CHAPTER 28

Domain Decomposition for Reservoir Flow Problems
Ove Saevareid*

Helge K. Dahle*

Magne S. Espedal*

Abstract. Using an operator-splitting technique based on the modified method of char-
acteristics, [5], the saturation equation for two-phase immiscible flow in porous media leads to
a nonsymmetric bilinear form. Addressing this problem via a Petrov-Galerkin finite-element-
method, we discuss dynamic local grid refinement and choice of appropriate trial and testfunc-
tions. A preconditioner based on ideas of Bramble et.al [2],[3] is proposed for the resulting
non-symmetric linear system. We also consider the pressure equations. Here we introduce
an approach aiming at the construction of accurate, consistent and piecewise linear velocity
components from a piecewise linear pressure approximation. Computational results for a two
dimensional model are presented.

1 Introduction.

Neglecting gravity and compressibility, two-phase immiscible flow in a porous media
can be described by the set of partial differential equations:

Vv =q(x,1t), (1)
v=—A(5.x) Vp, (2)
¢'%S + V- (F(S)V) — €V - (D(S,x) - VS) = ga(x, 1), (3)

where v is the total Darcy velocity, p the total fluid pressure, S denotes the saturation
of water and ¢ is a parameter scaling the diffusion term. We restrict ourselves to two
space dimensions and assume the absolute permeability tensor to have the form

K(x) = ko(x)ii + ky(x)jj. (4)

Let \;. i = w. o denote the mobility of water and oil respectively. We then have
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A(S5.x) = K(x)(Aw + M), (5)

. A

f(5> = mv’ (6)
_ Ao dpe

D(S,x)_K(x)/\wHo —< | (7)

where p. is the capillary pressure. The mobilities and the capillary pressure are assumed
to be known functions of the water saturation.

In order to specify a concrete computational problem, we need boundary and initial
conditions. The repeated five-spot well pattern is frequently used as a test case for
these equations. In this context, it is natural to impose the boundary conditions

ven=0, x¢cdoN (8)
VS-n=0, xe€if 9)

where ) is our computational domain and n denotes the unit normal out of Q.

We shall adopt a sequential solution strategy to handle the system (1) - (3). Assum-
ing a weak saturation dependency in equations (1) - (2), one solves for the pressure and
velocity using the saturation at the present time. The velocity field is then assumed to
be known when we advance the saturation to the next time level using equation (3).

2 Pressure and Velocity.

Given the saturation, S, the equations (1)-(2) constitute a saddle point problem for
pressure and velocity. We may, of course, solve these equations simultaneously using
a mixed finite element method, [9]. However, we will here consider a more classic
approach. Eliminating the velocity between egs. (1)-(2) leaves us to solve a second
order elliptic equation for the pressure. The weak formulation for this problem is

‘4([)5 d)) = (qlv ¢)7 (10)

where A(u,v) = [fo A -Vu-Vudedy and (u,v) = [[uvdzdy. It is convenient to
model the wells using point-sources and -sinks represented by delta functions, i.e

n(%,1) = D" qu(t)(x = zn,y — yn). (11)

wells

We discretize the problem (10)-(11) using a standard finite element method (FEM).
Due to the singularities present, special treatment is necessary to obtain an accurate
discrete approximation. Analytic removal of the singularities has been proposed, [9],
but will generally necessitate global modifications of the discrete equations. A promis-
ing alternative seems to be local mesh refinement of the well regions, (3]. Also the
behavior of the tensor A(x), reflecting properties of reservoir rock and fluid mixtures.
may offer potential for local mesh refinement.

We have chosen a refinement scheme where regular substructures are superimposed
over the critical regions of a global regular mesh. This approach permits us to work
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solely on regular mesh problems, treating the composite mesh within the framework
of some global iterative method like the FAC solution strategy of McCormick et.al,
[8], or the preconditioner concept of Bramble et.al, [3]. This patch refinement strategy
also has the advantage that it can relatively easy be integrated into existing large scale
codes.

