

(2.11) Aluj,v) = (f,v), Vve M,

where

(2.12) Alv,w)= > /aVv - Vwdz.
’rGTj 7

Our primary purpose is to develop multigrid algorithms to solve the equation (2.10) and

- (2.11). More specifically, the Algorithm § described in Section 2 will be used. To define

the Algorithm S , we need to choose the ingredients such as the multilevel spaces M, and
the bilinear forms (-,-) for k=1, 7. In all the following applications, all the quadratic
forms A(:,-) will all be the same as given by (2.7) or (2.12). Other components of the
Algorithm S will be described later in each concrete case.

3 Some Lemmas

As we mentioned above, the technique that makes use of ellptic regularity in the usual
multigrid analysis does not always work. Therefore it is desirable to develop a technique in
which the regularity does not play a crucial role. What is to be described next is just for
such purpose. Similar technique has been used by some other authors before, ¢.f. Mandel
[9], Hackbusch [7],Brandt [4], Ko¢ava and Mandel [8], Ruge and Stiiben [11] etc.

Assume we are given two finite dimensional spaces My_; C M, and a symmetric
positive definite bilinear form A(,-) defined on M. Each M, is equipped with an inner
product (v,-); with | = k — 1,k. Py_y : My — My, is the standard Galerkin projection
satisfying

A(Ppqu,v) = A(u,v), Yu € My,ve M.

For I = k — 1, k, the operator A;: M; + M, is defined by
(A, v) = A(u,v), Yu,v e M,.
We make the following principal assumption:

(3.1) }\Ihf lv = xllx* < Ci A A(v,0) Vo € My,

xX€ k1

where Ay = p(Ax) and C; is a positive constant.
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Lemma 3.1 Assume K = I — A\;'Ag. Then, under the assumption (3.1), we have
AT = Py )KPu, KPw) < (1= 2)AKE™ ', 0)
' < (1= F)Alw,u), Yue M.

Proof. By the definition of Py_1, for any v € My and x € M1, we have

A((I = Pey)v,v) = A((I = Peca)v,(I = Pe1)v — X)
= (Ap(J = Pe-1)v, (I = Pro1)v — X)k
< A = Peea)ollell(Z = Pe-a)v = Xl

Applying 3.1 yields
A((I = Py—r)v,v) < CrATH AR ~ Py )olli’
Using the hypothesis for K, we get that

A(I(k(l - Pkul)v, (I - Pk.ﬂl)v)
A((I — Pk..l)v, v) s /\k‘luAk(I — Pk_l)vllk?’

(1 Z%)A((I — Pet)v,0).

IA

AN

Using Schwarz inequality and the above estimate with v = K[*u, we deduce that

A((I = Peot) K u, K'u)?
AK(I = Peey)KJu, KPu) ACKE™ 0, )
1
(1~ F AW ~ Po)Ku, KPu) ACKE™ Yu, u).

1

IA

AN

The desired result then follows.
As a consequence of Lemma 3.1, we have

Lemma 3.2 Assume Ej: My~ M,, forl = k—1,k are nonnegative self adjoint operators
that are related by
Ey = KM — Poy + Ef_Pe1) K

where p > 1 is an integer. Then, under the assumptions of Lemma 3.1

NE, < (@ = I Er-1lly +

where n =1 — g-. Hence || Ex-1fl, <1 implies that || Exl|, < 1.
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Proof. Denote 8y = || Es_1l,. It is routine to see that

A(Bru,u) < (1 =8_)A(( = Pecy) K u, K*u) + 8 A(Ku, KM u)
< (=8 + & )AKE™  u, u)
< (A =m)biy + ) ALK u, u)
< (1 =n)8E_y +n)A(u,u),
as desired.

4 A Nonconforming Element

Assume we are given a nested sequence of quasiuniform triangulations 73,75, . . ., 7;. On
the finest triangulation 7;, the Crouzeix-Raviart space M; is defined, which is a space of
piecewise linear functions on 7; that assume the same value at two adjacent elements at
the midpoint of their common edge and vanish at the midpoint of each edge on 9.