Having solved equation (10) and determined the discrete pressure approximation,
pr. in the space of functions that are linear when restricted to an element of the
composite grid of Figure 1, our next task is to find the velocity. Straightforward
differentiation of the pressure approximation leaves us with velocity components that
are constant on each element, giving a discretization error of the order of the mesh
size.

Figure 1: Typical composite mesh for pressure and velocity computations.

Figure 2: a) Support of local test function. b) Node ordering and control volume.

Instead we consider the following algorithm. The discrete version of (10) associated
with the node ~0” of Figure 2, can be written:
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Alpr,d3) = (3(as +ap)B22 + LHap + ap) B2 ) Ay

+ (5(be + bp)BTE2 + §(by + bp) L2 ) A, (12)
where @} is the local test function, ag,...,br are the components of A = aii + bij

averaged over the different elements of Figure 2(a), p; is the pressure at node i of
Figure 2(b) and Az and Ay are the mesh sizes. Due to equation (2), which defines
the Darcy velocity, equation (12) has a natural interpretation in terms of the fluxes
through the edges of a control volume surrounding the node 0 of Figure 2(b). That is,
equation (12) may be written in the form

Alpr, 80) = (ud —ug)Ay + (v — v5)Az, (13)
see Figure 2(b). By linear interpolation, the fluxes determine a unique velocity for

‘each node (Figure 3):

1 .
u; = i(uf +u;) and v = %(vf +v7), t=1,..4, (14)

where of course uf = u; etc. These nodal values then define continuous and piecewise
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Figure 3: (a) Four adjacent control volumes and the associated fluxes. (b) Piecewise
linear velocity components.

linear approximations to the velocity components. Conservation of mass for the control
volumes is a direct consequence of equation (13), and leads to similar conservation
properties for the modified velocity field. For example, by using (13) and (14) one
obtains

%2'(”01 + v2)Az + “;“(u]. +ug) Ay — %(04 +v3)Az ~ ‘i‘(uz +u3)Ay =0, (15)
i.e. flux conservation for the boldfaced rectangle of Figure 3(b).

The procedure outlined above resembles the approach used to improve the accuracy
of the gradient computed from a finite element approximation, see [7]. A proof similar
to that of [7] seems to carry through also for our algorithm, indicating discrete velocity
components of second order accuracy in the mesh size for a uniform mesh. This has
s0 far been confirmed by the numerical investigations.

The concept of control volumes and flux conservation make the idea convenient
for generalization to the case of local mesh refinement. We have implemented an
algorithm handling composite meshes like that of Figure 5, and a thorough discussion
of this aspect is given in [10].
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3 Saturation.

Due to the small parameter ¢, the parabolic equation (3) has an almost hyperbolic
nature. Consequently, it is common to limit the study of this equation to the pure
convection problem

@%SJrv-Vf(S):O. (16)

The s-shaped form of typical fractional flow functlom f(S), may cause equation (16)
to develop nonunique solutions.

Figure 4: The fractional flow function and its convex hull.

In order to obtain uniqueness, the entropy and shock conditions are imposed on
equation (16). We shall be concerned with the transport of a fully established shock.
In this case, the shock condition is equivalent to replacing f(.5) in (16) by its convex
hull, f(S), see Figure 4.

The operator splitting introduced by Espedal and Ewing, [5], takes advantage of
this way of handling equation (16). Their algorithm aims at the complete equation
(3), with the small but physically important diffusion term included. Let S™(x) be
the approximation to S(x,t™), the solution at time ¢™. By the splitting

f(8) = f(S) +b(5)S, (17)
of the fractional flow function, and solution of the modified transport problem
$oSH v VST =0, 57 x,17) = S7(x), ¢ [ i) (18)

afirst approximation, $™+1(x) = §™t1(x, t™*1), to the saturation S(x,t™*"), is achieved.
Equation (3) is then discretized in time and linearised by expanding it with respect
to S™*1(x). Neglecting terms of O(Ate), we get (see [5])
A B
ST 4 —Jtv (VHE)S™H) - %tﬁv L(D(x) - VS™1) = §m¥(x), (19)

where b(x) = b(S™*(x),x), D(x) = D(5S™*t!(x), x), and At = ™! —¢™. This gives
an improved approximation, $™*1(x), to the solution S(x,t™*1).
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The localized shock region leaves us with a two scale problem, well suited for
adaptive local refinement in space. Figure 5 shows a typical solution and a convenient
computational grid. .