To define the coarse level space, we temporiarily employ the notation M to denote the
continuous piecewise linear functions on 7 that belongs to H} (). The multilevel spaces
defining the Algorithm S will be given by

_ ./\;1]', if k= 3,
My = { My, itk <y,

Observing that M ; C M;, we then get a sequence of nested spaces
MyCMyC...C My C M,
On M, the bilinear form A(,-) is now defined by (2.12) and the bilinear form (-,-); is |

_defined by
(u,0); = b 3 u(z)v(z),
zEN;
where N; = set of all midpoints of the edges in 7;. On My, for k < j, the bilinear forms
A(:,-) are all the same as given by (2.7) and the bilinear form (-,-); is defined by

(w0 =hi D u(z)v(z)

z€Nk41

where N}, is the set of all nodes of 7. )
For the verification of (3.1), we define 7; : M; > M; by

0, if z € 90N N;

(mju)(z) = { ) .
W Lver, w(y), if @ € Nj\ a9,

where M, is the set of midpoints of the edges with x as one of their endpoints.
The following result is essential for the analysis in this section.

Lemma 4.1
(1 - 7"J‘)u”2 SAT 1h2A(u7u)’ Vu € Mj'

J o~ "7
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Proof. For a given z € N \ 09, in the following, z4 and z, will denote the endpoints of
the edge where z is located. We have

I —m)ull} S B2 01U = m)u()?

z€N;

= 123 ju(z «—»[ miu)(21) + (rju)(z2)][?
zEN;

< B S 3 ula) — () e
€N f=l

S R D > lule) -

€N =1 ye N,

It is straightforward to check that

> @) —u@ < 30 > lu(a’) —u(=")

YENT,; TETJ',(CGT o' g eNOT

Consequently

I —mpull® S B2 2 lu(@) —u(@)P

TGTJ' =z eNNT
< REA(u,u).

Since A; < hj"z as usual, the proof is then complete.
It follows from Lemma 4.1 and Lemma 3.2 that

Theorem 4.1 Under the assumptions described above, the Algorithm S for solving (2.11)
satisfies

(4.1) NEN, <é6<1,

where, for variable V-cycle or W ~cycle, § is independent of j and for V-cycle, § = 1 —
0(377)

Proof. By the multigrid theory for conforming elements (cf. [2, 10, 14]), we have
(4.2) NEall, < &5 <1

where §; is independent of j for variable V-cycle and W-cycle, and é; = 1 — O(377) for
V-cycle.
The desired result then follows from Lemma 4.1 and Lemma 3.2.

Remark 4.1  We observe that Theorem 4.1 only depends on Lemma 4.1 and the estimate
(4.2) and it has nothing to do with other multilevel triangulations. Consequently any -
multigrid algorithm for conforming elements would correspond to an algorithm that has
the same convergence rate. For example, as is done in [3, 14], we can establish a similar
nonnested multigrid theory for nonconforming elements.
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5 Interface Problems and Mesh Refinements

This section is devoted to the analysis of multigrid algorithms for interface problems and
. mesh refinements.

5.1 Interface Problems

We call problem (2.6) to be an interface problem if the coefficient has discontinuous jumps.
More precisely,  admits the following decomposition

J
(5.1) 0=
tz=1
where §); are mutually disjoint open polygon or tetrahedral and

(52) a(.’x)ﬂwi, Vflieﬂi,iﬁl,'”,j

for some positive constants w;. We will call the set UL, 09, \ 09 to be the interface of the
decomposition of (5.1).

The point here is that the ratio max w;/ min w; may be extremely large. Our purpose is
to design a multigrid algorithm and show that the above mentioned ratio does not affect
the convergence rate.

To begin our analysis, we introduce, with respect to the positive constants {witl,
above, the following weighted inner products:

J
(5.3) (u,v)%(g) = Zwi(u, U)L2(Q;)>
1=1
and
J
(5.4) | (u,V)my@) = 2 wi( Vi, Vo)raay,
i=1

with the induced norms denoted by ||-||z2 (@) and | - |m(a), respectively. Notice that
A('v‘) =1 l%{;(n)-
As is done in Section 2, we assume that § is triangulated by a nested sequence of
quasiuniform meshes {74 : k=1,..., 7}. An additional assumption we need here is that
these triangulations are lined up with the subdomains €),’s. Namely the restriction of each

T, on each {; is also a triangulation of €; itself. Corresponding to these triangulations, as
in Section 4, we have the multilevel spaces as follows:

M C - C M.

Namely M C HL(9) is a space of piecewise linear polynomials.
For the definition of Algorithm S, we choose to define the discrete inner product by

(5.5) (u,v)k::hzi:wi > u(z)v(z).

4=1 xeNani
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It is easy to see that the norm induced by the above inner product is equivalent to ||-[|z2 (o)
defined from (5.3). Defining operators Ay : My +— M similarly as before, by the well-
known inverse inequality, we have for the largest eigenvalue of Ax, Ax < hi2.

Again, we will use the technique described in Section 3 to study this problem. To begin
with, we need

Lemma 5.1 Let Iy : My +— My_y is the standard nodal value interpolation, then
(I = Lio)o||2 S At A(v,v), Vv € M.

The idea of the proof of this lemma is quite similar to that of the forthcoming Lemma 5.2,
the detail is omitted here.
Hence we can apply Lemma 3.2 to conclude that

Theorem 5.1 Under assumptions described above, the Algorithm S in Section 2 satisfies:
B, <=1~ -n"
where n € (0,1) is a constant independent of k.

The above theorem shows that the multigrid algorithm converges uniformly with respect
to the jumps of the coefficients, provided that the number of levels is fixed.

5.2 Nonquasiuniform Meshes

Assuming we are given a nested sequence of triangulations {T &, k € T}, which are not nec-
essarily quasiuniform. As usual we have the corresponding finite element spaces { My, k =
L...,7}

We will follow the notation and assumptions in Section 2. The first step is to make a
proper choice of the inner products (-, )z, which can be defined by

' J
(5.6) (u,0)e =hE>. > rE? N u(z)v(z)

i=1 TGT}chi ZGNkﬂT

where h, = diam(7).
For any z € ), we define a local mesh size

1
p= e 3 b
b |Ak,$| E

TE€EAkz

h

where Ay = {r € Ty :z € 7} and |Ag| is the number of elements in Ay .
We need to assume that any consecutive meshes are comparatively close in the sense
that

hiore S bk < hherer Yk,

Roughly speaking, the number of elements of 7; contained in any element of 7.1 is uni-
formly bounded.
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The discrete inner product (-, ) will be still defined as in (5.6). It is trivial to see that
the induced norm ||-||x satisfies:

(5.7) e < B2 32 R Y fu(e)l

reT s zENKNT

Lemma 5.2 For any v € My,
(7 = T )vll S At Alv, v).
Proof. For any r € 7.1, it is routine to show that
I = Teea)olZe(ry S Bil0lingy, Yo € M.

But
Ry S I = La)o(@)? ST = Teea)ollZagny,

wENkﬂ'r

and hence

B2 Y (I = Lee)o(@)? S ol

zENROT

Summing over all 7 € Ty, we then get

RS (= Teao(@) S Alv,v).

rel 4 ceNynT

It is easy to see that Ay < hi?, hence the desired result follows because of (5.7).
From Lemma 5.2 and Lemma 3.2, we conclude that

Theorem 5.2 (Non—quasiuniform meshes) Under assumptions described above, the
Algorithm S satisfies:
IEull, < 86 =1~ (1 -

where n € (0,1) is a constant independent of k.

5.3 Interface Problems with Refined Meshes

In this subsection, we shall combine the results in the preceding two sections to study
the interface problems with refined meshes. According to the theory of partial differential
equations, we know that the solution of the interface problems usually possess singularities.
Hence mesh refinement is important in this case. In this way, we are confronted with two
difficulties at the same time, namely the large jumps and the nonuniform grids. But
fortunately our argument given above is completely local and hence still applies to this
case.

The nested sequence of triangulations are given as in the preceding subsection with a
constraint that the interfaces of 0§;’s are lined up with each restriction 7. The discrete
inner products on the corresponding spaces My, are now defined by
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(u,v)kvwzhizj:wi STOREE S u(z)v(a).

i=1 TETkﬂQ,‘ zENNT

With a similar local argument, we have the analog of Lemma 5.2 as follows:

Lemma 5.3 For any v € My,

I = Ie-1)vllR S RRA(v,0).

Therefore Lemma 3.2 is satisfied. Similar to the preceding section, we have

Theorem 5.3 (Interface problems with refined meshes) Under assumptions described
above, the Algorithm S satisfies:

B, < 86 =1-(1—n)*"

where 1 € (0,1) is a constant independent of k.

6 A Remark

After this work was finished, in a joint work of this author with Bramble, Pasciak and
Wang, we have developed a new technique to study the problems in Section 5. The main
idea is again to avoid using the elliptic regularity. In most cases for the problems in Section
5, we can show that

1

0 < A((J = BjAj)v,v) < (1 - F)A(v,v), Vv € M;

where v =1 or 2. These results will be reported elsewhere.
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