Let S7(Q) be the space of functions on Q) that are bilinear when restricted to
an element of the composite grid associated with time level t™. Starting out with
Sm e Sp(R), where Sp* is the discrete approximation to S™(x), we solve (18) using
the modified method of characteristics. We first update the coarse nodes, and then
decide where the grid should be refined by scanning the coarse grid information. In this
way the discrete space ST+1(§1) and the discrete approximation S7**! are determined
simultaneously.

To obtain a stable discrete solution we have used a Petrov-Galerkin procedure to
discretize equation (19) with ST+ (Q) as the trial space. Appropriate test functions

|

~

Figure 5: Typical solution and the composite grid used in the computations.

can then be determined by a symmetrization technique developed by Barrett and
Morton, [1]. For the given problem it can be shown that the test-functions introduced
by Heinrich et. al. [6], form a suitable test space. Using (9) as boundary condition,
we get the discrete Galerkin equations:

ASPHL ) = (SpFL, ) — (BEvBSEH, Vi) + (4D VSt Vi)
(Sp+t, ), Vi € TPH(Q). (20)
The discrete test space at time level gm+l Q) consists of those functions on

Q) which restricted to an element of the composite grid are linear combinations of the
following basic functions (see Figure 6):
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(6,5 +1) (i+1,5+1)

(1+1,5)

Figure 6: Element of the composite grid.

1/)4(}() _ (xi+1 - x(m - wi)(xi“H - m))(yj'i‘l —Y y(y - yj)(yj+1 - y)) (21)

Az € Az Ay ¢ Ay’
ey Fmw @)@ o) v~y Y)Y — y)
1Ll+l(x) - ( Az ¢ Az? )( Ay +ec Ayg ) (22)
ity = (Tt (@ mm)Eg —2) v =y (Y = Y)W —Y) o
¢z (X) - ( A.’E + c A.’EQ )( Ay c } Ay2 ) (“3)
ity = (E @)@ —e) vy -y -y,
Wik (X) ( Az c Ax? )( L\y c ‘ Ay2 ) ("‘4)
where

"= 3(3— - coth(éj)) =z, (25)

* ;/377 - 2 9 77 - 7./‘ ;

We note that the mesh Peclet numbers 5% = bv*Ax/edyy and fY = bvvAy/edss depends
on the components of the velocity field v = v*1 + v¥j, the diffusion tensor D = djii +
d22jj and the convective term b(.S) as defined by equation (17).

To construct a preconditioner for the resulting linear system, we have used the
ideas of the BEPS-preconditioner of Bramble et.al [3]. We have combined this with
the DD1-preconditioner of Bramble et.al, [2], in order to break down the complex of
refined blocks, see Figure §. Each refined block will then be a subdomain in the DD1
sense, see also [4]. Some modifications related to the non-symmetric nature of the
problem is necessary:

e Consider the coarse grid problem assigning ”coarse-nodes-values” for the inverse
action of the preconditioner (step 2 of BEPS). Over the region of refined blocks,
we have taken the test functions on the coarse mesh to be linear combinations of
the fine mesh test functions, i.e the test functions constructed from eqs. (21)-(24)
using the fine mesh. This is convenient when computing data for the coarse grid
problem and consistent with the composite grid operator.
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e On the edges between refined subdomains we consider the coupling along the
edge given by the composite operator. Using the coarse node values as boundary
conditions, we solve a one dimensional boundary value problem to assign values to
the nodes along the edge. This process replaces the linear extension between the
coarse nodes (cf. step 3 of DD1) and the zero-Dirichlet problem along each edge
(step 2 of DD1), a procedure that proved difficult to adapt to the nonsymmetric
case.

4 Numerical experiments.

In order to solve the linear system arising from equation (20), we use the preconditioner
defined in the ORTHOMIN algorithm as given by Vinsome [11]. For the computations
presented here, we have chosen to restart the orthogonalization procedure after each
Tth iteration.

Model spesification: We have used the following computational forms of the
coefficients: ¢ = 2, ky =k, = 1, A\, = 5%, A, = (1-9)? and D = S(1-S)(ii+]jj). The
well rates needed in equation (11), are set to ¢(t) = £.25 for injectors and producers
respectively. We choose our domain {2 to be the unit rectangle with an injector in the
lower left corner and a producer in the upper right corner, i.e. we consider the diagonal
grid of the five-spot pattern. The initial condition for the saturation equation is given
as an approximately established shock somewhat away from the injector.

To check for grid orientation effects the diagonal grid computations has been com-
pared with equivalent computations on a parallel grid. As we expected, the modified
method of characteristics produced only negligible grid effects.

We measure time as the ratio between the amount of water injected and the total
pore volume available. The elapsed time and the time-step will be denoted tpy; and
Atpyr respectively. The domain § is partitioned into n¢ x ne coarse elements and
each refined block is divided into ngr x ng fine elements, see Figure 5. We give the
residual 7o obtained when S7**! is used as initial approximation to Sp*!, and the
average reduction factor, ¢, observed during the iterative process. We also report the
number of iterations required to reduce ro to a tolerance set to 1075, N denotes the
total number of degrees of freedom associated with the composite grid. The mass
balance (mb) is the ratio between the amount of water in the reservoir as given by the
saturation solution, and the amount of water injected.

Local refinement: For the relatively large diffusion parameter of Figure 7, we see
that the solution, for the mesh-sizes used, is invariant to increased refinement down to
a saturation level of about .5. This leads us to believe that we in this area succeed in
modeling genuine physical diffusion. Below this level, the steep solution requires a very
fine resolution. Considering the somewhat irregular appearance of Figure 7(¢) and the
mass balance column of table 1, we conclude that high resolution has its drawbacks.
The computations also confirm the fact, see Bramble et. al. [2], that as the relative
resolution of the refined blocks increases, a preconditioner of this type becomes less
effective, see also Bramble et. al. [2].
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N N

Figure 7: Saturation for different resolution of the front. e = .01, Atpy; = .05,
fpv[ = 32 and ng = 10. (a) nr = 5 (b) np = 10 (L) npr = 20

ng To i q | mb N fig.

5 |11.20-3 | 7 |.511.994 | 801 | Figure 7(a)
10 || 1.78-3 | 13 | .67 | .993 | 3001 | Figure 7(b)
20 |[4.603 | 23 | .76 | .988 | 11103 | Figure 7(c)

Table 1: Performance of the preconditioner for various resolutions of the front.

Effects of diffusion: Figure 8(a) depicts the pure Buckley-Leverett solution, and
Figure 8 (b)-(c) and Figure 7(b) clearly demonstrate how the effect of increased diffu-
sion introduce more structure into the solution. As the impact of the diffusion term
increases, we see from table 2 that the characteristic solution become a slightly worse
first approximation to the solution. Consequently more work is needed to obtain the
corrected solution.

Figure 8: Saturation for different choices of the diffusion parameter. ngp = 10,
Atpyr = .05, tpy; = .32 and ng = 10. (a) e = .0 (b) e = .001 (c) e = .005
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€ To 1 q | mb N fig.
001 || 3.05-41 5 | .48 .992 | 1687 | Figure 8(h)
005 || 1.01-3 | 10 | .63 | .992 | 2389 | Figure 8(c)
010 || 1.78-3 | 13 | .67 | .993 | 3001 | Figure 7(b) |

Table 2: Performance of the preconditioner for various diffusion parameters.
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